Download citation
Download citation
link to html
Single crystals of trimanganese(II) hexa­oxotellurate(VI), Mn3TeO6, were grown by chemical transport reactions. Its structure is isotypic with Mg3TeO6 and can be derived from close packing of strongly distorted hexa­gonal oxygen layers parallel to (001), with Mn and two distinct Te atoms in the octa­hedral inter­stices. The TeO6 octa­hedra are very regular, with \overline{3} symmetry, whereas the MnO6 octa­hedra are considerably distorted.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680604685X/mg2008sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680604685X/mg2008Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](n-O) = 0.002 Å
  • R factor = 0.014
  • wR factor = 0.035
  • Data-to-parameter ratio = 16.9

checkCIF/PLATON results

No syntax errors found




Alert level C CRYSC01_ALERT_1_C The word below has not been recognised as a standard identifier. amber CRYSC01_ALERT_1_C No recognised colour has been given for crystal colour. PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.99
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: coordinates taken from an isotypic compound; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 2004); software used to prepare material for publication: SHELXL97.

Trimanganese(II) hexaoxotellurate(VI) top
Crystal data top
Mn3TeO6Dx = 5.325 Mg m3
Mr = 388.42Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 2116 reflections
Hall symbol: -R 3θ = 4.6–32.0°
a = 8.8673 (10) ŵ = 13.55 mm1
c = 10.6729 (12) ÅT = 293 K
V = 726.77 (14) Å3Plate, amber
Z = 60.09 × 0.06 × 0.02 mm
F(000) = 1050
Data collection top
Bruker SMART APEX CCD
diffractometer
558 independent reflections
Radiation source: fine-focus sealed tube541 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 32.0°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1312
Tmin = 0.375, Tmax = 0.773k = 1313
3003 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: isomorphous structure methods
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0163P)2 + 0.5015P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.014(Δ/σ)max = 0.001
wR(F2) = 0.035Δρmax = 0.59 e Å3
S = 1.18Δρmin = 1.06 e Å3
558 reflectionsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
33 parametersExtinction coefficient: 0.0116 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.03839 (3)0.26425 (3)0.21297 (2)0.00751 (9)
Te10.00000.00000.50000.00487 (9)
Te20.00000.00000.00000.00474 (9)
O10.03069 (16)0.19625 (17)0.40283 (12)0.0089 (2)
O20.18277 (17)0.15620 (16)0.11053 (12)0.0079 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.00712 (13)0.00795 (13)0.00764 (14)0.00390 (10)0.00030 (8)0.00079 (8)
Te10.00479 (10)0.00479 (10)0.00502 (13)0.00240 (5)0.0000.000
Te20.00470 (10)0.00470 (10)0.00483 (13)0.00235 (5)0.0000.000
O10.0108 (6)0.0078 (5)0.0079 (6)0.0045 (4)0.0003 (5)0.0020 (4)
O20.0068 (5)0.0070 (5)0.0085 (6)0.0024 (5)0.0020 (4)0.0014 (4)
Geometric parameters (Å, º) top
Mn—O12.1055 (14)Te1—Mnii3.2380 (4)
Mn—O2i2.1275 (13)Te1—Mnxiii3.2381 (4)
Mn—O1ii2.2009 (13)Te1—Mnxiv3.2381 (4)
Mn—O2iii2.2311 (12)Te2—O21.9214 (12)
Mn—O22.2313 (13)Te2—O2xv1.9214 (12)
Mn—O1iv2.3841 (13)Te2—O2vii1.9214 (12)
Mn—Te23.1584 (4)Te2—O2xvi1.9214 (12)
Mn—Te1v3.2380 (4)Te2—O2xvii1.9214 (12)
Mn—Mnii3.2388 (6)Te2—O2iii1.9214 (12)
Te1—O1vi1.9247 (13)Te2—Mnxv3.1584 (4)
Te1—O1iii1.9247 (13)Te2—Mnvii3.1584 (4)
Te1—O1vii1.9247 (13)Te2—Mnxvi3.1584 (4)
Te1—O11.9247 (13)Te2—Mnxvii3.1584 (4)
Te1—O1viii1.9247 (13)Te2—Mniii3.1584 (4)
Te1—O1ix1.9247 (13)O1—Mnii2.2009 (13)
Te1—Mnx3.2380 (4)O1—Mnxiii2.3841 (13)
Te1—Mnxi3.2380 (4)O2—Mnxviii2.1274 (13)
Te1—Mnxii3.2380 (4)O2—Mnvii2.2311 (12)
O1—Mn—O2i95.73 (5)O1viii—Te1—O1ix93.70 (5)
O1—Mn—O1ii82.48 (5)O2—Te2—O2xv180.00 (6)
O2i—Mn—O1ii121.22 (5)O2—Te2—O2vii86.25 (6)
O1—Mn—O2iii107.58 (5)O2xv—Te2—O2vii93.75 (6)
O2i—Mn—O2iii81.52 (5)O2—Te2—O2xvi93.75 (6)
O1ii—Mn—O2iii154.80 (5)O2xv—Te2—O2xvi86.25 (6)
O1—Mn—O2106.98 (5)O2vii—Te2—O2xvi180.00 (9)
O2i—Mn—O2149.25 (3)O2—Te2—O2xvii93.75 (6)
O1ii—Mn—O282.90 (5)O2xv—Te2—O2xvii86.25 (6)
O2iii—Mn—O272.13 (7)O2vii—Te2—O2xvii93.75 (6)
O1—Mn—O1iv144.64 (5)O2xvi—Te2—O2xvii86.25 (6)
O2i—Mn—O1iv80.92 (4)O2—Te2—O2iii86.25 (6)
O1ii—Mn—O1iv69.96 (6)O2xv—Te2—O2iii93.75 (6)
O2iii—Mn—O1iv106.70 (4)O2vii—Te2—O2iii86.25 (6)
O2—Mn—O1iv91.54 (5)O2xvi—Te2—O2iii93.75 (6)
O1vi—Te1—O1iii180.0O2xvii—Te2—O2iii180.00 (8)
O1vi—Te1—O1vii86.30 (5)Te1—O1—Mn138.35 (7)
O1iii—Te1—O1vii93.70 (5)Te1—O1—Mnii103.21 (6)
O1vi—Te1—O186.30 (5)Mn—O1—Mnii97.52 (5)
O1iii—Te1—O193.70 (5)Te1—O1—Mnxiii96.86 (5)
O1vii—Te1—O193.70 (5)Mn—O1—Mnxiii117.52 (6)
O1vi—Te1—O1viii93.70 (5)Mnii—O1—Mnxiii93.77 (5)
O1iii—Te1—O1viii86.30 (5)Te2—O2—Mnxviii144.93 (7)
O1vii—Te1—O1viii86.30 (5)Te2—O2—Mnvii98.76 (5)
O1—Te1—O1viii180.00 (5)Mnxviii—O2—Mnvii98.48 (5)
O1vi—Te1—O1ix93.70 (5)Te2—O2—Mn98.75 (5)
O1iii—Te1—O1ix86.30 (5)Mnxviii—O2—Mn100.39 (5)
O1vii—Te1—O1ix180.00 (7)Mnvii—O2—Mn116.67 (6)
O1—Te1—O1ix86.30 (5)
Symmetry codes: (i) y1/3, x+y+1/3, z+1/3; (ii) x+1/3, y+2/3, z+2/3; (iii) y, xy, z; (iv) y+1/3, xy+2/3, z1/3; (v) x+1/3, y+2/3, z1/3; (vi) y, x+y, z+1; (vii) x+y, x, z; (viii) x, y, z+1; (ix) xy, x, z+1; (x) y2/3, x+y1/3, z+2/3; (xi) y+2/3, xy+1/3, z+1/3; (xii) x1/3, y2/3, z+1/3; (xiii) x+y1/3, x+1/3, z+1/3; (xiv) xy+1/3, x1/3, z+2/3; (xv) x, y, z; (xvi) xy, x, z; (xvii) y, x+y, z; (xviii) xy+2/3, x+1/3, z+1/3.
Structural data of (M, M')2+3TeO6 compounds (Å, °), and average Te—O distances (Å) top
M,M'2+space groupabcβ¯d(Te–O)
MgaR38.615 (3)10.315 (3)1.913
MnbR38.8673 (10)10.6729 (12)1.923
Mn,CucR38.826 (1)10.687 (2)1.921
NidR35.1087 (8)13.767 (2)1.940
Cu,ZneIa39.537 (1)1.933
Cu,CofIa39.5702 (5)1.932
Cu,NigIa39.5464 (6)1.934
CuhIa39.5565 (5)1.921
CoiC2/c14.8167 (18)8.8509 (11)10.3631 (14)94.90 (1)1.932
ZnjC2/c14.8898 (8)8.8341 (5)10.3457 (5)92.990 (1)1.922
Cu,ZnkC2/c14.834 (2)8.801 (1)10.375 (2)93.27 (2)1.918
CalP21/n5.5782 (8)5.7998 (9)8.017 (1)90.217 (5)1.924
CdlP21/n5.4986 (3)5.6383 (3)8.0191 (5)90.00 (5)1.925
HgmIa313.3808 (6)1.942
Notes: (a) Schulz & Bayer, 1971; (b) Weil, 2006; (c) metal ratio: Mn2.4,Cu0.6; Wulff et al., 1998; (d) Becker & Berger, 2006; (e) metal ratio: Cu1.5,Zn1.5; Wulff & Müller-Buschbaum, 1998; (f) metal ratio: Cu1.5,Co1.5; Wulff & Müller-Buschbaum, 1998; (g) metal ratio: Cu2Ni1; Wedel et al., 2001: (h) Falck et al., 1978; (i) Becker et al., 2006; (j) this work; (k) metal ratio: Cu1.667,Zn1.333; Wulff & Müller-Buschbaum, 1998;

(l) Burckhardt et al., 1982: (m) Weil, 2003.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds