Download citation
Download citation
link to html
In the title compound, [Fe(C6H12NO5)2], the FeII ion lies on an inversion center and is coordinated by two N atoms and four O atoms from two tridentate N-[2-hy­droxy-1,1-bis­(hy­droxy­methyl)eth­yl]glycine ligands, forming a slightly distorted octa­hedral coordination environment. In the crystal, O—H...O, O—H...N and weak C—H...O hydrogen bonds link mol­ecules, forming a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053681401397X/lh5715sup1.cif
Contains datablocks I, New_Global_Publ_Block

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053681401397X/lh5715Isup2.hkl
Contains datablock I

cdx

Chemdraw file https://doi.org/10.1107/S160053681401397X/lh5715Isup3.cdx
Supplementary material

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.046
  • wR factor = 0.099
  • Data-to-parameter ratio = 13.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT414_ALERT_2_C Short Intra D-H..H-X H2C .. H5B .. 1.96 Ang. PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 2 Why ?
Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 8 Note PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF Please Do ! PLAT066_ALERT_1_G Predicted and Reported Tmin&Tmax Range Identical ? Check PLAT128_ALERT_4_G Alternate Setting for Input Space-Group P21/c P21/n Note PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Fe1 -- O3 .. 6.7 su PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Fe1 -- O5 .. 6.3 su PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Fe1 -- N1 .. 7.4 su PLAT793_ALERT_4_G The Model has Chirality at N1 ............. R Verify PLAT860_ALERT_3_G Number of Least-Squares Restraints ............. 4 Note PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 3 Note
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 2 ALERT level C = Check. Ensure it is not caused by an omission or oversight 10 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Tripodal alcohols have been used as poly-dentate ligands in combination with paramagnetic 3d transition metal ions leading to the formation of high nuclear clusters since the discovery of the phenomenon of single-molecule magnetism (Brechin, 2005; Murugesu et al., 2005; Pilawa et al., 1998). During our synthesis to form a poly-nuclear cluster using the N-[tris(hydroxymethyl)ethyl]glycine ligand the title compound was fortuitously obtained.

In the title molecule the FeII ion is located on an inversion center (Fig. 1). The FeII ion is in a slightly distorted octahedral coordination environment formed by two N atoms and four O atoms from two N-[tris(hydroxymethyl)ethyl]glycine ligands. In the crystal, classical O—H···O, O—H···N and weak C—H···O hydrogen bonds (Table 1) connect the molecules into a three-dimensional superamolecular architecture.

Related literature top

For background to the applications of tripodal alcohols as single-molecule magnets, see: Pilawa et al. (1998); Brechin (2005); Murugesu et al. (2005).

Experimental top

The title compound was synthesized hydrothermally under autogenous pressure. A mixture of FeSO4 (0.028 g, 0.1 mmol), N-[tris(hydroxymethyl)ethyl]glycine (0.056 g, 0.3 mmol), methanol (3 ml), N,N'-dimethyl formamide (1 ml) and H2O (2 ml), was stirred for 30 min and then sealed in a 15 ml Teflon-lined stainless container and heated to 358K for 60 h. After cooling to room temperature and subjected to filltration, colorless plates were recovered.

Refinement top

Hydrogen atoms bonded to N and O atoms were located in a difference map and refined with distance restraints of O—H = 0.84 (2) and N—H = 0.87 (2) Å. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å.

Structure description top

Tripodal alcohols have been used as poly-dentate ligands in combination with paramagnetic 3d transition metal ions leading to the formation of high nuclear clusters since the discovery of the phenomenon of single-molecule magnetism (Brechin, 2005; Murugesu et al., 2005; Pilawa et al., 1998). During our synthesis to form a poly-nuclear cluster using the N-[tris(hydroxymethyl)ethyl]glycine ligand the title compound was fortuitously obtained.

In the title molecule the FeII ion is located on an inversion center (Fig. 1). The FeII ion is in a slightly distorted octahedral coordination environment formed by two N atoms and four O atoms from two N-[tris(hydroxymethyl)ethyl]glycine ligands. In the crystal, classical O—H···O, O—H···N and weak C—H···O hydrogen bonds (Table 1) connect the molecules into a three-dimensional superamolecular architecture.

For background to the applications of tripodal alcohols as single-molecule magnets, see: Pilawa et al. (1998); Brechin (2005); Murugesu et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% displacement ellipsoids. Unlabeled atoms are related by the symmetry operator (-x+1, -y+1, -z+1).
Bis{N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycinato-κ3O,N,O'}iron(II) top
Crystal data top
[Fe(C6H12NO5)2]F(000) = 432
Mr = 412.18Dx = 1.748 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 621 reflections
a = 8.8198 (7) Åθ = 2.9–21.9°
b = 9.0245 (7) ŵ = 1.02 mm1
c = 12.3533 (7) ÅT = 298 K
β = 127.224 (4)°Sheet, colorless
V = 782.94 (10) Å30.19 × 0.16 × 0.08 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
1708 independent reflections
Radiation source: fine-focus sealed tube1230 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
multi–scanθmax = 27.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1111
Tmin = 0.829, Tmax = 0.923k = 1111
4000 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.034P)2]
where P = (Fo2 + 2Fc2)/3
1708 reflections(Δ/σ)max < 0.001
131 parametersΔρmax = 0.46 e Å3
4 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Fe(C6H12NO5)2]V = 782.94 (10) Å3
Mr = 412.18Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.8198 (7) ŵ = 1.02 mm1
b = 9.0245 (7) ÅT = 298 K
c = 12.3533 (7) Å0.19 × 0.16 × 0.08 mm
β = 127.224 (4)°
Data collection top
Bruker SMART CCD
diffractometer
1708 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1230 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 0.923Rint = 0.056
4000 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0464 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.46 e Å3
1708 reflectionsΔρmin = 0.39 e Å3
131 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.50000.50000.50000.01527 (19)
O10.0265 (4)0.7341 (3)0.0516 (3)0.0347 (7)
O20.0173 (4)0.8369 (3)0.3530 (3)0.0355 (7)
O30.4719 (4)0.7180 (3)0.5354 (3)0.0323 (7)
O40.6437 (4)0.6393 (3)0.2600 (3)0.0356 (7)
O50.6619 (3)0.5743 (3)0.4408 (2)0.0283 (6)
N10.2766 (4)0.5686 (3)0.2962 (3)0.0209 (6)
C10.2121 (5)0.7215 (4)0.2983 (3)0.0190 (8)
C20.3608 (5)0.5508 (4)0.2233 (3)0.0237 (8)
H2A0.29270.61320.14300.028*
H2B0.34660.44880.19400.028*
C30.5700 (5)0.5920 (4)0.3128 (4)0.0243 (8)
C40.1289 (5)0.8101 (4)0.1682 (4)0.0276 (9)
H4A0.08550.90560.17580.033*
H4B0.22740.82760.15720.033*
C50.0626 (5)0.6982 (4)0.3222 (4)0.0269 (8)
H5A0.05160.65560.24160.032*
H5B0.11120.62980.39710.032*
C60.3822 (5)0.8077 (4)0.4165 (4)0.0269 (8)
H6A0.47120.83020.39730.032*
H6B0.33960.90030.42990.032*
H1A0.182 (4)0.506 (3)0.259 (3)0.027 (10)*
H3A0.514 (6)0.773 (5)0.605 (3)0.078 (18)*
H1B0.126 (5)0.787 (5)0.014 (5)0.10 (2)*
H2C0.019 (7)0.815 (5)0.421 (4)0.080 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0159 (4)0.0181 (3)0.0101 (4)0.0003 (3)0.0069 (3)0.0009 (3)
O10.0265 (16)0.0462 (18)0.0188 (15)0.0048 (14)0.0070 (14)0.0003 (13)
O20.0443 (18)0.0349 (16)0.0402 (19)0.0148 (13)0.0323 (16)0.0086 (14)
O30.0379 (17)0.0292 (15)0.0160 (15)0.0004 (13)0.0091 (14)0.0017 (12)
O40.0293 (15)0.0513 (18)0.0283 (16)0.0014 (13)0.0185 (14)0.0135 (13)
O50.0234 (14)0.0396 (15)0.0174 (14)0.0003 (12)0.0100 (12)0.0048 (12)
N10.0203 (16)0.0195 (16)0.0220 (17)0.0026 (13)0.0123 (15)0.0040 (13)
C10.0192 (18)0.0201 (18)0.0148 (19)0.0020 (14)0.0087 (16)0.0019 (14)
C20.0213 (19)0.0286 (19)0.018 (2)0.0028 (15)0.0103 (17)0.0004 (15)
C30.026 (2)0.0218 (19)0.024 (2)0.0015 (16)0.0141 (18)0.0035 (16)
C40.027 (2)0.029 (2)0.022 (2)0.0025 (17)0.0123 (19)0.0029 (17)
C50.027 (2)0.031 (2)0.025 (2)0.0050 (17)0.0166 (19)0.0038 (17)
C60.025 (2)0.027 (2)0.023 (2)0.0003 (16)0.0121 (18)0.0005 (17)
Geometric parameters (Å, º) top
Fe1—O3i2.062 (3)N1—C11.498 (4)
Fe1—O32.062 (3)N1—H1A0.871 (18)
Fe1—O5i2.071 (2)C1—C41.527 (4)
Fe1—O52.071 (2)C1—C61.529 (5)
Fe1—N12.145 (3)C1—C51.531 (4)
Fe1—N1i2.145 (3)C2—C31.515 (5)
O1—C41.427 (4)C2—H2A0.9700
O1—H1B0.850 (19)C2—H2B0.9700
O2—C51.433 (4)C4—H4A0.9700
O2—H2C0.854 (19)C4—H4B0.9700
O3—C61.426 (4)C5—H5A0.9700
O3—H3A0.855 (19)C5—H5B0.9700
O4—C31.242 (4)C6—H6A0.9700
O5—C31.277 (4)C6—H6B0.9700
N1—C21.482 (4)
O3i—Fe1—O3180.000 (1)N1—C1—C5104.9 (3)
O3i—Fe1—O5i87.88 (10)C4—C1—C5110.7 (3)
O3—Fe1—O5i92.12 (10)C6—C1—C5110.3 (3)
O3i—Fe1—O592.12 (10)N1—C2—C3111.5 (3)
O3—Fe1—O587.88 (10)N1—C2—H2A109.3
O5i—Fe1—O5180.0C3—C2—H2A109.3
O3i—Fe1—N199.75 (10)N1—C2—H2B109.3
O3—Fe1—N180.25 (10)C3—C2—H2B109.3
O5i—Fe1—N199.68 (10)H2A—C2—H2B108.0
O5—Fe1—N180.32 (10)O4—C3—O5123.4 (3)
O3i—Fe1—N1i80.25 (10)O4—C3—C2119.6 (3)
O3—Fe1—N1i99.75 (10)O5—C3—C2117.0 (3)
O5i—Fe1—N1i80.32 (10)O1—C4—C1111.5 (3)
O5—Fe1—N1i99.68 (10)O1—C4—H4A109.3
N1—Fe1—N1i180.000 (1)C1—C4—H4A109.3
C4—O1—H1B109 (4)O1—C4—H4B109.3
C5—O2—H2C102 (3)C1—C4—H4B109.3
C6—O3—Fe1112.7 (2)H4A—C4—H4B108.0
C6—O3—H3A109 (3)O2—C5—C1110.0 (3)
Fe1—O3—H3A137 (3)O2—C5—H5A109.7
C3—O5—Fe1114.9 (2)C1—C5—H5A109.7
C2—N1—C1116.4 (3)O2—C5—H5B109.7
C2—N1—Fe1103.9 (2)C1—C5—H5B109.7
C1—N1—Fe1109.5 (2)H5A—C5—H5B108.2
C2—N1—H1A106 (2)O3—C6—C1107.9 (3)
C1—N1—H1A111 (2)O3—C6—H6A110.1
Fe1—N1—H1A110 (2)C1—C6—H6A110.1
N1—C1—C4114.2 (3)O3—C6—H6B110.1
N1—C1—C6108.8 (3)C1—C6—H6B110.1
C4—C1—C6107.9 (3)H6A—C6—H6B108.4
O5i—Fe1—O3—C6120.1 (2)Fe1—N1—C1—C632.2 (3)
O5—Fe1—O3—C659.9 (2)C2—N1—C1—C5156.7 (3)
N1—Fe1—O3—C620.6 (2)Fe1—N1—C1—C585.9 (3)
N1i—Fe1—O3—C6159.4 (2)C1—N1—C2—C383.5 (4)
O3i—Fe1—O5—C384.2 (2)Fe1—N1—C2—C337.0 (3)
O3—Fe1—O5—C395.8 (2)Fe1—O5—C3—O4178.2 (3)
N1—Fe1—O5—C315.3 (2)Fe1—O5—C3—C22.4 (4)
N1i—Fe1—O5—C3164.7 (2)N1—C2—C3—O4152.0 (3)
O3i—Fe1—N1—C262.5 (2)N1—C2—C3—O528.6 (4)
O3—Fe1—N1—C2117.5 (2)N1—C1—C4—O156.5 (4)
O5i—Fe1—N1—C2152.0 (2)C6—C1—C4—O1177.6 (3)
O5—Fe1—N1—C228.0 (2)C5—C1—C4—O161.6 (4)
O3i—Fe1—N1—C1172.4 (2)N1—C1—C5—O2168.6 (3)
O3—Fe1—N1—C17.6 (2)C4—C1—C5—O267.7 (4)
O5i—Fe1—N1—C182.9 (2)C6—C1—C5—O251.6 (4)
O5—Fe1—N1—C197.1 (2)Fe1—O3—C6—C143.9 (3)
C2—N1—C1—C435.4 (4)N1—C1—C6—O349.6 (3)
Fe1—N1—C1—C4152.8 (2)C4—C1—C6—O3174.0 (3)
C2—N1—C1—C685.3 (3)C5—C1—C6—O365.0 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2ii0.87 (2)2.10 (2)2.952 (4)166 (3)
O3—H3A···O4iii0.86 (2)1.72 (2)2.562 (4)167 (5)
O1—H1B···O5iv0.85 (2)1.96 (2)2.804 (4)174 (6)
O1—H1B···O4iv0.85 (2)2.59 (5)3.172 (4)127 (4)
O2—H2C···O1iii0.85 (2)1.93 (2)2.779 (4)170 (5)
C5—H5B···O5i0.972.563.452 (4)153
C2—H2A···O10.972.563.184 (4)122
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x1, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.871 (18)2.10 (2)2.952 (4)166 (3)
O3—H3A···O4ii0.855 (19)1.72 (2)2.562 (4)167 (5)
O1—H1B···O5iii0.850 (19)1.96 (2)2.804 (4)174 (6)
O1—H1B···O4iii0.850 (19)2.59 (5)3.172 (4)127 (4)
O2—H2C···O1ii0.854 (19)1.93 (2)2.779 (4)170 (5)
C5—H5B···O5iv0.972.563.452 (4)152.8
C2—H2A···O10.972.563.184 (4)122.3
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x1, y+3/2, z1/2; (iv) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds