Download citation
Download citation
link to html
In the title compound, (C13H11N2)2[Zn(C7H3NO4)2]·3H2O, the ZnII ion is six-coordinated with the N4O2 donor set being a distorted octa­hedron through two almost perpendicular (r.m.s. deviation of ligand atoms from the mean plane is 0.057 Å) tridentate pyridine-2,6-dicarboxyl­ate ligands [dihedral angle between the ligands = 86.06 (4)°]. The charge is compensated by two 9-amino­acridinium cations protonated on the ring N atom. A variety of inter­molecular contacts, such as ion–ion, N—H...O and O—H...O hydrogen bonds, and π–π stacking [centroid–centroid distances = 3.4907 (9)–4.1128 (8) Å], between cations and between anions, play important roles in the formation of the three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536812005764/mw2050sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536812005764/mw2050Isup2.hkl
Contains datablock I

CCDC reference: 877025

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.032
  • wR factor = 0.091
  • Data-to-parameter ratio = 13.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Reported MoietyFormula Strings Differ ? PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C8 - C13 ... 1.53 Ang. PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 5 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 84
Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 9 PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF .... ? PLAT007_ALERT_5_G Note: Number of Unrefined D-H Atoms ............ 6 PLAT154_ALERT_1_G The su's on the Cell Angles are Equal .......... 0.00200 Deg. PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Zn1 -- O1 .. 9.2 su PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Zn1 -- O3 .. 8.2 su PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Zn1 -- O7 .. 6.2 su PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. # 6 H2 O PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 9
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 4 ALERT level C = Check. Ensure it is not caused by an omission or oversight 11 ALERT level G = General information/check it is not something unexpected 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

The pyridinedicarboxylate family of ligands has attracted much attention in coordination and supramolecular chemistry because of the versatile coordination modes and variety of inter- and intramolecular interactions (Mirzaei et al., 2011). Among different derivatives of pyridinedicarboxylate, pyridine-2,6-dicarboxylic acid (pydcH2), also called dipicolinic acid (H2pdic), has been widely considered because of its high symmetry and bioactive properties. The most common coordination mode of (pydc)2- is as a tridentate ligand via N and two carboxylate groups that can be coordinated to a metal in a meridional fashion (Eshtiagh-Hosseini, Mirzaei, Yousefi et al., 2011; Park et al., 2007).

So far, our group has reported several coordination compounds bearing the (pydc)2- ligand with different heterocyclic cations prepared by proton transfer methodology (Eshtiagh-Hosseini, Yousefi, Mirzaei et al., 2010; Eshtiagh-Hosseini, Yousefi, Shafiee et al., 2010).

In this contribution, we have synthesized and characterized a new coordination compound with (pydc)2- coordinated to ZnII and protonated 9-aminoacridine as the cation which is formulated as (9aaH)2[Zn(pydc)2].3H2O.

The asymmetric unit of the title compound comprises a dianionic complex, [Zn(pydc)2]2-, two 9aaH+ cations and three water molecules (Fig. 1). In the anionic complex, ZnII is six-coordinated via two (pydc)2- ions with the ZnN2O4 donor set in a distorted octahedral geometry. The two (pydc)2- moieties are almost perpendicular to each other (the angle between the mean ligand planes (rms deviation of ligand atoms from the mean plane is 0.057 Å) intersecting at Zn1 is 86.62 (2)°). Bond lengths and angles are comparable with those in similar structures (Tabatabaee et al., 2009; MacDonald et al., 2000; Aghabozorg et al., 2008; Harrison et al., 2006). Recently, our group reported a similar compound with Mn(II) as a metal center which has the same stochiometery as the title compound (Eshtiagh-Hosseini, Mirzaei, Eydizadeh et al., 2011). Binding of the H2O molecules to the anionic complex and the 9aaH+ cations occur via N—H···O and O—H···O hydrogen bonds creating two different motifs with graph sets R42(8) and R33(9) (Fig. 2). In Fig. 3, a packing diagram of the title compound viewed down the b axis is shown in which a variety of intermolecular contacts can be observed. The most significant additional interactions are π-π stacking between (pydc)2- ligands in adjacent anions and between sets of 9aaH+ cations (Fig. 3).

Related literature top

For the behaviour of 9-aminoacridine in coordination compounds see: Derikvand et al. (2010); Eshtiagh-Hosseini, Mirzaei, Eydizadeh et al. (2011). For a brief review on the pyridinedicarboxylate family of ligands, see: Mirzaei et al. (2011). For related structures, see: Aghabozorg et al. (2008); Derikvand et al. (2010); Eshtiagh-Hosseini, Yousefi, Mirzaei et al. (2010); Eshtiagh-Hosseini, Mirzaei, Eydizadeh et al. (2011); Eshtiagh-Hosseini, Mirzaei, Yousefi et al. (2011); Eshtiagh-Hosseini, Yousefi, Shafiee et al. (2010); Harrison et al. (2006); MacDonald et al. (2000); Park et al. (2007); Tabatabaee et al. (2009).

Experimental top

To 5 mL of an aqeous solution of pydcH2 (0.026 g, 0.15 mmol), 5 mL of a methanolic solution of 9aa (0.030 g,0.15 mmol) was added dropwise. Then, powdered ZnCl2.2H2O (0.011 g, 0.075 mmol) was added and the resulting solution was heated and stirred for 3 hrs at 60°C. Yellow crystals were obtained by slow evaporation of the solvent at room temperature after 3 days.

Refinement top

A full-matrix least-squares refinement implemented in the SHELXL97 (Sheldrick, 2008) was used. All non-H atoms were refined anisotropically. The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and 0.97 Å for C and 0.86 Å for N atom and Uiso(H) = 1.2 Ueq(C,N). The H atoms of water were located in difference map and refined with the following restraints: O—H = 0.95 (2) Å and H···H = 1.50 (4) Å (total of 9 restraints were used).

Structure description top

The pyridinedicarboxylate family of ligands has attracted much attention in coordination and supramolecular chemistry because of the versatile coordination modes and variety of inter- and intramolecular interactions (Mirzaei et al., 2011). Among different derivatives of pyridinedicarboxylate, pyridine-2,6-dicarboxylic acid (pydcH2), also called dipicolinic acid (H2pdic), has been widely considered because of its high symmetry and bioactive properties. The most common coordination mode of (pydc)2- is as a tridentate ligand via N and two carboxylate groups that can be coordinated to a metal in a meridional fashion (Eshtiagh-Hosseini, Mirzaei, Yousefi et al., 2011; Park et al., 2007).

So far, our group has reported several coordination compounds bearing the (pydc)2- ligand with different heterocyclic cations prepared by proton transfer methodology (Eshtiagh-Hosseini, Yousefi, Mirzaei et al., 2010; Eshtiagh-Hosseini, Yousefi, Shafiee et al., 2010).

In this contribution, we have synthesized and characterized a new coordination compound with (pydc)2- coordinated to ZnII and protonated 9-aminoacridine as the cation which is formulated as (9aaH)2[Zn(pydc)2].3H2O.

The asymmetric unit of the title compound comprises a dianionic complex, [Zn(pydc)2]2-, two 9aaH+ cations and three water molecules (Fig. 1). In the anionic complex, ZnII is six-coordinated via two (pydc)2- ions with the ZnN2O4 donor set in a distorted octahedral geometry. The two (pydc)2- moieties are almost perpendicular to each other (the angle between the mean ligand planes (rms deviation of ligand atoms from the mean plane is 0.057 Å) intersecting at Zn1 is 86.62 (2)°). Bond lengths and angles are comparable with those in similar structures (Tabatabaee et al., 2009; MacDonald et al., 2000; Aghabozorg et al., 2008; Harrison et al., 2006). Recently, our group reported a similar compound with Mn(II) as a metal center which has the same stochiometery as the title compound (Eshtiagh-Hosseini, Mirzaei, Eydizadeh et al., 2011). Binding of the H2O molecules to the anionic complex and the 9aaH+ cations occur via N—H···O and O—H···O hydrogen bonds creating two different motifs with graph sets R42(8) and R33(9) (Fig. 2). In Fig. 3, a packing diagram of the title compound viewed down the b axis is shown in which a variety of intermolecular contacts can be observed. The most significant additional interactions are π-π stacking between (pydc)2- ligands in adjacent anions and between sets of 9aaH+ cations (Fig. 3).

For the behaviour of 9-aminoacridine in coordination compounds see: Derikvand et al. (2010); Eshtiagh-Hosseini, Mirzaei, Eydizadeh et al. (2011). For a brief review on the pyridinedicarboxylate family of ligands, see: Mirzaei et al. (2011). For related structures, see: Aghabozorg et al. (2008); Derikvand et al. (2010); Eshtiagh-Hosseini, Yousefi, Mirzaei et al. (2010); Eshtiagh-Hosseini, Mirzaei, Eydizadeh et al. (2011); Eshtiagh-Hosseini, Mirzaei, Yousefi et al. (2011); Eshtiagh-Hosseini, Yousefi, Shafiee et al. (2010); Harrison et al. (2006); MacDonald et al. (2000); Park et al. (2007); Tabatabaee et al. (2009).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the asymmetric unit of the title compound with numbering of the non-hydrogen atoms (probability 50%)
[Figure 2] Fig. 2. The chain formed by the anionic complex and the water molecules. Zinc ions are depicted as spheres of arbitrary radii.
[Figure 3] Fig. 3. The ππ stacking interactions between the cations and between the anions. (Cg1 and Cg2: N1, C1, C2, C3, C4 and C5; Cg8: C15, C16, C17, C18, C19 and C20; Cg3 and Cg6: N3, C15, C20, C21, C22 and C27; Cg4 and Cg5: C22, C23, C24, C25, C26 and C27; Cg8: C35, C36, C37, C38, C39 and C40;Cg9: N5, C28, C33, C34, C35 and C40; Cg10: C28, C29, C30, C31, C32 and C33)
Bis(9-aminoacridinium) bis(pyridine-2,6-dicarboxylato)zincate(II) trihydrate top
Crystal data top
(C13H11N2)2[Zn(C7H3NO4)2]·3H2OZ = 2
Mr = 840.1F(000) = 868
Triclinic, P1Dx = 1.528 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 10.8763 (3) ÅCell parameters from 12486 reflections
b = 13.3802 (3) Åθ = 3.4–75.7°
c = 13.9920 (4) ŵ = 1.57 mm1
α = 102.359 (2)°T = 293 K
β = 103.585 (2)°Prism, yellow
γ = 105.137 (2)°0.1 × 0.1 × 0.1 mm
V = 1826.44 (8) Å3
Data collection top
Xcalibur Nova R CCD
diffractometer
6901 reflections with I > 2σ(I)
ω scansRint = 0.023
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
θmax = 75.9°, θmin = 3.4°
Tmin = 0.786, Tmax = 1h = 1313
18061 measured reflectionsk = 1516
7540 independent reflectionsl = 1714
Refinement top
Refinement on F29 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.2947P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.23 e Å3
7540 reflectionsΔρmin = 0.33 e Å3
547 parameters
Crystal data top
(C13H11N2)2[Zn(C7H3NO4)2]·3H2Oγ = 105.137 (2)°
Mr = 840.1V = 1826.44 (8) Å3
Triclinic, P1Z = 2
a = 10.8763 (3) ÅCu Kα radiation
b = 13.3802 (3) ŵ = 1.57 mm1
c = 13.9920 (4) ÅT = 293 K
α = 102.359 (2)°0.1 × 0.1 × 0.1 mm
β = 103.585 (2)°
Data collection top
Xcalibur Nova R CCD
diffractometer
7540 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
6901 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 1Rint = 0.023
18061 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0329 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.23 e Å3
7540 reflectionsΔρmin = 0.33 e Å3
547 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.63843 (2)0.757062 (15)0.410290 (14)0.04351 (8)
N10.56573 (12)0.59395 (9)0.37952 (8)0.0339 (2)
N20.71182 (13)0.91958 (9)0.46845 (9)0.0389 (2)
O10.79818 (13)0.71221 (9)0.51306 (9)0.0519 (3)
O20.85048 (12)0.56753 (10)0.53916 (9)0.0507 (3)
O70.53943 (14)0.79380 (9)0.52860 (9)0.0514 (3)
O30.44757 (13)0.71287 (9)0.29115 (8)0.0494 (3)
O50.75856 (15)0.80175 (10)0.31737 (9)0.0560 (3)
O80.52661 (14)0.93159 (10)0.64241 (9)0.0555 (3)
O60.90581 (15)0.94355 (12)0.30107 (11)0.0626 (3)
C60.77303 (15)0.61256 (12)0.49985 (10)0.0394 (3)
O40.26883 (14)0.56750 (12)0.19614 (11)0.0649 (4)
C50.44187 (14)0.54306 (11)0.31581 (10)0.0361 (3)
C140.57104 (17)0.89226 (12)0.57460 (10)0.0414 (3)
C10.63454 (14)0.54097 (11)0.42913 (9)0.0339 (3)
C20.57841 (16)0.43143 (12)0.41608 (11)0.0397 (3)
H20.62660.39470.45040.048*
C120.67212 (16)0.96945 (11)0.54266 (10)0.0397 (3)
C80.80023 (16)0.97360 (12)0.43042 (11)0.0424 (3)
C70.37918 (16)0.61393 (13)0.26292 (11)0.0436 (3)
C130.82615 (18)0.90143 (13)0.34225 (12)0.0464 (3)
C110.7210 (2)1.08125 (13)0.58237 (12)0.0503 (4)
H110.69171.11660.63280.06*
C30.44891 (17)0.37785 (12)0.35081 (12)0.0441 (3)
H30.40880.30450.34150.053*
C40.37925 (16)0.43381 (13)0.29935 (11)0.0432 (3)
H40.29250.39880.25490.052*
C90.8561 (2)1.08539 (14)0.46910 (14)0.0544 (4)
H90.921.12360.44450.065*
C100.8145 (2)1.13889 (14)0.54521 (14)0.0590 (4)
H100.84961.21390.57140.071*
H11A0.024 (3)0.9280 (18)0.289 (2)0.097 (10)*
H11B0.120 (2)0.8243 (18)0.3509 (14)0.076 (7)*
H9A0.620 (2)0.160 (2)0.339 (2)0.098 (9)*
H9B0.749 (2)0.2507 (17)0.3719 (15)0.073 (7)*
H10B0.866 (3)0.4303 (18)0.480 (2)0.101 (10)*
H10A0.971 (2)0.383 (2)0.466 (2)0.100 (10)*
N50.14315 (12)0.60732 (10)0.02168 (9)0.0392 (2)
H5A0.17750.59160.07610.047*
C280.10576 (13)0.69735 (12)0.03227 (11)0.0372 (3)
C350.07187 (15)0.56409 (13)0.16288 (11)0.0420 (3)
N60.01511 (16)0.68630 (13)0.23874 (10)0.0527 (3)
H6A0.02390.64640.29860.063*
H6B0.03780.74370.23290.063*
O110.08439 (18)0.86907 (13)0.28590 (11)0.0707 (4)
C330.04982 (13)0.72633 (12)0.05563 (11)0.0381 (3)
C290.12309 (16)0.76160 (14)0.13159 (11)0.0447 (3)
H290.15970.74210.1890.054*
C320.01335 (15)0.82143 (13)0.03963 (13)0.0453 (3)
H320.0240.84210.0960.054*
C400.12830 (14)0.54121 (12)0.07164 (11)0.0396 (3)
C390.17044 (17)0.44950 (13)0.07668 (13)0.0484 (3)
H390.20690.43420.01660.058*
C310.03218 (17)0.88292 (14)0.05684 (14)0.0501 (4)
H310.00920.94580.06580.06*
C300.08634 (18)0.85207 (15)0.14347 (13)0.0506 (4)
H300.0970.89380.20910.061*
C340.03351 (14)0.65921 (13)0.15526 (11)0.0411 (3)
C370.1025 (2)0.40490 (16)0.26117 (14)0.0606 (4)
H370.09470.35940.32420.073*
C360.0601 (2)0.49258 (15)0.25790 (13)0.0556 (4)
H360.02290.50570.3190.067*
C380.15744 (19)0.38316 (15)0.17021 (16)0.0573 (4)
H380.18550.32290.17330.069*
C270.67785 (14)0.08240 (13)0.05915 (11)0.0407 (3)
N30.66525 (13)0.17238 (11)0.11676 (9)0.0439 (3)
H3A0.69480.18860.18270.053*
N40.54649 (14)0.10780 (11)0.19805 (9)0.0443 (3)
H4B0.51270.15040.2250.053*
H4A0.55740.05360.23660.053*
C230.65311 (16)0.03901 (13)0.10529 (13)0.0453 (3)
H230.62850.05750.17670.054*
C210.58166 (13)0.12563 (11)0.09735 (10)0.0359 (3)
C200.56319 (14)0.21631 (12)0.03328 (10)0.0372 (3)
C150.60783 (15)0.23768 (12)0.07443 (11)0.0408 (3)
C220.63677 (14)0.05541 (12)0.04935 (11)0.0375 (3)
C190.49415 (16)0.28113 (13)0.07401 (12)0.0446 (3)
H190.46080.26650.14490.054*
C240.70489 (18)0.10350 (14)0.05529 (16)0.0542 (4)
H240.7140.16590.09290.065*
C250.74415 (17)0.07573 (16)0.05241 (16)0.0560 (4)
H250.77880.12030.08550.067*
C260.73230 (16)0.01550 (15)0.10917 (14)0.0512 (4)
H260.760.03370.18060.061*
C180.4757 (2)0.36484 (15)0.01080 (15)0.0546 (4)
H180.42940.40650.03870.066*
C170.5266 (2)0.38842 (15)0.09648 (15)0.0593 (4)
H170.51630.44730.13910.071*
C160.59065 (19)0.32654 (15)0.13869 (13)0.0530 (4)
H160.62320.34260.20980.064*
O90.68488 (17)0.20134 (14)0.31754 (10)0.0723 (4)
O100.88557 (15)0.36441 (12)0.47389 (13)0.0688 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.06383 (14)0.02983 (11)0.03874 (11)0.01721 (9)0.01691 (9)0.01034 (8)
N10.0428 (6)0.0324 (5)0.0296 (5)0.0167 (5)0.0112 (4)0.0100 (4)
N20.0525 (7)0.0318 (5)0.0337 (5)0.0155 (5)0.0126 (5)0.0110 (4)
O10.0553 (7)0.0368 (5)0.0517 (6)0.0123 (5)0.0013 (5)0.0098 (5)
O20.0455 (6)0.0502 (6)0.0523 (6)0.0214 (5)0.0025 (5)0.0135 (5)
O70.0785 (8)0.0352 (5)0.0488 (6)0.0195 (5)0.0323 (6)0.0138 (4)
O30.0652 (7)0.0457 (6)0.0444 (5)0.0271 (5)0.0125 (5)0.0210 (5)
O50.0796 (9)0.0433 (6)0.0523 (6)0.0203 (6)0.0349 (6)0.0126 (5)
O80.0712 (8)0.0487 (6)0.0445 (6)0.0158 (6)0.0273 (6)0.0037 (5)
O60.0747 (9)0.0645 (8)0.0610 (7)0.0219 (7)0.0370 (7)0.0262 (6)
C60.0440 (7)0.0399 (7)0.0354 (6)0.0174 (6)0.0094 (5)0.0117 (5)
O40.0563 (7)0.0733 (9)0.0597 (7)0.0205 (6)0.0035 (6)0.0330 (7)
C50.0422 (7)0.0390 (7)0.0300 (6)0.0169 (6)0.0106 (5)0.0125 (5)
C140.0568 (8)0.0387 (7)0.0320 (6)0.0197 (6)0.0146 (6)0.0110 (5)
C10.0417 (7)0.0347 (6)0.0299 (5)0.0183 (5)0.0118 (5)0.0107 (5)
C20.0498 (8)0.0378 (7)0.0393 (6)0.0219 (6)0.0151 (6)0.0157 (5)
C120.0522 (8)0.0340 (7)0.0318 (6)0.0166 (6)0.0094 (6)0.0085 (5)
C80.0520 (8)0.0388 (7)0.0390 (7)0.0159 (6)0.0133 (6)0.0160 (6)
C70.0498 (8)0.0520 (9)0.0372 (7)0.0243 (7)0.0126 (6)0.0212 (6)
C130.0576 (9)0.0475 (8)0.0408 (7)0.0204 (7)0.0188 (7)0.0186 (6)
C110.0702 (11)0.0367 (7)0.0395 (7)0.0173 (7)0.0145 (7)0.0055 (6)
C30.0528 (8)0.0340 (7)0.0462 (7)0.0125 (6)0.0153 (6)0.0150 (6)
C40.0427 (7)0.0432 (8)0.0395 (7)0.0104 (6)0.0085 (6)0.0128 (6)
C90.0640 (10)0.0408 (8)0.0532 (9)0.0069 (7)0.0187 (8)0.0153 (7)
C100.0770 (12)0.0323 (7)0.0558 (9)0.0079 (8)0.0163 (9)0.0064 (7)
N50.0397 (6)0.0423 (6)0.0369 (6)0.0156 (5)0.0086 (5)0.0153 (5)
C280.0324 (6)0.0401 (7)0.0391 (7)0.0114 (5)0.0099 (5)0.0134 (5)
C350.0380 (7)0.0430 (7)0.0393 (7)0.0092 (6)0.0079 (5)0.0101 (6)
N60.0608 (8)0.0557 (8)0.0366 (6)0.0206 (7)0.0037 (6)0.0140 (6)
O110.0858 (10)0.0624 (8)0.0520 (7)0.0127 (8)0.0082 (7)0.0216 (6)
C330.0315 (6)0.0423 (7)0.0397 (7)0.0113 (5)0.0083 (5)0.0146 (6)
C290.0456 (8)0.0514 (8)0.0386 (7)0.0173 (7)0.0129 (6)0.0146 (6)
C320.0385 (7)0.0502 (8)0.0515 (8)0.0192 (6)0.0113 (6)0.0209 (7)
C400.0347 (6)0.0394 (7)0.0421 (7)0.0094 (5)0.0106 (5)0.0114 (6)
C390.0472 (8)0.0444 (8)0.0557 (9)0.0176 (7)0.0154 (7)0.0164 (7)
C310.0463 (8)0.0492 (9)0.0606 (9)0.0230 (7)0.0189 (7)0.0159 (7)
C300.0523 (9)0.0530 (9)0.0471 (8)0.0200 (7)0.0183 (7)0.0090 (7)
C340.0336 (6)0.0462 (8)0.0385 (7)0.0087 (6)0.0056 (5)0.0141 (6)
C370.0655 (11)0.0529 (10)0.0512 (9)0.0151 (8)0.0160 (8)0.0014 (7)
C360.0596 (10)0.0558 (10)0.0413 (8)0.0155 (8)0.0088 (7)0.0060 (7)
C380.0573 (10)0.0433 (8)0.0699 (11)0.0185 (7)0.0216 (8)0.0089 (8)
C270.0317 (6)0.0490 (8)0.0420 (7)0.0092 (6)0.0112 (5)0.0194 (6)
N30.0416 (6)0.0543 (7)0.0332 (5)0.0112 (6)0.0111 (5)0.0134 (5)
N40.0589 (8)0.0430 (6)0.0347 (6)0.0248 (6)0.0132 (5)0.0101 (5)
C230.0426 (7)0.0415 (7)0.0522 (8)0.0150 (6)0.0138 (6)0.0139 (6)
C210.0344 (6)0.0363 (6)0.0360 (6)0.0099 (5)0.0119 (5)0.0099 (5)
C200.0358 (6)0.0381 (7)0.0371 (6)0.0102 (5)0.0138 (5)0.0094 (5)
C150.0380 (7)0.0449 (8)0.0374 (7)0.0086 (6)0.0152 (5)0.0099 (6)
C220.0331 (6)0.0389 (7)0.0406 (7)0.0100 (5)0.0118 (5)0.0136 (5)
C190.0494 (8)0.0428 (8)0.0456 (7)0.0176 (6)0.0179 (6)0.0143 (6)
C240.0473 (8)0.0433 (8)0.0768 (11)0.0182 (7)0.0197 (8)0.0222 (8)
C250.0417 (8)0.0595 (10)0.0783 (12)0.0185 (7)0.0175 (8)0.0418 (9)
C260.0386 (7)0.0645 (10)0.0565 (9)0.0142 (7)0.0137 (7)0.0343 (8)
C180.0624 (10)0.0467 (9)0.0655 (10)0.0259 (8)0.0292 (8)0.0177 (8)
C170.0756 (12)0.0459 (9)0.0629 (10)0.0222 (8)0.0386 (9)0.0069 (7)
C160.0615 (10)0.0520 (9)0.0418 (7)0.0120 (8)0.0241 (7)0.0056 (7)
O90.0747 (9)0.0853 (10)0.0369 (6)0.0009 (8)0.0153 (6)0.0135 (6)
O100.0567 (8)0.0507 (7)0.0871 (10)0.0111 (6)0.0171 (7)0.0099 (7)
Geometric parameters (Å, º) top
Zn1—N22.0146 (12)C33—C321.418 (2)
Zn1—N12.0274 (11)C33—C341.430 (2)
Zn1—O52.1162 (12)C29—C301.360 (2)
Zn1—O32.1793 (12)C29—H290.93
Zn1—O72.2151 (11)C32—C311.359 (2)
Zn1—O12.2775 (12)C32—H320.93
N1—C51.3304 (19)C40—C391.412 (2)
N1—C11.3372 (17)C39—C381.368 (3)
N2—C81.331 (2)C39—H390.93
N2—C121.3321 (19)C31—C301.412 (2)
O1—C61.2518 (19)C31—H310.93
O2—C61.2508 (18)C30—H300.93
O7—C141.2507 (19)C37—C361.364 (3)
O3—C71.259 (2)C37—C381.398 (3)
O5—C131.269 (2)C37—H370.93
O8—C141.2430 (19)C36—H360.93
O6—C131.232 (2)C38—H380.93
C6—C11.519 (2)C27—N31.357 (2)
O4—C71.239 (2)C27—C261.411 (2)
C5—C41.384 (2)C27—C221.413 (2)
C5—C71.5207 (18)N3—C151.355 (2)
C14—C121.520 (2)N3—H3A0.86
C1—C21.386 (2)N4—C211.3206 (18)
C2—C31.386 (2)N4—H4B0.86
C2—H20.93N4—H4A0.86
C12—C111.385 (2)C23—C241.370 (2)
C8—C91.387 (2)C23—C221.414 (2)
C8—C131.526 (2)C23—H230.93
C11—C101.382 (3)C21—C201.4361 (19)
C11—H110.93C21—C221.4382 (19)
C3—C41.387 (2)C20—C151.4100 (19)
C3—H30.93C20—C191.411 (2)
C4—H40.93C15—C161.412 (2)
C9—C101.386 (3)C19—C181.361 (2)
C9—H90.93C19—H190.93
C10—H100.93C24—C251.402 (3)
N5—C401.359 (2)C24—H240.93
N5—C281.3588 (19)C25—C261.361 (3)
N5—H5A0.86C25—H250.93
C28—C291.409 (2)C26—H260.93
C28—C331.4173 (18)C18—C171.405 (3)
C35—C401.413 (2)C18—H180.93
C35—C361.418 (2)C17—C161.355 (3)
C35—C341.430 (2)C17—H170.93
N6—C341.3291 (19)C16—H160.93
N6—H6A0.86O9—H9A0.928 (17)
N6—H6B0.86O9—H9B0.890 (16)
O11—H11A0.900 (17)O10—H10B0.948 (17)
O11—H11B0.903 (16)O10—H10A0.940 (17)
N2—Zn1—N1169.12 (4)C28—C33—C32117.75 (14)
N2—Zn1—O577.62 (5)C28—C33—C34118.85 (13)
N1—Zn1—O5111.49 (5)C32—C33—C34123.40 (13)
N2—Zn1—O3108.72 (5)C30—C29—C28120.01 (14)
N1—Zn1—O377.03 (4)C30—C29—H29120
O5—Zn1—O395.55 (5)C28—C29—H29120
N2—Zn1—O775.67 (5)C31—C32—C33121.01 (14)
N1—Zn1—O795.48 (4)C31—C32—H32119.5
O5—Zn1—O7153.00 (4)C33—C32—H32119.5
O3—Zn1—O789.34 (5)N5—C40—C39119.33 (13)
N2—Zn1—O199.73 (5)N5—C40—C35120.47 (13)
N1—Zn1—O174.39 (4)C39—C40—C35120.20 (14)
O5—Zn1—O193.41 (5)C38—C39—C40119.78 (16)
O3—Zn1—O1151.38 (4)C38—C39—H39120.1
O7—Zn1—O194.87 (5)C40—C39—H39120.1
C5—N1—C1121.08 (12)C32—C31—C30120.49 (15)
C5—N1—Zn1117.51 (9)C32—C31—H31119.8
C1—N1—Zn1121.10 (10)C30—C31—H31119.8
C8—N2—C12122.19 (13)C29—C30—C31120.39 (15)
C8—N2—Zn1117.72 (10)C29—C30—H30119.8
C12—N2—Zn1120.10 (10)C31—C30—H30119.8
C6—O1—Zn1114.35 (10)N6—C34—C35121.08 (15)
C14—O7—Zn1114.84 (10)N6—C34—C33120.02 (15)
C7—O3—Zn1114.70 (9)C35—C34—C33118.90 (13)
C13—O5—Zn1116.07 (10)C36—C37—C38120.31 (17)
O2—C6—O1126.28 (15)C36—C37—H37119.8
O2—C6—C1117.83 (13)C38—C37—H37119.8
O1—C6—C1115.89 (12)C37—C36—C35121.13 (16)
N1—C5—C4121.23 (12)C37—C36—H36119.4
N1—C5—C7114.56 (13)C35—C36—H36119.4
C4—C5—C7124.19 (13)C39—C38—C37120.76 (17)
O8—C14—O7125.98 (15)C39—C38—H38119.6
O8—C14—C12118.02 (14)C37—C38—H38119.6
O7—C14—C12116.00 (13)N3—C27—C26119.00 (14)
N1—C1—C2120.86 (13)N3—C27—C22120.76 (13)
N1—C1—C6113.66 (12)C26—C27—C22120.24 (15)
C2—C1—C6125.46 (12)C15—N3—C27122.52 (12)
C3—C2—C1118.57 (12)C15—N3—H3A118.7
C3—C2—H2120.7C27—N3—H3A118.7
C1—C2—H2120.7C21—N4—H4B120
N2—C12—C11120.49 (15)C21—N4—H4A120
N2—C12—C14113.39 (12)H4B—N4—H4A120
C11—C12—C14126.11 (14)C24—C23—C22120.64 (16)
N2—C8—C9120.14 (15)C24—C23—H23119.7
N2—C8—C13113.60 (13)C22—C23—H23119.7
C9—C8—C13126.22 (15)N4—C21—C20119.76 (13)
O4—C7—O3127.83 (14)N4—C21—C22121.71 (13)
O4—C7—C5116.49 (15)C20—C21—C22118.53 (12)
O3—C7—C5115.66 (13)C15—C20—C19118.30 (13)
O6—C13—O5126.46 (16)C15—C20—C21119.08 (13)
O6—C13—C8118.82 (15)C19—C20—C21122.49 (13)
O5—C13—C8114.70 (14)N3—C15—C20120.40 (14)
C10—C11—C12118.33 (16)N3—C15—C16119.69 (14)
C10—C11—H11120.8C20—C15—C16119.90 (15)
C12—C11—H11120.8C27—C22—C23118.21 (13)
C2—C3—C4119.85 (14)C27—C22—C21118.51 (13)
C2—C3—H3120.1C23—C22—C21123.27 (13)
C4—C3—H3120.1C18—C19—C20120.83 (15)
C5—C4—C3118.40 (14)C18—C19—H19119.6
C5—C4—H4120.8C20—C19—H19119.6
C3—C4—H4120.8C23—C24—C25120.27 (17)
C10—C9—C8118.51 (16)C23—C24—H24119.9
C10—C9—H9120.7C25—C24—H24119.9
C8—C9—H9120.7C26—C25—C24120.93 (15)
C11—C10—C9120.30 (16)C26—C25—H25119.5
C11—C10—H10119.9C24—C25—H25119.5
C9—C10—H10119.9C25—C26—C27119.70 (16)
C40—N5—C28122.46 (12)C25—C26—H26120.1
C40—N5—H5A118.8C27—C26—H26120.1
C28—N5—H5A118.8C19—C18—C17120.14 (17)
N5—C28—C29119.30 (12)C19—C18—H18119.9
N5—C28—C33120.36 (13)C17—C18—H18119.9
C29—C28—C33120.34 (13)C16—C17—C18120.86 (16)
C40—C35—C36117.82 (15)C16—C17—H17119.6
C40—C35—C34118.93 (14)C18—C17—H17119.6
C36—C35—C34123.22 (14)C17—C16—C15119.84 (16)
C34—N6—H6A120C17—C16—H16120.1
C34—N6—H6B120C15—C16—H16120.1
H6A—N6—H6B120H9A—O9—H9B110 (2)
H11A—O11—H11B105 (2)H10B—O10—H10A102 (2)
N2—Zn1—N1—C5116.6 (3)N2—C8—C13—O51.1 (2)
O5—Zn1—N1—C597.47 (10)C9—C8—C13—O5176.85 (16)
O3—Zn1—N1—C56.56 (9)N2—C12—C11—C101.9 (2)
O7—Zn1—N1—C581.49 (10)C14—C12—C11—C10179.04 (15)
O1—Zn1—N1—C5175.03 (10)C1—C2—C3—C40.8 (2)
N2—Zn1—N1—C157.0 (3)N1—C5—C4—C30.2 (2)
O5—Zn1—N1—C188.95 (10)C7—C5—C4—C3178.49 (14)
O3—Zn1—N1—C1179.86 (11)C2—C3—C4—C50.5 (2)
O7—Zn1—N1—C192.09 (10)N2—C8—C9—C102.0 (3)
O1—Zn1—N1—C11.45 (10)C13—C8—C9—C10175.78 (16)
N1—Zn1—N2—C8143.5 (2)C12—C11—C10—C90.9 (3)
O5—Zn1—N2—C84.29 (11)C8—C9—C10—C111.0 (3)
O3—Zn1—N2—C896.02 (11)C40—N5—C28—C29179.43 (13)
O7—Zn1—N2—C8179.67 (12)C40—N5—C28—C330.5 (2)
O1—Zn1—N2—C887.09 (11)N5—C28—C33—C32179.70 (13)
N1—Zn1—N2—C1236.3 (3)C29—C28—C33—C320.3 (2)
O5—Zn1—N2—C12175.94 (12)N5—C28—C33—C340.0 (2)
O3—Zn1—N2—C1284.21 (11)C29—C28—C33—C34179.92 (13)
O7—Zn1—N2—C120.10 (11)N5—C28—C29—C30179.90 (15)
O1—Zn1—N2—C1292.68 (11)C33—C28—C29—C300.1 (2)
N2—Zn1—O1—C6174.45 (11)C28—C33—C32—C310.3 (2)
N1—Zn1—O1—C63.84 (11)C34—C33—C32—C31179.37 (15)
O5—Zn1—O1—C6107.54 (12)C28—N5—C40—C39179.49 (14)
O3—Zn1—O1—C60.61 (18)C28—N5—C40—C350.2 (2)
O7—Zn1—O1—C698.19 (12)C36—C35—C40—N5179.45 (15)
N2—Zn1—O7—C140.37 (11)C34—C35—C40—N51.4 (2)
N1—Zn1—O7—C14173.94 (11)C36—C35—C40—C390.2 (2)
O5—Zn1—O7—C148.18 (19)C34—C35—C40—C39178.29 (14)
O3—Zn1—O7—C14109.16 (12)N5—C40—C39—C38179.20 (15)
O1—Zn1—O7—C1499.19 (12)C35—C40—C39—C380.5 (2)
N2—Zn1—O3—C7166.74 (11)C33—C32—C31—C301.2 (3)
N1—Zn1—O3—C73.66 (11)C28—C29—C30—C310.7 (3)
O5—Zn1—O3—C7114.47 (11)C32—C31—C30—C291.4 (3)
O7—Zn1—O3—C792.12 (11)C40—C35—C34—N6177.36 (14)
O1—Zn1—O3—C76.85 (17)C36—C35—C34—N60.6 (2)
N2—Zn1—O5—C134.95 (12)C40—C35—C34—C331.8 (2)
N1—Zn1—O5—C13168.84 (12)C36—C35—C34—C33179.79 (15)
O3—Zn1—O5—C13112.94 (13)C28—C33—C34—N6178.06 (14)
O7—Zn1—O5—C1313.4 (2)C32—C33—C34—N61.7 (2)
O1—Zn1—O5—C1394.27 (13)C28—C33—C34—C351.2 (2)
Zn1—O1—C6—O2172.37 (13)C32—C33—C34—C35179.13 (14)
Zn1—O1—C6—C17.72 (16)C38—C37—C36—C350.7 (3)
C1—N1—C5—C40.7 (2)C40—C35—C36—C370.3 (3)
Zn1—N1—C5—C4172.91 (11)C34—C35—C36—C37177.63 (17)
C1—N1—C5—C7178.13 (12)C40—C39—C38—C370.2 (3)
Zn1—N1—C5—C78.29 (15)C36—C37—C38—C390.4 (3)
Zn1—O7—C14—O8178.80 (13)C26—C27—N3—C15176.61 (14)
Zn1—O7—C14—C120.54 (17)C22—C27—N3—C153.1 (2)
C5—N1—C1—C20.41 (19)N4—C21—C20—C15176.62 (14)
Zn1—N1—C1—C2172.94 (10)C22—C21—C20—C154.3 (2)
C5—N1—C1—C6178.99 (11)N4—C21—C20—C197.6 (2)
Zn1—N1—C1—C65.63 (15)C22—C21—C20—C19171.54 (13)
O2—C6—C1—N1171.15 (13)C27—N3—C15—C202.7 (2)
O1—C6—C1—N18.94 (18)C27—N3—C15—C16176.26 (14)
O2—C6—C1—C210.4 (2)C19—C20—C15—N3174.83 (14)
O1—C6—C1—C2169.56 (14)C21—C20—C15—N31.1 (2)
N1—C1—C2—C30.3 (2)C19—C20—C15—C164.1 (2)
C6—C1—C2—C3178.07 (13)C21—C20—C15—C16179.95 (14)
C8—N2—C12—C110.9 (2)N3—C27—C22—C23179.63 (13)
Zn1—N2—C12—C11179.33 (12)C26—C27—C22—C230.6 (2)
C8—N2—C12—C14179.89 (13)N3—C27—C22—C210.2 (2)
Zn1—N2—C12—C140.14 (16)C26—C27—C22—C21179.93 (13)
O8—C14—C12—N2178.93 (14)C24—C23—C22—C271.3 (2)
O7—C14—C12—N20.47 (19)C24—C23—C22—C21179.26 (15)
O8—C14—C12—C110.2 (2)N4—C21—C22—C27177.11 (13)
O7—C14—C12—C11179.61 (15)C20—C21—C22—C273.8 (2)
C12—N2—C8—C91.1 (2)N4—C21—C22—C232.3 (2)
Zn1—N2—C8—C9178.67 (12)C20—C21—C22—C23176.81 (13)
C12—N2—C8—C13176.99 (13)C15—C20—C19—C182.5 (2)
Zn1—N2—C8—C133.25 (17)C21—C20—C19—C18178.36 (15)
Zn1—O3—C7—O4178.96 (15)C22—C23—C24—C250.9 (3)
Zn1—O3—C7—C50.54 (17)C23—C24—C25—C260.3 (3)
N1—C5—C7—O4173.70 (14)C24—C25—C26—C271.0 (2)
C4—C5—C7—O45.1 (2)N3—C27—C26—C25179.23 (14)
N1—C5—C7—O34.91 (19)C22—C27—C26—C250.5 (2)
C4—C5—C7—O3176.33 (14)C20—C19—C18—C170.6 (3)
Zn1—O5—C13—O6177.06 (14)C19—C18—C17—C162.2 (3)
Zn1—O5—C13—C84.65 (18)C18—C17—C16—C150.6 (3)
N2—C8—C13—O6179.52 (15)N3—C15—C16—C17176.35 (16)
C9—C8—C13—O61.6 (3)C20—C15—C16—C172.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O90.861.892.7013 (18)157
N4—H4A···O8i0.861.982.8005 (18)160
N4—H4B···O3ii0.862.212.9589 (19)145
N5—H5A···O40.861.882.7351 (19)174
N6—H6A···O2iii0.862.212.9763 (18)148
N6—H6B···O110.862.102.899 (2)154
O9—H9A···O8iv0.93 (3)1.85 (3)2.768 (2)170 (2)
O9—H9B···O100.89 (2)1.86 (2)2.745 (2)173 (2)
O10—H10A···O2v0.94 (2)1.91 (2)2.838 (2)175 (2)
O10—H10B···O20.95 (3)1.91 (3)2.830 (2)161 (2)
O11—H11A···O6vi0.90 (3)1.93 (3)2.825 (2)176 (3)
O11—H11B···O1iii0.90 (2)1.99 (2)2.8869 (19)174 (2)
Symmetry codes: (i) x, y1, z1; (ii) x+1, y+1, z; (iii) x1, y, z1; (iv) x+1, y+1, z+1; (v) x+2, y+1, z+1; (vi) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula(C13H11N2)2[Zn(C7H3NO4)2]·3H2O
Mr840.1
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.8763 (3), 13.3802 (3), 13.9920 (4)
α, β, γ (°)102.359 (2), 103.585 (2), 105.137 (2)
V3)1826.44 (8)
Z2
Radiation typeCu Kα
µ (mm1)1.57
Crystal size (mm)0.1 × 0.1 × 0.1
Data collection
DiffractometerXcalibur Nova R CCD
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.786, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
18061, 7540, 6901
Rint0.023
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.091, 1.03
No. of reflections7540
No. of parameters547
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.33

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O90.861.892.7013 (18)157
N4—H4A···O8i0.861.982.8005 (18)160
N4—H4B···O3ii0.862.212.9589 (19)145
N5—H5A···O40.861.882.7351 (19)174
N6—H6A···O2iii0.862.212.9763 (18)148
N6—H6B···O110.862.102.899 (2)154
O9—H9A···O8iv0.93 (3)1.85 (3)2.768 (2)170 (2)
O9—H9B···O100.89 (2)1.86 (2)2.745 (2)173 (2)
O10—H10A···O2v0.94 (2)1.91 (2)2.838 (2)174.6 (17)
O10—H10B···O20.95 (3)1.91 (3)2.830 (2)161 (2)
O11—H11A···O6vi0.90 (3)1.93 (3)2.825 (2)176 (3)
O11—H11B···O1iii0.90 (2)1.99 (2)2.8869 (19)174 (2)
Symmetry codes: (i) x, y1, z1; (ii) x+1, y+1, z; (iii) x1, y, z1; (iv) x+1, y+1, z+1; (v) x+2, y+1, z+1; (vi) x+1, y+2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds