




Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989016002164/lh5798sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S2056989016002164/lh5798Isup2.hkl |
CCDC reference: 1451795
Key indicators
- Single-crystal X-ray study
- T = 120 K
- Mean
(C-C) = 0.007 Å
- R factor = 0.059
- wR factor = 0.165
- Data-to-parameter ratio = 10.7
checkCIF/PLATON results
No syntax errors found
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.964 Note PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax < 18) ........ 7.15 Note PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds ............... 0.00712 Ang. PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.595 19 Report PLAT915_ALERT_3_C Low Friedel Pair Coverage ....(No Flack x Check) 63 %
Alert level G PLAT032_ALERT_4_G Std. Uncertainty on Flack Parameter Value High . 0.400 Report PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large 0.12 Report PLAT484_ALERT_4_G Round D-H..A Angle Rep for O3 .. O3 to 167 Degree PLAT791_ALERT_4_G The Model has Chirality at C1 (Chiral SPGR) R Verify PLAT791_ALERT_4_G The Model has Chirality at C2 (Chiral SPGR) R Verify PLAT791_ALERT_4_G The Model has Chirality at C3 (Chiral SPGR) R Verify PLAT791_ALERT_4_G The Model has Chirality at C4 (Chiral SPGR) S Verify PLAT791_ALERT_4_G The Model has Chirality at C5 (Chiral SPGR) R Verify PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) Still 77 % PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Th(Min) ... 3 Report PLAT955_ALERT_1_G Reported (CIF) and Actual (FCF) Lmax Differ by . 1 Units PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density 1 Note
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 5 ALERT level C = Check. Ensure it is not caused by an omission or oversight 12 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 7 ALERT type 3 Indicator that the structure quality may be low 7 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
Oxyamine glycosides, such as the title compound, can be utilized for the synthesis of a wide variety of complex glycoconjugates (Kwase et al.,2014; Munneke et al., 2015; Wang et al., 2013). In particular, the use of an oxyamine bifunctional linker allows for the conjugation of carbohydrates to a substrate of choice, such as proteins, fluorophores and biotin. The crystal structure analysis confirmed that the glycoconjugate was obtained in the ring-closed β-pyranose configuration.
The title compound crystallizes with one independent molecule in the asymmetric unit (Fig. 1) in the C1(R), C2(R), C3(R), C4(S), C5(R) configuration. The absolute configuration was not ambiguously determined but was known from the synthetic chemistry.
The molecules are bound together with a comprehensive net of O—H···O(alcohol) hydrogen bonds, as well as one N—H···O(carbonyl) and one O—H···O(carbonyl) hydrogen bond (Table 1). The basic interactions are chain C(2) and C(8) types which combine to form larger chain and rings e.g. R22(12), as shown on the right of Fig. 2.
The Cambridge Structural Database (CSD, Version 5.36, update 3; Groom & Allen, 2014) was searched for N-alkyl-N-(tetrahydro-2H-pyran-2-yl)oxyamines, and two structures were found, both of which are N-β-glycosyloxyamines, viz. an N-β-glucopyranosyloxyamine (Langenhan et al., 2005) and an N-β-galactopyranosyloxyamine (Renaudet & Dumy, 2002). Interestingly, all three structures have a similar conformation around the anomeric linkage, with O6—N1—C1—O1 and C9—O6—N1—C1 torsion angles of 62.9 (8) and 115.6 (2) for the glucosyloxyamine derivative, 50.8 (1) and 126.3 (8) for the galactosyloxyamine and 64.2 (4) and 127.1 (3) for the title compound (Fig. 3). A configuration that allows both the methoxy group to adopt a pseudoaxial orientation, and positions the nitrogen for optimal overlap between the nitrogen lone pair and the C1—O1 σ* (n → σ* interaction).
\ N-(2-Acetamido-2-deoxy-β-D-glucopyranosyl)-N-(3-\ azidopropyl) -O-methylhydroxylamine was prepared as described in Munneke et al. (2015) from 3-azido-1-methoxyaminopropane and commercially available N-acetylglucosamine. The title compound was recrystallized from freshly distilled MeOH–Et2O (1:8 v/v).
Crystal data, data collection and structure refinement details are summarized in Table 2. A l l me thyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the adjacent C—C bond. All other O,C-bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.99 (methylene) and 1.0 (tertiary) Å, O—H = 0.84 Å and with Uiso(H) = 1.2Ueq(C,O). The nitrogen H atom was located in a difference Fourier map and refined with Uiso(H) = 1.2Ueq(N).
Oxyamine glycosides, such as the title compound, can be utilized for the synthesis of a wide variety of complex glycoconjugates (Kwase et al.,2014; Munneke et al., 2015; Wang et al., 2013). In particular, the use of an oxyamine bifunctional linker allows for the conjugation of carbohydrates to a substrate of choice, such as proteins, fluorophores and biotin. The crystal structure analysis confirmed that the glycoconjugate was obtained in the ring-closed β-pyranose configuration.
The title compound crystallizes with one independent molecule in the asymmetric unit (Fig. 1) in the C1(R), C2(R), C3(R), C4(S), C5(R) configuration. The absolute configuration was not ambiguously determined but was known from the synthetic chemistry.
The molecules are bound together with a comprehensive net of O—H···O(alcohol) hydrogen bonds, as well as one N—H···O(carbonyl) and one O—H···O(carbonyl) hydrogen bond (Table 1). The basic interactions are chain C(2) and C(8) types which combine to form larger chain and rings e.g. R22(12), as shown on the right of Fig. 2.
The Cambridge Structural Database (CSD, Version 5.36, update 3; Groom & Allen, 2014) was searched for N-alkyl-N-(tetrahydro-2H-pyran-2-yl)oxyamines, and two structures were found, both of which are N-β-glycosyloxyamines, viz. an N-β-glucopyranosyloxyamine (Langenhan et al., 2005) and an N-β-galactopyranosyloxyamine (Renaudet & Dumy, 2002). Interestingly, all three structures have a similar conformation around the anomeric linkage, with O6—N1—C1—O1 and C9—O6—N1—C1 torsion angles of 62.9 (8) and 115.6 (2) for the glucosyloxyamine derivative, 50.8 (1) and 126.3 (8) for the galactosyloxyamine and 64.2 (4) and 127.1 (3) for the title compound (Fig. 3). A configuration that allows both the methoxy group to adopt a pseudoaxial orientation, and positions the nitrogen for optimal overlap between the nitrogen lone pair and the C1—O1 σ* (n → σ* interaction).
For related structures, see N-β-glucopyranosyloxyamine (Langenhan et al., 2005) and N-β-galactopyranosyloxyamine (Renaudet & Dumy, 2002)
\ N-(2-Acetamido-2-deoxy-β-D-glucopyranosyl)-N-(3-\ azidopropyl) -O-methylhydroxylamine was prepared as described in Munneke et al. (2015) from 3-azido-1-methoxyaminopropane and commercially available N-acetylglucosamine. The title compound was recrystallized from freshly distilled MeOH–Et2O (1:8 v/v).
Crystal data, data collection and structure refinement details are summarized in Table 2. A l l me thyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the adjacent C—C bond. All other O,C-bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.99 (methylene) and 1.0 (tertiary) Å, O—H = 0.84 Å and with Uiso(H) = 1.2Ueq(C,O). The nitrogen H atom was located in a difference Fourier map and refined with Uiso(H) = 1.2Ueq(N).
Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2012 (Sheldrick, 2015) and PLATON (Spek, 2009).
