Download citation
Download citation
link to html
5,6-Dihydro­benzo[h]quinazoline, C12H10N2, has been synthesized from α-tetra­lone and formamide using different palladium complexes as catalysts. There are two mol­ecules in the asymmetric unit and the least-squares planes through the two mol­ecules show that they are almost perpendicular to each other, resulting in a zigzag packing pattern in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680503206X/lh6497sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680503206X/lh6497Isup2.hkl
Contains datablock I

CCDC reference: 273297

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.070
  • wR factor = 0.245
  • Data-to-parameter ratio = 12.6

checkCIF/PLATON results

No syntax errors found




Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT340_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 6
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: CAD-4-PC Software (Enraf–Nonius, 1992); cell refinement: CELDIM in CAD-4-PC Software; data reduction: XCAD4 (McArdle & Higgins, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1993a); software used to prepare material for publication: OSCAIL (McArdle, 1993b).

5,6-Dihydrobenzo[h]quinazoline top
Crystal data top
C12H10N2F(000) = 768
Mr = 182.22Dx = 1.327 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 25.118 (5) Åθ = 12–16°
b = 7.3522 (9) ŵ = 0.08 mm1
c = 10.0830 (17) ÅT = 298 K
β = 101.664 (11)°Block, brown
V = 1823.6 (5) Å30.5 × 0.3 × 0.3 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
1703 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.006
Graphite monochromatorθmax = 25.0°, θmin = 1.7°
ω–2θ scansh = 1229
Absorption correction: ψ scan
[ABSCALC in OSCAIL (McArdle & Daly, 1999) and North et al. (1968)]
k = 08
Tmin = 0.961, Tmax = 0.976l = 1111
3334 measured reflections3 standard reflections every 120 min
3184 independent reflections intensity decay: 10%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.245H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1448P)2 + 0.3821P]
where P = (Fo2 + 2Fc2)/3
3184 reflections(Δ/σ)max = 0.004
253 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

13.9883 (0.0320) x + 1.2717 (0.0112) y + 6.8867 (0.0116) z = 12.6057 (0.0040)

* 0.0000 (0.0025) C11 * -0.0061 (0.0026) C112 * 0.0054 (0.0028) C111 * 0.0018 (0.0028) C110 * -0.0080 (0.0028) C19 * 0.0070 (0.0026) C18

Rms deviation of fitted atoms = 0.0055

13.9628 (0.0326) x - 0.9578 (0.0117) y + 6.9739 (0.0113) z = 12.2655 (0.0069)

Angle to previous plane (with approximate e.s.d.) = 17.45 (1/5)

* 0.0034 (0.0026) C15 * -0.0026 (0.0028) C14 * 0.0018 (0.0027) N11 * -0.0019 (0.0028) C13 * 0.0028 (0.0026) N12 * -0.0036 (0.0025) C12

Rms deviation of fitted atoms = 0.0028

16.1004 (0.0293) x + 0.1740 (0.0211) y + 6.2691 (0.0120) z = 12.5676 (0.0035)

Angle to previous plane (with approximate e.s.d.) = 10.55 (0.23)

* -0.0764 (0.0022) C11 * 0.0392 (0.0012) C18 * -0.0402 (0.0012) C15 * 0.0775 (0.0023) C12 0.3701 (0.0072) C17 - 0.3284 (0.0073) C16

Rms deviation of fitted atoms = 0.0612

20.7861 (0.0214) x + 1.4877 (0.0110) y - 6.8581 (0.0115) z = 12.7234 (0.0245)

Angle to previous plane (with approximate e.s.d.) = 82.33 (0.10)

* 0.0056 (0.0025) C21 * -0.0003 (0.0026) C212 * -0.0053 (0.0028) C211 * 0.0056 (0.0028) C210 * -0.0002 (0.0026) C29 * -0.0053 (0.0025) C28

Rms deviation of fitted atoms = 0.0044

20.8298 (0.0218) x - 0.9821 (0.0114) y - 7.0489 (0.0109) z = 12.0842 (0.0313)

Angle to previous plane (with approximate e.s.d.) = 19.37 (0.15)

* 0.0016 (0.0025) C25 * 0.0007 (0.0027) C24 * -0.0017 (0.0027) N21 * 0.0006 (0.0028) C23 * 0.0018 (0.0025) N22 * -0.0028 (0.0025) C22

Rms deviation of fitted atoms = 0.0017

22.4575 (0.0177) x + 0.1895 (0.0205) y - 6.2383 (0.0122) z = 14.4565 (0.0257)

Angle to previous plane (with approximate e.s.d.) = 11.29 (0.17)

* -0.0819 (0.0022) C21 * 0.0418 (0.0011) C28 * -0.0426 (0.0012) C25 * 0.0826 (0.0022) C22 0.3739 (0.0068) C27 - 0.3169 (0.0070) C26

Rms deviation of fitted atoms = 0.0654

14.0974 (0.0102) x + 0.1995 (0.0084) y + 7.0244 (0.0037) z = 12.5790 (0.0030)

Angle to previous plane (with approximate e.s.d.) = 82.38 (0.07)

* -0.0007 (0.0032) C11 * -0.1814 (0.0033) C112 * -0.1708 (0.0032) C111 * -0.0008 (0.0033) C110 * 0.1638 (0.0032) C19 * 0.1843 (0.0032) C18 * -0.1805 (0.0032) C15 * -0.1819 (0.0033) C14 * -0.0010 (0.0031) N11 * 0.1710 (0.0034) C13 * 0.1930 (0.0031) N12 * 0.0051 (0.0033) C12 0.4385 (0.0052) C17 - 0.3914 (0.0053) C16

Rms deviation of fitted atoms = 0.1458

21.0892 (0.0078) x + 0.2945 (0.0084) y - 7.0609 (0.0038) z = 12.5625 (0.0094)

Angle to previous plane (with approximate e.s.d.) = 88.61 (0.03)

* 0.0027 (0.0033) C21 * -0.1956 (0.0033) C212 * -0.2013 (0.0032) C211 * 0.0043 (0.0033) C210 * 0.1934 (0.0030) C29 * 0.1923 (0.0030) C28 * -0.2057 (0.0032) C25 * -0.1969 (0.0032) C24 * -0.0022 (0.0031) N21 * 0.1934 (0.0033) C23 * 0.2106 (0.0031) N22 * 0.0049 (0.0032) C22 0.4286 (0.0050) C27 - 0.4064 (0.0053) C26

Rms deviation of fitted atoms = 0.1623

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.47896 (14)0.1767 (6)0.8244 (4)0.0613 (10)
N120.42603 (13)0.3441 (5)0.9535 (3)0.0532 (9)
N210.97961 (14)0.1860 (6)1.1548 (4)0.0624 (10)
N220.92676 (13)0.3591 (5)0.9740 (3)0.0545 (9)
C110.35983 (13)0.1987 (5)1.0629 (4)0.0409 (9)
C120.40209 (14)0.1888 (5)0.9792 (4)0.0431 (9)
C130.46341 (16)0.3281 (7)0.8758 (5)0.0599 (11)
H130.48010.43500.85610.078*
C140.45429 (17)0.0258 (7)0.8524 (4)0.0589 (11)
H140.46380.08360.81720.077*
C150.41552 (14)0.0230 (5)0.9305 (4)0.0437 (9)
C160.38693 (17)0.1471 (6)0.9627 (4)0.0569 (11)
H16A0.40970.25230.95700.074*
H16B0.35320.16230.89710.074*
C170.37496 (16)0.1340 (5)1.1045 (4)0.0540 (11)
H17A0.35290.23711.12020.070*
H17B0.40880.13871.17070.070*
C180.34558 (14)0.0389 (5)1.1223 (4)0.0436 (9)
C190.30557 (16)0.0499 (6)1.1994 (4)0.0544 (10)
H190.29490.05551.23800.071*
C210.85980 (14)0.2201 (5)0.7977 (4)0.0419 (9)
C220.90204 (14)0.2061 (5)0.9229 (4)0.0431 (9)
C230.96463 (16)0.3399 (7)1.0888 (5)0.0607 (12)
H230.98210.44541.12550.079*
C240.95419 (16)0.0363 (7)1.1002 (4)0.0593 (11)
H240.96370.07411.14350.077*
C250.91479 (14)0.0357 (6)0.9837 (4)0.0480 (10)
C260.88638 (17)0.1303 (6)0.9204 (4)0.0554 (11)
H26A0.85260.14640.95170.072*
H26B0.90900.23620.94730.072*
C270.87444 (16)0.1133 (5)0.7672 (4)0.0525 (10)
H27A0.90830.11800.73500.068*
H27B0.85220.21520.72790.068*
C280.84543 (14)0.0615 (5)0.7213 (4)0.0428 (9)
C290.80623 (15)0.0747 (6)0.6046 (4)0.0492 (10)
H290.79640.02880.55230.064*
C1100.28128 (15)0.2126 (6)1.2201 (4)0.0532 (11)
H1100.25510.21641.27330.069*
C1110.29579 (15)0.3686 (6)1.1623 (4)0.0539 (11)
H1110.27960.47881.17640.070*
C1120.33454 (15)0.3615 (5)1.0833 (4)0.0493 (10)
H1120.34390.46741.04290.064*
C2100.78116 (15)0.2387 (6)0.5633 (4)0.0533 (11)
H2100.75500.24430.48370.069*
C2110.79460 (16)0.3924 (6)0.6390 (4)0.0541 (10)
H2110.77740.50220.61220.070*
C2120.83384 (15)0.3820 (6)0.7549 (4)0.0504 (10)
H2120.84330.48650.80630.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.051 (2)0.077 (3)0.060 (2)0.001 (2)0.0202 (17)0.000 (2)
N120.0506 (18)0.054 (2)0.059 (2)0.0024 (17)0.0210 (16)0.0028 (17)
N210.052 (2)0.082 (3)0.051 (2)0.002 (2)0.0042 (16)0.002 (2)
N220.0547 (19)0.057 (2)0.0501 (19)0.0047 (17)0.0067 (16)0.0044 (16)
C110.0315 (17)0.052 (2)0.0390 (19)0.0041 (16)0.0056 (15)0.0012 (17)
C120.0350 (19)0.053 (2)0.041 (2)0.0026 (17)0.0067 (15)0.0060 (17)
C130.046 (2)0.069 (3)0.066 (3)0.007 (2)0.016 (2)0.010 (2)
C140.056 (2)0.066 (3)0.058 (2)0.007 (2)0.019 (2)0.007 (2)
C150.0356 (19)0.051 (2)0.045 (2)0.0010 (17)0.0101 (16)0.0054 (18)
C160.058 (2)0.046 (2)0.068 (3)0.003 (2)0.017 (2)0.010 (2)
C170.055 (2)0.042 (2)0.068 (3)0.0010 (19)0.019 (2)0.004 (2)
C180.0402 (19)0.045 (2)0.046 (2)0.0008 (17)0.0100 (16)0.0030 (17)
C190.046 (2)0.060 (3)0.061 (2)0.010 (2)0.0202 (18)0.005 (2)
C210.0376 (19)0.048 (2)0.042 (2)0.0004 (17)0.0116 (16)0.0009 (17)
C220.0368 (19)0.054 (2)0.041 (2)0.0064 (17)0.0134 (15)0.0056 (17)
C230.050 (2)0.073 (3)0.059 (3)0.012 (2)0.011 (2)0.015 (3)
C240.048 (2)0.082 (3)0.046 (2)0.004 (2)0.0060 (19)0.007 (2)
C250.041 (2)0.062 (3)0.041 (2)0.0039 (19)0.0091 (16)0.0039 (19)
C260.054 (2)0.052 (3)0.058 (3)0.001 (2)0.0081 (19)0.006 (2)
C270.060 (2)0.041 (2)0.056 (2)0.0009 (19)0.0103 (19)0.0023 (19)
C280.0366 (19)0.049 (2)0.045 (2)0.0012 (17)0.0125 (16)0.0032 (17)
C290.045 (2)0.058 (3)0.042 (2)0.0067 (19)0.0043 (17)0.0001 (18)
C1100.044 (2)0.070 (3)0.050 (2)0.005 (2)0.0196 (18)0.002 (2)
C1110.049 (2)0.060 (3)0.055 (2)0.016 (2)0.0171 (18)0.000 (2)
C1120.050 (2)0.044 (2)0.057 (2)0.0031 (18)0.0187 (18)0.0059 (18)
C2100.044 (2)0.068 (3)0.044 (2)0.000 (2)0.0026 (17)0.004 (2)
C2110.053 (2)0.056 (3)0.053 (2)0.016 (2)0.0103 (18)0.005 (2)
C2120.056 (2)0.046 (2)0.050 (2)0.0016 (19)0.0107 (18)0.0074 (18)
Geometric parameters (Å, º) top
N11—C131.320 (5)C21—C281.404 (5)
N11—C141.329 (5)C21—C221.480 (5)
N12—C121.340 (5)C22—C251.403 (5)
N12—C131.344 (5)C23—H230.9300
N21—C231.328 (6)C24—C251.374 (5)
N21—C241.334 (6)C24—H240.9300
N22—C221.337 (5)C25—C261.490 (5)
N22—C231.349 (5)C26—C271.518 (6)
C11—C1121.390 (5)C26—H26A0.9700
C11—C181.398 (5)C26—H26B0.9700
C11—C121.485 (5)C27—C281.504 (5)
C12—C151.381 (5)C27—H27A0.9700
C13—H130.9300C27—H27B0.9700
C14—C151.371 (5)C28—C291.377 (5)
C14—H140.9300C29—C2101.385 (6)
C15—C161.510 (5)C29—H290.9300
C16—C171.522 (6)C110—C1111.369 (6)
C16—H16A0.9700C110—H1100.9300
C16—H16B0.9700C111—C1121.378 (5)
C17—C181.499 (5)C111—H1110.9300
C17—H17A0.9700C112—H1120.9300
C17—H17B0.9700C210—C2111.367 (6)
C18—C191.392 (5)C210—H2100.9300
C19—C1101.378 (6)C211—C2121.370 (5)
C19—H190.9300C211—H2110.9300
C21—C2121.383 (5)C212—H2120.9300
C13—N11—C14115.6 (3)N21—C23—H23116.6
C12—N12—C13115.6 (4)N22—C23—H23116.6
C23—N21—C24115.6 (4)N21—C24—C25123.9 (4)
C22—N22—C23115.8 (4)N21—C24—H24118.1
C112—C11—C18119.7 (3)C25—C24—H24118.1
C112—C11—C12121.8 (3)C24—C25—C22115.6 (4)
C18—C11—C12118.5 (3)C24—C25—C26124.7 (4)
N12—C12—C15122.1 (3)C22—C25—C26119.8 (3)
N12—C12—C11118.0 (3)C25—C26—C27110.4 (3)
C15—C12—C11119.9 (3)C25—C26—H26A109.6
N11—C13—N12126.8 (4)C27—C26—H26A109.6
N11—C13—H13116.6C25—C26—H26B109.6
N12—C13—H13116.6C27—C26—H26B109.6
N11—C14—C15123.4 (4)H26A—C26—H26B108.1
N11—C14—H14118.3C28—C27—C26111.5 (3)
C15—C14—H14118.3C28—C27—H27A109.3
C14—C15—C12116.3 (4)C26—C27—H27A109.3
C14—C15—C16124.1 (4)C28—C27—H27B109.3
C12—C15—C16119.6 (3)C26—C27—H27B109.3
C15—C16—C17110.0 (3)H27A—C27—H27B108.0
C15—C16—H16A109.7C29—C28—C21118.1 (4)
C17—C16—H16A109.7C29—C28—C27122.8 (4)
C15—C16—H16B109.7C21—C28—C27119.1 (3)
C17—C16—H16B109.7C28—C29—C210121.4 (4)
H16A—C16—H16B108.2C28—C29—H29119.3
C18—C17—C16111.2 (3)C210—C29—H29119.3
C18—C17—H17A109.4C111—C110—C19119.9 (3)
C16—C17—H17A109.4C111—C110—H110120.0
C18—C17—H17B109.4C19—C110—H110120.0
C16—C17—H17B109.4C110—C111—C112119.6 (4)
H17A—C17—H17B108.0C110—C111—H111120.2
C19—C18—C11117.8 (3)C112—C111—H111120.2
C19—C18—C17123.0 (4)C111—C112—C11121.0 (4)
C11—C18—C17119.1 (3)C111—C112—H112119.5
C110—C19—C18121.8 (4)C11—C112—H112119.5
C110—C19—H19119.1C211—C210—C29120.4 (4)
C18—C19—H19119.1C211—C210—H210119.8
C212—C21—C28119.4 (3)C29—C210—H210119.8
C212—C21—C22122.5 (3)C210—C211—C212118.9 (4)
C28—C21—C22118.1 (3)C210—C211—H211120.5
N22—C22—C25122.4 (3)C212—C211—H211120.5
N22—C22—C21117.8 (3)C211—C212—C21121.7 (4)
C25—C22—C21119.7 (3)C211—C212—H212119.1
N21—C23—N22126.8 (4)C21—C212—H212119.1
C13—N12—C12—C150.9 (5)C28—C21—C22—C2518.9 (5)
C13—N12—C12—C11179.1 (3)C24—N21—C23—N220.2 (6)
C112—C11—C12—N1217.7 (5)C22—N22—C23—N210.2 (6)
C18—C11—C12—N12162.2 (3)C23—N21—C24—C250.2 (6)
C112—C11—C12—C15162.3 (3)N21—C24—C25—C220.1 (6)
C18—C11—C12—C1517.8 (5)N21—C24—C25—C26179.3 (4)
C14—N11—C13—N120.7 (7)N22—C22—C25—C240.5 (5)
C12—N12—C13—N110.8 (6)C21—C22—C25—C24179.5 (3)
C13—N11—C14—C150.7 (6)N22—C22—C25—C26179.0 (3)
N11—C14—C15—C120.8 (6)C21—C22—C25—C261.1 (5)
N11—C14—C15—C16179.7 (4)C24—C25—C26—C27145.0 (4)
N12—C12—C15—C140.9 (6)C22—C25—C26—C2734.4 (5)
C11—C12—C15—C14179.0 (3)C25—C26—C27—C2852.1 (4)
N12—C12—C15—C16179.8 (3)C212—C21—C28—C291.0 (5)
C11—C12—C15—C160.1 (5)C22—C21—C28—C29179.9 (3)
C14—C15—C16—C17146.0 (4)C212—C21—C28—C27179.1 (3)
C12—C15—C16—C1735.2 (5)C22—C21—C28—C271.8 (5)
C15—C16—C17—C1852.5 (4)C26—C27—C28—C29144.5 (4)
C112—C11—C18—C190.7 (5)C26—C27—C28—C2137.5 (5)
C12—C11—C18—C19179.4 (3)C21—C28—C29—C2100.5 (5)
C112—C11—C18—C17177.3 (3)C27—C28—C29—C210178.4 (3)
C12—C11—C18—C172.6 (5)C18—C19—C110—C1111.0 (6)
C16—C17—C18—C19144.1 (4)C19—C110—C111—C1120.3 (6)
C16—C17—C18—C1138.0 (5)C110—C111—C112—C111.0 (6)
C11—C18—C19—C1101.5 (6)C18—C11—C112—C1110.5 (6)
C17—C18—C19—C110176.4 (4)C12—C11—C112—C111179.3 (3)
C23—N22—C22—C250.5 (5)C28—C29—C210—C2110.6 (6)
C23—N22—C22—C21179.5 (3)C29—C210—C211—C2121.0 (6)
C212—C21—C22—N2219.7 (5)C210—C211—C212—C210.5 (6)
C28—C21—C22—N22161.2 (3)C28—C21—C212—C2110.6 (6)
C212—C21—C22—C25160.3 (4)C22—C21—C212—C211179.7 (4)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds