Download citation
Download citation
link to html
The title compound, Pr(SO4)(OH), obtained under hydro­thermal conditions, consists of PrIII ions coordinated by nine O atoms from six sulfate groups and three hydroxide anions. The bridging mode of the O atoms results in the formation of a three-dimensional framework, stabilized by two O—H...O hydrogen-bonding inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536811000298/mg2113sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536811000298/mg2113Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](S-O) = 0.005 Å
  • R factor = 0.033
  • wR factor = 0.080
  • Data-to-parameter ratio = 12.9

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT973_ALERT_2_B Large Calcd. Positive Residual Density on Pr 1.76 eA-3
Alert level C PLAT213_ALERT_2_C Atom O1 has ADP max/min Ratio ..... 3.90 oblat PLAT303_ALERT_2_C Full Occupancy H-Atom H5A with # Connections 2 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 3 PLAT774_ALERT_1_C Suspect X-Y Bond in CIF: PR -- PR .. 3.71 Ang. PLAT774_ALERT_1_C Suspect X-Y Bond in CIF: PR -- PR .. 3.94 Ang.
Alert level G PLAT128_ALERT_4_G Alternate Setting of Space-group P21/c ....... P21/n PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 12 PR -PR -O1 -S -140.00 0.70 3.576 1.555 1.555 1.555 PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF .... # 75 PR -O5 -H5A 3.576 1.555 1.555 40.00 Deg. PLAT794_ALERT_5_G Note: Tentative Bond Valency for Pr ....... 4.23
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Lanthanide sulfate hydroxides exhibit a variety of architectures (Xu et al., 2007; Zhang et al., 2004). We report here the compound Pr(SO4)(OH), which is isostructural to Ln(SO4)(OH) (Ln = La, Ce, Eu, Nd) (Zhang et al., 2004; Yang et al., 2005; Ding et al., 2006; Zhang et al., 2008). The PrIII ion is coordinated in a distorted tricapped trigonal prismatic geometry by the oxygen atoms from six sulfate groups and three hydroxide anions (Fig. 1). All oxygen atoms of the sulfate groups take part in the coordination. The S atom makes four S–O–La linkages through two 2-coordinated oxygen atoms [S–O–La] and two 3-coordinated oxygen atoms [S–(µ3-O)–La2]. The oxygen atoms of the hydroxide groups are four-coordinate, [HO—µ3-La3], linking three different Pr ions. The bridging mode of the oxygen atoms results in a three-dimensional framework, with the H atom of hydroxide anions forming weak O—H···O hydrogen bonds with two O atoms of sulfate groups (Fig. 2).

Related literature top

Lanthanide sulfate hydroxides exhibit a variety of architectures, see: Xu et al. (2007); Zhang et al. (2004). For related structures, see: Yang et al. (2005); Ding et al. (2006); Zhang et al. (2004, 2008).

Experimental top

A mixture of Pr(NO3)3.6H2O (0.25 mmol, 0.1088 g), MnSO4.H2O (0.2 mmol, 0.0338 g), and H2O (15 mL) was sealed in a 25-mL Teflon-lined stainless steel reactor and heated at 443 K for 72 h, and then cooled to room temperature over 3 days. Light-green prismatic crystals were obtained (yield: 32% based on Pr(NO3)3.6H2O).

Refinement top

The oxygen-bound H-atoms were located in the difference Fourier map and refined with the O—H distance restrained to 0.85 Å [Uiso(H) = 1.2Ueq(O)].