C12H23N5O6 | F(000) = 356 |
Mr = 333.35 | Dx = 1.382 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54184 Å |
a = 13.5605 (18) Å | Cell parameters from 2327 reflections |
b = 4.7386 (3) Å | θ = 3.7–75.3° |
c = 14.140 (2) Å | µ = 0.95 mm−1 |
β = 118.181 (19)° | T = 120 K |
V = 800.9 (2) Å3 | Needle, colourless |
Z = 2 | 0.57 × 0.14 × 0.02 mm |
Agilent SuperNova Dual Source diffractometer with an Atlas detector | 2355 independent reflections |
Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source | 2073 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.053 |
Detector resolution: 10.6501 pixels mm-1 | θmax = 66.6°, θmin = 3.6° |
ω scans | h = −16→16 |
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014) | k = −5→5 |
Tmin = 0.792, Tmax = 0.985 | l = −17→16 |
6061 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.059 | w = 1/[σ2(Fo2) + (0.1194P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.165 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.39 e Å−3 |
2355 reflections | Δρmin = −0.31 e Å−3 |
221 parameters | Absolute structure: Flack x determined using 619 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004) |
1 restraint | Absolute structure parameter: 0.2 (4) |
C12H23N5O6 | V = 800.9 (2) Å3 |
Mr = 333.35 | Z = 2 |
Monoclinic, P21 | Cu Kα radiation |
a = 13.5605 (18) Å | µ = 0.95 mm−1 |
b = 4.7386 (3) Å | T = 120 K |
c = 14.140 (2) Å | 0.57 × 0.14 × 0.02 mm |
β = 118.181 (19)° |
Agilent SuperNova Dual Source diffractometer with an Atlas detector | 2355 independent reflections |
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014) | 2073 reflections with I > 2σ(I) |
Tmin = 0.792, Tmax = 0.985 | Rint = 0.053 |
6061 measured reflections |
R[F2 > 2σ(F2)] = 0.059 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.165 | Δρmax = 0.39 e Å−3 |
S = 1.03 | Δρmin = −0.31 e Å−3 |
2355 reflections | Absolute structure: Flack x determined using 619 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004) |
221 parameters | Absolute structure parameter: 0.2 (4) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.3682 (2) | 0.2828 (6) | 0.5792 (2) | 0.0314 (7) | |
O2 | 0.1361 (3) | 0.5357 (7) | 0.7397 (3) | 0.0378 (8) | |
O3 | 0.0442 (2) | 0.1637 (7) | 0.5080 (3) | 0.0368 (8) | |
H3O | 0.007 (4) | 0.017 (14) | 0.498 (6) | 0.055* | |
O4 | 0.1155 (3) | 0.0380 (8) | 0.3491 (3) | 0.0426 (8) | |
H4O | 0.050 (6) | 0.058 (17) | 0.328 (5) | 0.064* | |
O5 | 0.4546 (3) | 0.2456 (8) | 0.4382 (3) | 0.0401 (8) | |
H5O | 0.486 (6) | 0.385 (16) | 0.486 (6) | 0.060* | |
O6 | 0.4312 (3) | 0.5384 (7) | 0.7784 (3) | 0.0369 (7) | |
N1 | 0.4434 (3) | 0.2390 (8) | 0.7677 (3) | 0.0329 (8) | |
N2 | 0.2088 (3) | 0.1158 (8) | 0.7250 (3) | 0.0326 (8) | |
H2N | 0.205 (4) | −0.077 (14) | 0.732 (4) | 0.039* | |
N3 | 0.7789 (3) | −0.1042 (10) | 0.8833 (4) | 0.0480 (11) | |
N4 | 0.8722 (3) | −0.1684 (10) | 0.8948 (4) | 0.0451 (10) | |
N5 | 0.9545 (4) | −0.2571 (12) | 0.9039 (4) | 0.0566 (12) | |
C1 | 0.3557 (3) | 0.1498 (10) | 0.6645 (4) | 0.0308 (9) | |
H1 | 0.3616 | −0.0591 | 0.6585 | 0.037* | |
C2 | 0.2369 (3) | 0.2191 (9) | 0.6435 (3) | 0.0304 (9) | |
H2 | 0.2276 | 0.4289 | 0.6387 | 0.036* | |
C3 | 0.1552 (3) | 0.0914 (9) | 0.5340 (4) | 0.0318 (9) | |
H3 | 0.1626 | −0.1187 | 0.5392 | 0.038* | |
C4 | 0.1797 (3) | 0.1921 (9) | 0.4452 (4) | 0.0320 (9) | |
H4 | 0.1613 | 0.3974 | 0.4317 | 0.038* | |
C5 | 0.3030 (3) | 0.1481 (10) | 0.4789 (4) | 0.0338 (10) | |
H5 | 0.3197 | −0.0587 | 0.4869 | 0.041* | |
C6 | 0.3382 (4) | 0.2715 (11) | 0.4006 (4) | 0.0349 (9) | |
H6A | 0.2977 | 0.1734 | 0.3308 | 0.042* | |
H6B | 0.3172 | 0.4735 | 0.3890 | 0.042* | |
C7 | 0.1536 (3) | 0.2815 (10) | 0.7623 (4) | 0.0324 (9) | |
C8 | 0.1154 (4) | 0.1435 (11) | 0.8351 (4) | 0.0436 (11) | |
H8A | 0.1627 | 0.2070 | 0.9090 | 0.065* | |
H8B | 0.1212 | −0.0619 | 0.8313 | 0.065* | |
H8C | 0.0375 | 0.1955 | 0.8123 | 0.065* | |
C9 | 0.4282 (4) | 0.5914 (10) | 0.8765 (4) | 0.0395 (11) | |
H9A | 0.4977 | 0.5240 | 0.9370 | 0.059* | |
H9B | 0.3644 | 0.4919 | 0.8757 | 0.059* | |
H9C | 0.4203 | 0.7945 | 0.8842 | 0.059* | |
C10 | 0.5538 (3) | 0.1952 (11) | 0.7742 (4) | 0.0389 (11) | |
H10A | 0.5617 | 0.3227 | 0.7227 | 0.047* | |
H10B | 0.5589 | −0.0014 | 0.7532 | 0.047* | |
C11 | 0.6489 (4) | 0.2502 (12) | 0.8862 (4) | 0.0443 (11) | |
H11A | 0.6441 | 0.4474 | 0.9068 | 0.053* | |
H11B | 0.6405 | 0.1240 | 0.9378 | 0.053* | |
C12 | 0.7623 (4) | 0.2026 (12) | 0.8934 (4) | 0.0451 (12) | |
H12A | 0.7675 | 0.3074 | 0.8353 | 0.054* | |
H12B | 0.8216 | 0.2735 | 0.9630 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0257 (13) | 0.0269 (16) | 0.0409 (16) | −0.0022 (12) | 0.0150 (12) | 0.0014 (13) |
O2 | 0.0370 (16) | 0.0236 (16) | 0.056 (2) | 0.0021 (13) | 0.0245 (15) | 0.0010 (15) |
O3 | 0.0235 (13) | 0.0265 (16) | 0.060 (2) | −0.0025 (12) | 0.0190 (14) | −0.0003 (15) |
O4 | 0.0270 (15) | 0.047 (2) | 0.0476 (19) | −0.0046 (16) | 0.0129 (14) | −0.0117 (17) |
O5 | 0.0322 (15) | 0.0397 (19) | 0.0533 (19) | −0.0004 (14) | 0.0243 (14) | −0.0017 (17) |
O6 | 0.0412 (17) | 0.0222 (15) | 0.0421 (17) | −0.0018 (14) | 0.0152 (14) | 0.0019 (14) |
N1 | 0.0277 (17) | 0.0250 (19) | 0.042 (2) | 0.0011 (14) | 0.0130 (15) | 0.0004 (15) |
N2 | 0.0313 (17) | 0.0212 (18) | 0.049 (2) | 0.0013 (14) | 0.0223 (16) | 0.0030 (15) |
N3 | 0.033 (2) | 0.042 (2) | 0.066 (3) | −0.0007 (19) | 0.021 (2) | 0.001 (2) |
N4 | 0.038 (2) | 0.042 (2) | 0.051 (2) | −0.0025 (18) | 0.0174 (19) | 0.0016 (19) |
N5 | 0.036 (2) | 0.055 (3) | 0.079 (3) | 0.003 (2) | 0.027 (2) | −0.002 (3) |
C1 | 0.0266 (19) | 0.027 (2) | 0.037 (2) | 0.0008 (17) | 0.0136 (17) | 0.0035 (17) |
C2 | 0.0266 (19) | 0.022 (2) | 0.045 (2) | 0.0031 (16) | 0.0187 (18) | 0.0052 (18) |
C3 | 0.0256 (19) | 0.021 (2) | 0.047 (2) | 0.0000 (16) | 0.0160 (18) | 0.0006 (18) |
C4 | 0.027 (2) | 0.026 (2) | 0.041 (2) | 0.0014 (17) | 0.0143 (18) | 0.0008 (19) |
C5 | 0.0249 (19) | 0.033 (2) | 0.042 (2) | 0.0018 (18) | 0.0146 (17) | 0.0022 (19) |
C6 | 0.033 (2) | 0.034 (2) | 0.039 (2) | −0.002 (2) | 0.0172 (18) | 0.000 (2) |
C7 | 0.0297 (19) | 0.022 (2) | 0.045 (2) | −0.0016 (17) | 0.0173 (18) | −0.0012 (18) |
C8 | 0.056 (3) | 0.028 (2) | 0.061 (3) | 0.000 (2) | 0.039 (2) | 0.003 (2) |
C9 | 0.042 (2) | 0.030 (2) | 0.041 (2) | −0.0021 (19) | 0.016 (2) | −0.004 (2) |
C10 | 0.027 (2) | 0.040 (3) | 0.044 (3) | 0.0000 (19) | 0.0112 (19) | 0.001 (2) |
C11 | 0.034 (2) | 0.044 (3) | 0.046 (3) | 0.001 (2) | 0.012 (2) | −0.001 (2) |
C12 | 0.033 (2) | 0.040 (3) | 0.048 (3) | −0.002 (2) | 0.007 (2) | 0.000 (2) |
O1—C5 | 1.420 (6) | C3—C4 | 1.520 (6) |
O1—C1 | 1.441 (5) | C3—H3 | 1.0000 |
O2—C7 | 1.240 (6) | C4—C5 | 1.521 (5) |
O3—C3 | 1.413 (5) | C4—H4 | 1.0000 |
O3—H3O | 0.84 (8) | C5—C6 | 1.515 (6) |
O4—C4 | 1.421 (6) | C5—H5 | 1.0000 |
O4—H4O | 0.80 (7) | C6—H6A | 0.9900 |
O5—C6 | 1.413 (5) | C6—H6B | 0.9900 |
O5—H5O | 0.90 (8) | C7—C8 | 1.502 (6) |
O6—C9 | 1.430 (6) | C8—H8A | 0.9800 |
O6—N1 | 1.445 (5) | C8—H8B | 0.9800 |
N1—C1 | 1.443 (6) | C8—H8C | 0.9800 |
N1—C10 | 1.470 (5) | C9—H9A | 0.9800 |
N2—C7 | 1.352 (6) | C9—H9B | 0.9800 |
N2—C2 | 1.459 (5) | C9—H9C | 0.9800 |
N2—H2N | 0.93 (7) | C10—C11 | 1.520 (6) |
N3—N4 | 1.235 (6) | C10—H10A | 0.9900 |
N3—C12 | 1.488 (7) | C10—H10B | 0.9900 |
N4—N5 | 1.141 (6) | C11—C12 | 1.510 (7) |
C1—C2 | 1.529 (5) | C11—H11A | 0.9900 |
C1—H1 | 1.0000 | C11—H11B | 0.9900 |
C2—C3 | 1.539 (6) | C12—H12A | 0.9900 |
C2—H2 | 1.0000 | C12—H12B | 0.9900 |
C5—O1—C1 | 112.0 (3) | C6—C5—H5 | 109.1 |
C3—O3—H3O | 109.5 | C4—C5—H5 | 109.1 |
C4—O4—H4O | 112 (5) | O5—C6—C5 | 111.9 (3) |
C6—O5—H5O | 106 (5) | O5—C6—H6A | 109.2 |
C9—O6—N1 | 109.4 (3) | C5—C6—H6A | 109.2 |
C1—N1—O6 | 108.2 (3) | O5—C6—H6B | 109.2 |
C1—N1—C10 | 110.6 (3) | C5—C6—H6B | 109.2 |
O6—N1—C10 | 107.2 (3) | H6A—C6—H6B | 107.9 |
C7—N2—C2 | 120.9 (4) | O2—C7—N2 | 122.5 (4) |
C7—N2—H2N | 118 (3) | O2—C7—C8 | 120.9 (4) |
C2—N2—H2N | 118 (3) | N2—C7—C8 | 116.6 (4) |
N4—N3—C12 | 114.8 (4) | C7—C8—H8A | 109.5 |
N5—N4—N3 | 172.6 (6) | C7—C8—H8B | 109.5 |
O1—C1—N1 | 110.6 (3) | H8A—C8—H8B | 109.5 |
O1—C1—C2 | 105.9 (3) | C7—C8—H8C | 109.5 |
N1—C1—C2 | 115.1 (4) | H8A—C8—H8C | 109.5 |
O1—C1—H1 | 108.4 | H8B—C8—H8C | 109.5 |
N1—C1—H1 | 108.4 | O6—C9—H9A | 109.5 |
C2—C1—H1 | 108.4 | O6—C9—H9B | 109.5 |
N2—C2—C1 | 114.7 (3) | H9A—C9—H9B | 109.5 |
N2—C2—C3 | 109.3 (3) | O6—C9—H9C | 109.5 |
C1—C2—C3 | 107.6 (3) | H9A—C9—H9C | 109.5 |
N2—C2—H2 | 108.4 | H9B—C9—H9C | 109.5 |
C1—C2—H2 | 108.4 | N1—C10—C11 | 112.2 (4) |
C3—C2—H2 | 108.4 | N1—C10—H10A | 109.2 |
O3—C3—C4 | 109.3 (4) | C11—C10—H10A | 109.2 |
O3—C3—C2 | 109.8 (3) | N1—C10—H10B | 109.2 |
C4—C3—C2 | 111.9 (3) | C11—C10—H10B | 109.2 |
O3—C3—H3 | 108.6 | H10A—C10—H10B | 107.9 |
C4—C3—H3 | 108.6 | C12—C11—C10 | 112.3 (4) |
C2—C3—H3 | 108.6 | C12—C11—H11A | 109.1 |
O4—C4—C3 | 110.8 (4) | C10—C11—H11A | 109.1 |
O4—C4—C5 | 108.4 (3) | C12—C11—H11B | 109.1 |
C3—C4—C5 | 109.5 (3) | C10—C11—H11B | 109.1 |
O4—C4—H4 | 109.4 | H11A—C11—H11B | 107.9 |
C3—C4—H4 | 109.4 | N3—C12—C11 | 109.5 (4) |
C5—C4—H4 | 109.4 | N3—C12—H12A | 109.8 |
O1—C5—C6 | 107.1 (3) | C11—C12—H12A | 109.8 |
O1—C5—C4 | 109.0 (3) | N3—C12—H12B | 109.8 |
C6—C5—C4 | 113.4 (4) | C11—C12—H12B | 109.8 |
O1—C5—H5 | 109.1 | H12A—C12—H12B | 108.2 |
C9—O6—N1—C1 | 127.1 (3) | C2—C3—C4—O4 | 170.7 (3) |
C9—O6—N1—C10 | −113.6 (4) | O3—C3—C4—C5 | 173.0 (4) |
C5—O1—C1—N1 | 164.6 (3) | C2—C3—C4—C5 | 51.1 (5) |
C5—O1—C1—C2 | −70.2 (4) | C1—O1—C5—C6 | −170.3 (3) |
O6—N1—C1—O1 | 64.2 (4) | C1—O1—C5—C4 | 66.7 (4) |
C10—N1—C1—O1 | −52.9 (5) | O4—C4—C5—O1 | −175.5 (3) |
O6—N1—C1—C2 | −55.6 (4) | C3—C4—C5—O1 | −54.5 (5) |
C10—N1—C1—C2 | −172.8 (4) | O4—C4—C5—C6 | 65.3 (5) |
C7—N2—C2—C1 | 136.0 (4) | C3—C4—C5—C6 | −173.7 (4) |
C7—N2—C2—C3 | −103.1 (4) | O1—C5—C6—O5 | 55.3 (5) |
O1—C1—C2—N2 | −176.8 (3) | C4—C5—C6—O5 | 175.6 (4) |
N1—C1—C2—N2 | −54.4 (5) | C2—N2—C7—O2 | −8.8 (7) |
O1—C1—C2—C3 | 61.4 (4) | C2—N2—C7—C8 | 172.2 (4) |
N1—C1—C2—C3 | −176.2 (3) | C1—N1—C10—C11 | −172.5 (4) |
N2—C2—C3—O3 | 58.2 (4) | O6—N1—C10—C11 | 69.7 (5) |
C1—C2—C3—O3 | −176.7 (3) | N1—C10—C11—C12 | 179.5 (4) |
N2—C2—C3—C4 | 179.7 (3) | N4—N3—C12—C11 | −175.7 (4) |
C1—C2—C3—C4 | −55.1 (4) | C10—C11—C12—N3 | −69.7 (6) |
O3—C3—C4—O4 | −67.5 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3O···O3i | 0.84 | 1.79 | 2.616 (5) | 167 |
O4—H4O···O2i | 0.80 (7) | 2.23 (7) | 3.027 (4) | 170 (8) |
O5—H5O···O5ii | 0.90 (8) | 1.98 (8) | 2.855 (4) | 167 (7) |
N2—H2N···O2iii | 0.93 (7) | 2.08 (6) | 2.961 (5) | 158 (5) |
Symmetry codes: (i) −x, y−1/2, −z+1; (ii) −x+1, y+1/2, −z+1; (iii) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3O···O3i | 0.84 | 1.79 | 2.616 (5) | 167.1 |
O4—H4O···O2i | 0.80 (7) | 2.23 (7) | 3.027 (4) | 170 (8) |
O5—H5O···O5ii | 0.90 (8) | 1.98 (8) | 2.855 (4) | 167 (7) |
N2—H2N···O2iii | 0.93 (7) | 2.08 (6) | 2.961 (5) | 158 (5) |
Symmetry codes: (i) −x, y−1/2, −z+1; (ii) −x+1, y+1/2, −z+1; (iii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C12H23N5O6 |
Mr | 333.35 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 120 |
a, b, c (Å) | 13.5605 (18), 4.7386 (3), 14.140 (2) |
β (°) | 118.181 (19) |
V (Å3) | 800.9 (2) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 0.95 |
Crystal size (mm) | 0.57 × 0.14 × 0.02 |
Data collection | |
Diffractometer | Agilent SuperNova Dual Source diffractometer with an Atlas detector |
Absorption correction | Gaussian (CrysAlis PRO; Agilent, 2014) |
Tmin, Tmax | 0.792, 0.985 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6061, 2355, 2073 |
Rint | 0.053 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.165, 1.03 |
No. of reflections | 2355 |
No. of parameters | 221 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.39, −0.31 |
Absolute structure | Flack x determined using 619 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004) |
Absolute structure parameter | 0.2 (4) |
Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL2012 (Sheldrick, 2015) and PLATON (Spek, 2009).