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Coordination of Pr in Pr(SO4)(OH). Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x-1/2, -y+3/2, z+1/2; (ii) -x+1, -y+2, -z+1; (iii) x-1, y, z; (iv) -x, -y+2, -z+1; (v) -x+1, -y+2, -z; (vi) -x, -y+2, -z; (vii) x, y, z+1.]
[Figure 2] Fig. 2. Three-dimensional network in Pr(SO4)(OH).
Praseodymium(III) sulfate hydroxide top
Crystal data top
Pr(SO4)(OH)F(000) = 464
Mr = 253.98Dx = 4.550 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1066 reflections
a = 4.4891 (18) Åθ = 3.3–27.4°
b = 12.484 (5) ŵ = 13.59 mm1
c = 6.894 (3) ÅT = 293 K
β = 106.310 (7)°Prism, light green
V = 370.8 (3) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
840 independent reflections
Radiation source: fine-focus sealed tube813 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scansθmax = 27.4°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.213, Tmax = 0.257k = 1416
2849 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0348P)2 + 1.2539P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
840 reflectionsΔρmax = 1.73 e Å3
65 parametersΔρmin = 2.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0303 (17)
Crystal data top
Pr(SO4)(OH)V = 370.8 (3) Å3
Mr = 253.98Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.4891 (18) ŵ = 13.59 mm1
b = 12.484 (5) ÅT = 293 K
c = 6.894 (3) Å0.20 × 0.10 × 0.10 mm
β = 106.310 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
840 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
813 reflections with I > 2σ(I)
Tmin = 0.213, Tmax = 0.257Rint = 0.053
2849 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.09Δρmax = 1.73 e Å3
840 reflectionsΔρmin = 2.15 e Å3
65 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr0.14215 (8)0.93511 (2)0.30120 (5)0.0103 (2)
S0.4863 (3)0.85448 (11)0.1115 (2)0.0100 (3)
O10.3690 (11)0.8345 (4)0.0615 (6)0.0156 (9)
O20.5908 (12)0.7551 (4)0.1798 (7)0.0189 (10)
O30.2507 (11)0.9045 (4)0.2785 (7)0.0179 (10)
O40.7557 (12)0.9298 (3)0.0482 (8)0.0137 (10)
O50.3035 (11)1.0859 (4)0.5390 (7)0.0141 (9)
H5A0.14341.11930.54880.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr0.0129 (3)0.0104 (3)0.0083 (3)0.00025 (10)0.00418 (19)0.00100 (9)
S0.0118 (7)0.0098 (7)0.0091 (7)0.0002 (5)0.0041 (6)0.0002 (5)
O10.020 (2)0.020 (2)0.012 (2)0.002 (2)0.0142 (19)0.0010 (17)
O20.027 (2)0.014 (2)0.020 (2)0.001 (2)0.011 (2)0.0016 (17)
O30.017 (2)0.023 (2)0.015 (2)0.005 (2)0.0060 (19)0.0030 (19)
O40.013 (2)0.013 (2)0.016 (2)0.0039 (15)0.005 (2)0.0022 (14)
O50.014 (2)0.017 (2)0.012 (2)0.0037 (18)0.0044 (18)0.0042 (17)
Geometric parameters (Å, º) top
Pr—O2i2.393 (5)S—O11.455 (5)
Pr—O5ii2.436 (5)S—O31.466 (5)
Pr—O52.468 (5)S—O41.497 (5)
Pr—O12.508 (4)O2—Prviii2.393 (5)
Pr—O4iii2.543 (5)O3—Prvi2.643 (5)
Pr—O5iv2.554 (5)O3—Prix2.826 (5)
Pr—O4v2.558 (5)O4—Prx2.543 (5)
Pr—O3vi2.643 (5)O4—Prv2.558 (5)
Pr—O3vii2.826 (5)O5—Prii2.436 (5)
Pr—Priv3.7056 (12)O5—Priv2.554 (5)
Pr—Prii3.9388 (12)O5—H5A0.8500
S—O21.450 (5)
O2i—Pr—O5ii88.30 (16)O5—Pr—Priv43.35 (12)
O2i—Pr—O5137.33 (16)O1—Pr—Priv173.83 (10)
O5ii—Pr—O573.13 (18)O4iii—Pr—Priv115.28 (12)
O2i—Pr—O166.58 (17)O5iv—Pr—Priv41.55 (10)
O5ii—Pr—O172.04 (15)O4v—Pr—Priv112.38 (11)
O5—Pr—O1136.21 (16)O3vi—Pr—Priv49.45 (10)
O2i—Pr—O4iii88.59 (15)O3vii—Pr—Priv45.31 (10)
O5ii—Pr—O4iii139.79 (17)O2i—Pr—Prii116.25 (12)
O5—Pr—O4iii130.10 (14)O5ii—Pr—Prii36.83 (11)
O1—Pr—O4iii70.01 (15)O5—Pr—Prii36.29 (11)
O2i—Pr—O5iv77.01 (17)O1—Pr—Prii105.16 (11)
O5ii—Pr—O5iv128.20 (19)O4iii—Pr—Prii151.15 (10)
O5—Pr—O5iv84.90 (16)O5iv—Pr—Prii109.08 (11)
O1—Pr—O5iv138.17 (15)O4v—Pr—Prii86.32 (11)
O4iii—Pr—O5iv89.84 (16)O3vi—Pr—Prii97.46 (11)
O2i—Pr—O4v136.90 (16)O3vii—Pr—Prii57.99 (11)
O5ii—Pr—O4v91.33 (16)Priv—Pr—Prii71.85 (3)
O5—Pr—O4v82.80 (16)O2—S—O1110.1 (3)
O1—Pr—O4v72.38 (15)O2—S—O3109.7 (3)
O4iii—Pr—O4v64.96 (17)O1—S—O3111.7 (3)
O5iv—Pr—O4v132.35 (15)O2—S—O4108.9 (3)
O2i—Pr—O3vi132.98 (17)O1—S—O4108.5 (3)
O5ii—Pr—O3vi133.47 (15)O3—S—O4107.9 (3)
O5—Pr—O3vi61.84 (16)S—O1—Pr139.7 (3)
O1—Pr—O3vi136.71 (14)S—O2—Prviii155.7 (3)
O4iii—Pr—O3vi72.40 (15)S—O3—Prvi133.7 (3)
O5iv—Pr—O3vi60.84 (15)S—O3—Prix137.8 (3)
O4v—Pr—O3vi72.83 (16)Prvi—O3—Prix85.24 (13)
O2i—Pr—O3vii78.53 (16)S—O4—Prx125.0 (3)
O5ii—Pr—O3vii70.23 (15)S—O4—Prv120.0 (3)
O5—Pr—O3vii59.19 (16)Prx—O4—Prv115.04 (17)
O1—Pr—O3vii128.53 (14)Prii—O5—Pr106.87 (18)
O4iii—Pr—O3vii147.45 (16)Prii—O5—Priv128.20 (19)
O5iv—Pr—O3vii58.29 (15)Pr—O5—Priv95.10 (16)
O4v—Pr—O3vii140.86 (15)Prii—O5—H5A142.8
O3vi—Pr—O3vii94.76 (13)Pr—O5—H5A109.3
O2i—Pr—Priv109.56 (13)Priv—O5—H5A40.0
O5ii—Pr—Priv103.47 (11)
O2—S—O1—Pr179.4 (4)O1—S—O4—Prx33.7 (4)
O3—S—O1—Pr58.5 (5)O3—S—O4—Prx154.9 (3)
O4—S—O1—Pr60.3 (5)O2—S—O4—Prv93.2 (3)
O2i—Pr—O1—S167.8 (5)O1—S—O4—Prv147.0 (3)
O5ii—Pr—O1—S96.1 (4)O3—S—O4—Prv25.8 (4)
O5—Pr—O1—S57.3 (5)O2i—Pr—O5—Prii68.0 (3)
O4iii—Pr—O1—S70.4 (4)O5ii—Pr—O5—Prii0.0
O5iv—Pr—O1—S136.1 (4)O1—Pr—O5—Prii38.5 (3)
O4v—Pr—O1—S1.3 (4)O4iii—Pr—O5—Prii141.99 (18)
O3vi—Pr—O1—S39.2 (5)O5iv—Pr—O5—Prii132.5 (2)
O3vii—Pr—O1—S140.6 (4)O4v—Pr—O5—Prii93.60 (19)
Priv—Pr—O1—S140.0 (7)O3vi—Pr—O5—Prii167.9 (2)
Prii—Pr—O1—S79.7 (4)O3vii—Pr—O5—Prii76.67 (19)
O1—S—O2—Prviii13.5 (8)Priv—Pr—O5—Prii132.5 (2)
O3—S—O2—Prviii109.8 (7)O2i—Pr—O5—Priv64.5 (3)
O4—S—O2—Prviii132.3 (7)O5ii—Pr—O5—Priv132.5 (2)
O2—S—O3—Prvi168.4 (4)O1—Pr—O5—Priv171.07 (15)
O1—S—O3—Prvi46.0 (5)O4iii—Pr—O5—Priv85.5 (2)
O4—S—O3—Prvi73.1 (4)O5iv—Pr—O5—Priv0.0
O2—S—O3—Prix39.4 (5)O4v—Pr—O5—Priv133.87 (16)
O1—S—O3—Prix161.8 (4)O3vi—Pr—O5—Priv59.53 (16)
O4—S—O3—Prix79.1 (5)O3vii—Pr—O5—Priv55.86 (15)
O2—S—O4—Prx86.1 (4)Prii—Pr—O5—Priv132.5 (2)
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1, y+2, z+1; (iii) x1, y, z; (iv) x, y+2, z+1; (v) x+1, y+2, z; (vi) x, y+2, z; (vii) x, y, z+1; (viii) x+1/2, y+3/2, z1/2; (ix) x, y, z1; (x) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3vi0.852.202.630 (7)111
O5—H5A···O2xi0.852.313.082 (7)152
Symmetry codes: (vi) x, y+2, z; (xi) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaPr(SO4)(OH)
Mr253.98
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)4.4891 (18), 12.484 (5), 6.894 (3)
β (°) 106.310 (7)
V3)370.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)13.59
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.213, 0.257
No. of measured, independent and
observed [I > 2σ(I)] reflections
2849, 840, 813
Rint0.053
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.080, 1.09
No. of reflections840
No. of parameters65
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.73, 2.15

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3i0.852.202.630 (7)111
O5—H5A···O2ii0.852.313.082 (7)152
Symmetry codes: (i) x, y+2, z; (ii) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds