In the complex (morpholine)[2-hydroxy-
N′-(5-nitro-2-oxidobenzylidene)benzohydrazidato]nickel(II), [Ni(C
14H
9N
3O
5)(C
4H
9NO)], (I), the Ni
II center is in a square-planar N
2O
2 coordination geometry. The complex bis[μ-2-hydroxy-
N′-(2-oxidobenzylidene)benzohydrazidato]bis[(morpholine)zinc(II)], [Zn
2(C
14H
10N
2O
3)
2(C
4H
9NO)
2], (II), consists of a neutral centrosymmetric dimer with a coplanar Zn
2(μ
2-O)
2 core. The two Zn
II centers are bridged by phenolate O atoms. Each Zn
II center exhibits a distorted square-pyramidal stereochemistry, in which the four in-plane donors come from the
O,
N,
O′-tridentate 2-hydroxy-
N′-(2-oxidobenzylidene)benzohydrazidate(2−) ligand and a symmetry-related phenolate O atom, and the axial position is coordinated to the N atom from the morpholine molecule. There are intramolecular phenol–hydrazide O—H
N hydrogen bonds present in both (I) and (II). In (I), square-planar nickel complexes are linked by intermolecular morpholine–morpholine N—H
O hydrogen bonds, leading to a one-dimensional chain, while in (II) an infinite two-dimensional network is formed
via intermolecular hydrogen bonds between the coordinated morpholine NH groups and the uncoordinated phenolate O atoms.
Supporting information
CCDC references: 735106; 735107
The Schiff base ligands H2L1 and H2L2 were prepared by
following a procedure previously reported by Chen (2008).
H2L1 (0.2 mmol) and [Ni(OAc)2].4H2O (0.2 mmol) were dissolved in
C2H5OH (15 ml). After stirring for 15 min, morpholine (1 ml) was added to
the solution, which was then stirred for another 1 h and filtered. Red single
crystals of complex (I) were obtained after 2 d. Analysis calculated for
C18H18N4NiO6: C 48.58, H 4.08, N 12.59%; found: C 48.69, H 4.03, N
12.52%.
H2L2 (0.2 mmol) and [Zn(OAc)2].H2O (0.2 mmol) were dissolved in
a mixture of DMF (5 ml) and C2H5OH (5 ml). After stirring for 15 min,
morpholine (1 ml) was added to the mixed solution, which was then stirred for
another 1 h and filtered. Yellow single crystals of complex (II) were obtained
after one week. Analysis calculated for C36H38N6O8Zn2: C 53.16, H
4.71, N 10.33%; found: C 53.29, H 4.67, N 10.25%.
The molar conductance values of the two complexes measured in DMF solutions are
6.32 and 5.21 S cm2 mol-1, respectively, indicating that both are
non-conducting in DMF solutions.
H atoms bonded to C atoms in (I) and (II) were positioned geometrically and
refined using a riding model [C—H = 0.93—0.97 Å and Uiso(H) =
1.2Ueq(C)]. H atoms bonded to phenolate O and morpholine N atoms were
located in a difference Fourier map and were refined with O—H and N—H
distance restraints of 0.82 and 0.90 Å, respectively [please provide s.u.
values], and with Uiso(H) =
1.5Ueq(O) and 1.2Ueq(N) [from
data in CIF these appear to have been refined; please check].
For both compounds, data collection: TEXRAY (Molecular Structure Corporation, 1999); cell refinement: TEXRAY (Molecular Structure Corporation, 1999); data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97/2 (Sheldrick, 2008).
(I) (morpholine)[
N'-(5-nitro-2-oxidobenzylidene)benzohydrazidato]nickel(II)
top
Crystal data top
[Ni(C14H9N3O5)(C4H9NO)] | F(000) = 1840 |
Mr = 445.07 | Dx = 1.624 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 3196 reflections |
a = 11.548 (4) Å | θ = 3.0–27.5° |
b = 8.479 (2) Å | µ = 1.11 mm−1 |
c = 37.184 (10) Å | T = 293 K |
V = 3640.8 (19) Å3 | Block, red |
Z = 8 | 0.45 × 0.28 × 0.15 mm |
Data collection top
Rigaku R-AXIS RAPID imaging-plate diffractometer | 4139 independent reflections |
Radiation source: fine-focus sealed tube | 3196 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
ω scans | θmax = 27.5°, θmin = 3.0° |
Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999) | h = −14→14 |
Tmin = 0.635, Tmax = 0.851 | k = −10→10 |
32687 measured reflections | l = −48→48 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.088 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0378P)2 + 2.0267P] where P = (Fo2 + 2Fc2)/3 |
4139 reflections | (Δ/σ)max = 0.001 |
270 parameters | Δρmax = 0.40 e Å−3 |
2 restraints | Δρmin = −0.37 e Å−3 |
Crystal data top
[Ni(C14H9N3O5)(C4H9NO)] | V = 3640.8 (19) Å3 |
Mr = 445.07 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 11.548 (4) Å | µ = 1.11 mm−1 |
b = 8.479 (2) Å | T = 293 K |
c = 37.184 (10) Å | 0.45 × 0.28 × 0.15 mm |
Data collection top
Rigaku R-AXIS RAPID imaging-plate diffractometer | 4139 independent reflections |
Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999) | 3196 reflections with I > 2σ(I) |
Tmin = 0.635, Tmax = 0.851 | Rint = 0.061 |
32687 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.038 | 2 restraints |
wR(F2) = 0.088 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.40 e Å−3 |
4139 reflections | Δρmin = −0.37 e Å−3 |
270 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Ni1 | 0.40946 (2) | 0.20813 (3) | 0.375534 (7) | 0.02781 (10) | |
O1 | 0.45421 (13) | 0.35169 (18) | 0.40947 (4) | 0.0361 (4) | |
O2 | 0.2384 (2) | 0.7523 (3) | 0.53215 (5) | 0.0725 (6) | |
O3 | 0.0854 (2) | 0.6383 (3) | 0.51299 (7) | 0.0840 (8) | |
O4 | 0.36297 (13) | 0.06861 (17) | 0.34033 (4) | 0.0325 (3) | |
O5 | 0.00510 (16) | 0.0741 (3) | 0.32098 (6) | 0.0628 (6) | |
H5B | 0.040 (3) | 0.111 (4) | 0.3384 (7) | 0.089 (13)* | |
O6 | 0.76874 (15) | −0.0470 (2) | 0.36348 (5) | 0.0470 (4) | |
N1 | 0.1889 (2) | 0.6649 (3) | 0.51118 (6) | 0.0501 (6) | |
N2 | 0.25364 (15) | 0.2368 (2) | 0.38219 (5) | 0.0285 (4) | |
N3 | 0.18373 (15) | 0.1513 (2) | 0.35867 (5) | 0.0322 (4) | |
N4 | 0.57251 (15) | 0.1616 (2) | 0.36836 (5) | 0.0300 (4) | |
H4B | 0.607 (2) | 0.2566 (17) | 0.3671 (7) | 0.038 (7)* | |
C1 | 0.38672 (19) | 0.4294 (3) | 0.43130 (6) | 0.0325 (5) | |
C2 | 0.26355 (19) | 0.4145 (2) | 0.43204 (6) | 0.0311 (5) | |
C3 | 0.2000 (2) | 0.4945 (3) | 0.45845 (6) | 0.0358 (5) | |
H3A | 0.1199 | 0.4838 | 0.4594 | 0.043* | |
C4 | 0.2555 (2) | 0.5881 (3) | 0.48288 (6) | 0.0374 (5) | |
C5 | 0.3747 (2) | 0.6118 (3) | 0.48147 (6) | 0.0406 (6) | |
H5A | 0.4105 | 0.6795 | 0.4977 | 0.049* | |
C6 | 0.4387 (2) | 0.5346 (3) | 0.45599 (6) | 0.0393 (5) | |
H6A | 0.5182 | 0.5518 | 0.4549 | 0.047* | |
C7 | 0.20267 (18) | 0.3205 (2) | 0.40646 (6) | 0.0317 (5) | |
H7A | 0.1222 | 0.3194 | 0.4073 | 0.038* | |
C8 | 0.25099 (18) | 0.0682 (2) | 0.33735 (6) | 0.0298 (5) | |
C9 | 0.19681 (19) | −0.0251 (3) | 0.30838 (6) | 0.0326 (5) | |
C10 | 0.0785 (2) | −0.0151 (3) | 0.30131 (7) | 0.0420 (6) | |
C11 | 0.0325 (2) | −0.0976 (4) | 0.27229 (7) | 0.0546 (7) | |
H11A | −0.0462 | −0.0901 | 0.2673 | 0.066* | |
C12 | 0.1019 (3) | −0.1896 (3) | 0.25107 (8) | 0.0559 (8) | |
H12A | 0.0700 | −0.2433 | 0.2316 | 0.067* | |
C13 | 0.2191 (3) | −0.2035 (3) | 0.25829 (7) | 0.0488 (6) | |
H13A | 0.2657 | −0.2683 | 0.2442 | 0.059* | |
C14 | 0.2658 (2) | −0.1201 (3) | 0.28656 (6) | 0.0387 (5) | |
H14A | 0.3447 | −0.1273 | 0.2912 | 0.046* | |
C15 | 0.6041 (2) | 0.0758 (3) | 0.33509 (6) | 0.0426 (6) | |
H15A | 0.5811 | 0.1379 | 0.3144 | 0.051* | |
H15B | 0.5621 | −0.0233 | 0.3343 | 0.051* | |
C16 | 0.7324 (2) | 0.0430 (3) | 0.33309 (7) | 0.0459 (6) | |
H16A | 0.7496 | −0.0147 | 0.3112 | 0.055* | |
H16B | 0.7746 | 0.1418 | 0.3324 | 0.055* | |
C17 | 0.7479 (2) | 0.0409 (3) | 0.39552 (7) | 0.0470 (6) | |
H17B | 0.7906 | 0.1393 | 0.3946 | 0.056* | |
H17C | 0.7751 | −0.0186 | 0.4161 | 0.056* | |
C18 | 0.6201 (2) | 0.0753 (3) | 0.39979 (6) | 0.0408 (6) | |
H18B | 0.5784 | −0.0232 | 0.4027 | 0.049* | |
H18C | 0.6082 | 0.1377 | 0.4213 | 0.049* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Ni1 | 0.01951 (14) | 0.02964 (15) | 0.03427 (16) | 0.00021 (10) | −0.00105 (11) | 0.00023 (12) |
O1 | 0.0247 (8) | 0.0391 (8) | 0.0444 (9) | 0.0014 (7) | −0.0007 (7) | −0.0085 (8) |
O2 | 0.0823 (16) | 0.0827 (15) | 0.0526 (12) | 0.0030 (13) | 0.0024 (12) | −0.0307 (12) |
O3 | 0.0569 (15) | 0.0984 (18) | 0.0968 (18) | 0.0021 (13) | 0.0255 (13) | −0.0436 (16) |
O4 | 0.0226 (7) | 0.0359 (8) | 0.0391 (8) | −0.0008 (6) | −0.0006 (6) | −0.0021 (7) |
O5 | 0.0268 (10) | 0.1034 (17) | 0.0583 (12) | 0.0033 (10) | −0.0089 (9) | −0.0137 (13) |
O6 | 0.0389 (10) | 0.0472 (10) | 0.0550 (10) | 0.0160 (8) | −0.0024 (8) | −0.0055 (9) |
N1 | 0.0560 (15) | 0.0475 (13) | 0.0468 (13) | 0.0104 (11) | 0.0071 (11) | −0.0031 (11) |
N2 | 0.0218 (9) | 0.0301 (9) | 0.0335 (9) | 0.0000 (7) | −0.0020 (7) | 0.0058 (8) |
N3 | 0.0241 (9) | 0.0386 (10) | 0.0339 (10) | −0.0026 (8) | −0.0037 (7) | 0.0019 (9) |
N4 | 0.0223 (9) | 0.0301 (9) | 0.0377 (10) | −0.0002 (7) | −0.0006 (7) | −0.0014 (8) |
C1 | 0.0318 (12) | 0.0305 (11) | 0.0352 (12) | 0.0030 (9) | −0.0022 (9) | 0.0029 (10) |
C2 | 0.0303 (11) | 0.0295 (10) | 0.0335 (11) | 0.0020 (9) | 0.0002 (9) | 0.0066 (10) |
C3 | 0.0325 (12) | 0.0325 (11) | 0.0424 (13) | 0.0056 (9) | 0.0029 (10) | 0.0058 (11) |
C4 | 0.0468 (14) | 0.0319 (11) | 0.0334 (11) | 0.0095 (10) | 0.0030 (10) | 0.0024 (10) |
C5 | 0.0460 (14) | 0.0353 (12) | 0.0404 (13) | 0.0039 (10) | −0.0096 (11) | −0.0021 (11) |
C6 | 0.0309 (12) | 0.0424 (13) | 0.0445 (13) | 0.0028 (10) | −0.0046 (10) | −0.0009 (12) |
C7 | 0.0239 (11) | 0.0328 (11) | 0.0384 (12) | 0.0030 (8) | 0.0010 (9) | 0.0080 (10) |
C8 | 0.0251 (11) | 0.0307 (11) | 0.0338 (11) | −0.0034 (8) | −0.0017 (9) | 0.0086 (10) |
C9 | 0.0314 (12) | 0.0343 (12) | 0.0320 (11) | −0.0087 (9) | −0.0037 (9) | 0.0078 (10) |
C10 | 0.0321 (13) | 0.0546 (15) | 0.0393 (12) | −0.0071 (11) | −0.0053 (10) | 0.0084 (12) |
C11 | 0.0419 (16) | 0.0708 (19) | 0.0512 (15) | −0.0153 (14) | −0.0167 (12) | 0.0031 (15) |
C12 | 0.070 (2) | 0.0556 (17) | 0.0426 (14) | −0.0194 (15) | −0.0164 (13) | 0.0015 (14) |
C13 | 0.0613 (18) | 0.0448 (14) | 0.0404 (14) | −0.0057 (13) | −0.0030 (12) | −0.0002 (13) |
C14 | 0.0404 (13) | 0.0376 (13) | 0.0383 (12) | −0.0044 (10) | −0.0025 (10) | 0.0053 (11) |
C15 | 0.0330 (13) | 0.0590 (16) | 0.0358 (12) | 0.0082 (11) | 0.0014 (10) | −0.0044 (12) |
C16 | 0.0340 (13) | 0.0595 (16) | 0.0440 (13) | 0.0111 (12) | 0.0031 (11) | −0.0042 (13) |
C17 | 0.0357 (13) | 0.0585 (16) | 0.0468 (14) | 0.0169 (11) | −0.0076 (11) | −0.0017 (13) |
C18 | 0.0347 (13) | 0.0506 (14) | 0.0371 (12) | 0.0081 (11) | −0.0023 (10) | 0.0009 (12) |
Geometric parameters (Å, º) top
Ni1—O1 | 1.8280 (16) | C5—C6 | 1.368 (3) |
Ni1—N2 | 1.8325 (19) | C5—H5A | 0.9300 |
Ni1—O4 | 1.8442 (15) | C6—H6A | 0.9300 |
Ni1—N4 | 1.9422 (19) | C7—H7A | 0.9300 |
O1—C1 | 1.304 (3) | C8—C9 | 1.475 (3) |
O2—N1 | 1.219 (3) | C9—C14 | 1.393 (3) |
O3—N1 | 1.218 (3) | C9—C10 | 1.394 (3) |
O4—C8 | 1.298 (3) | C10—C11 | 1.391 (4) |
O5—C10 | 1.351 (3) | C11—C12 | 1.369 (4) |
O5—H5B | 0.822 (18) | C11—H11A | 0.9300 |
O6—C17 | 1.426 (3) | C12—C13 | 1.385 (4) |
O6—C16 | 1.427 (3) | C12—H12A | 0.9300 |
N1—C4 | 1.457 (3) | C13—C14 | 1.377 (3) |
N2—C7 | 1.290 (3) | C13—H13A | 0.9300 |
N2—N3 | 1.394 (2) | C14—H14A | 0.9300 |
N3—C8 | 1.315 (3) | C15—C16 | 1.510 (3) |
N4—C15 | 1.481 (3) | C15—H15A | 0.9700 |
N4—C18 | 1.484 (3) | C15—H15B | 0.9700 |
N4—H4B | 0.900 (10) | C16—H16A | 0.9700 |
C1—C6 | 1.414 (3) | C16—H16B | 0.9700 |
C1—C2 | 1.428 (3) | C17—C18 | 1.513 (3) |
C2—C3 | 1.401 (3) | C17—H17B | 0.9700 |
C2—C7 | 1.427 (3) | C17—H17C | 0.9700 |
C3—C4 | 1.366 (3) | C18—H18B | 0.9700 |
C3—H3A | 0.9300 | C18—H18C | 0.9700 |
C4—C5 | 1.392 (4) | | |
| | | |
O1—Ni1—N2 | 95.50 (7) | O4—C8—C9 | 119.10 (19) |
O1—Ni1—O4 | 178.15 (7) | N3—C8—C9 | 118.49 (19) |
N2—Ni1—O4 | 83.99 (7) | C14—C9—C10 | 119.0 (2) |
O1—Ni1—N4 | 87.47 (7) | C14—C9—C8 | 119.5 (2) |
N2—Ni1—N4 | 175.92 (8) | C10—C9—C8 | 121.4 (2) |
O4—Ni1—N4 | 93.13 (7) | O5—C10—C11 | 117.5 (2) |
C1—O1—Ni1 | 126.66 (14) | O5—C10—C9 | 123.1 (2) |
C8—O4—Ni1 | 110.64 (13) | C11—C10—C9 | 119.3 (3) |
C10—O5—H5B | 110 (3) | C12—C11—C10 | 120.7 (3) |
C17—O6—C16 | 109.43 (18) | C12—C11—H11A | 119.7 |
O3—N1—O2 | 122.5 (2) | C10—C11—H11A | 119.7 |
O3—N1—C4 | 118.4 (2) | C11—C12—C13 | 120.6 (3) |
O2—N1—C4 | 119.1 (2) | C11—C12—H12A | 119.7 |
C7—N2—N3 | 117.43 (18) | C13—C12—H12A | 119.7 |
C7—N2—Ni1 | 128.00 (15) | C14—C13—C12 | 119.1 (3) |
N3—N2—Ni1 | 114.51 (13) | C14—C13—H13A | 120.4 |
C8—N3—N2 | 108.36 (17) | C12—C13—H13A | 120.4 |
C15—N4—C18 | 108.92 (18) | C13—C14—C9 | 121.2 (2) |
C15—N4—Ni1 | 116.94 (14) | C13—C14—H14A | 119.4 |
C18—N4—Ni1 | 110.54 (14) | C9—C14—H14A | 119.4 |
C15—N4—H4B | 106.8 (16) | N4—C15—C16 | 111.93 (19) |
C18—N4—H4B | 108.5 (16) | N4—C15—H15A | 109.2 |
Ni1—N4—H4B | 104.7 (16) | C16—C15—H15A | 109.2 |
O1—C1—C6 | 118.0 (2) | N4—C15—H15B | 109.2 |
O1—C1—C2 | 124.3 (2) | C16—C15—H15B | 109.2 |
C6—C1—C2 | 117.8 (2) | H15A—C15—H15B | 107.9 |
C3—C2—C7 | 118.7 (2) | O6—C16—C15 | 110.4 (2) |
C3—C2—C1 | 119.5 (2) | O6—C16—H16A | 109.6 |
C7—C2—C1 | 121.8 (2) | C15—C16—H16A | 109.6 |
C4—C3—C2 | 120.1 (2) | O6—C16—H16B | 109.6 |
C4—C3—H3A | 119.9 | C15—C16—H16B | 109.6 |
C2—C3—H3A | 119.9 | H16A—C16—H16B | 108.1 |
C3—C4—C5 | 121.5 (2) | O6—C17—C18 | 110.7 (2) |
C3—C4—N1 | 119.5 (2) | O6—C17—H17B | 109.5 |
C5—C4—N1 | 119.0 (2) | C18—C17—H17B | 109.5 |
C6—C5—C4 | 119.4 (2) | O6—C17—H17C | 109.5 |
C6—C5—H5A | 120.3 | C18—C17—H17C | 109.5 |
C4—C5—H5A | 120.3 | H17B—C17—H17C | 108.1 |
C5—C6—C1 | 121.5 (2) | N4—C18—C17 | 111.9 (2) |
C5—C6—H6A | 119.3 | N4—C18—H18B | 109.2 |
C1—C6—H6A | 119.3 | C17—C18—H18B | 109.2 |
N2—C7—C2 | 123.3 (2) | N4—C18—H18C | 109.2 |
N2—C7—H7A | 118.4 | C17—C18—H18C | 109.2 |
C2—C7—H7A | 118.4 | H18B—C18—H18C | 107.9 |
O4—C8—N3 | 122.39 (19) | | |
| | | |
N2—Ni1—O1—C1 | 5.01 (18) | N1—C4—C5—C6 | 177.1 (2) |
O4—Ni1—O1—C1 | 79 (2) | C4—C5—C6—C1 | −0.9 (4) |
N4—Ni1—O1—C1 | −172.18 (18) | O1—C1—C6—C5 | −175.2 (2) |
O1—Ni1—O4—C8 | −71 (2) | C2—C1—C6—C5 | 4.5 (3) |
N2—Ni1—O4—C8 | 2.93 (14) | N3—N2—C7—C2 | −179.49 (18) |
N4—Ni1—O4—C8 | −179.97 (14) | Ni1—N2—C7—C2 | 3.4 (3) |
O1—Ni1—N2—C7 | −6.66 (19) | C3—C2—C7—N2 | −176.7 (2) |
O4—Ni1—N2—C7 | 175.13 (19) | C1—C2—C7—N2 | 3.4 (3) |
N4—Ni1—N2—C7 | 129.9 (10) | Ni1—O4—C8—N3 | −3.7 (2) |
O1—Ni1—N2—N3 | 176.19 (13) | Ni1—O4—C8—C9 | 174.54 (14) |
O4—Ni1—N2—N3 | −2.02 (13) | N2—N3—C8—O4 | 2.0 (3) |
N4—Ni1—N2—N3 | −47.2 (11) | N2—N3—C8—C9 | −176.18 (17) |
C7—N2—N3—C8 | −176.82 (18) | O4—C8—C9—C14 | 4.8 (3) |
Ni1—N2—N3—C8 | 0.6 (2) | N3—C8—C9—C14 | −176.88 (19) |
O1—Ni1—N4—C15 | −163.62 (17) | O4—C8—C9—C10 | −172.4 (2) |
N2—Ni1—N4—C15 | 59.6 (11) | N3—C8—C9—C10 | 5.9 (3) |
O4—Ni1—N4—C15 | 14.62 (17) | C14—C9—C10—O5 | −179.9 (2) |
O1—Ni1—N4—C18 | 71.01 (15) | C8—C9—C10—O5 | −2.7 (4) |
N2—Ni1—N4—C18 | −65.8 (11) | C14—C9—C10—C11 | −1.3 (3) |
O4—Ni1—N4—C18 | −110.74 (15) | C8—C9—C10—C11 | 175.9 (2) |
Ni1—O1—C1—C6 | 179.38 (15) | O5—C10—C11—C12 | 179.6 (2) |
Ni1—O1—C1—C2 | −0.3 (3) | C9—C10—C11—C12 | 0.9 (4) |
O1—C1—C2—C3 | 175.1 (2) | C10—C11—C12—C13 | 0.6 (4) |
C6—C1—C2—C3 | −4.6 (3) | C11—C12—C13—C14 | −1.7 (4) |
O1—C1—C2—C7 | −5.1 (3) | C12—C13—C14—C9 | 1.4 (4) |
C6—C1—C2—C7 | 175.26 (19) | C10—C9—C14—C13 | 0.1 (3) |
C7—C2—C3—C4 | −178.7 (2) | C8—C9—C14—C13 | −177.1 (2) |
C1—C2—C3—C4 | 1.2 (3) | C18—N4—C15—C16 | −52.3 (3) |
C2—C3—C4—C5 | 2.6 (3) | Ni1—N4—C15—C16 | −178.49 (17) |
C2—C3—C4—N1 | −177.3 (2) | C17—O6—C16—C15 | −61.7 (3) |
O3—N1—C4—C3 | 2.7 (4) | N4—C15—C16—O6 | 58.3 (3) |
O2—N1—C4—C3 | −177.6 (2) | C16—O6—C17—C18 | 61.2 (3) |
O3—N1—C4—C5 | −177.2 (3) | C15—N4—C18—C17 | 51.7 (3) |
O2—N1—C4—C5 | 2.5 (3) | Ni1—N4—C18—C17 | −178.51 (17) |
C3—C4—C5—C6 | −2.8 (4) | O6—C17—C18—N4 | −57.2 (3) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5B···N3 | 0.82 (2) | 1.86 (3) | 2.578 (3) | 145 (4) |
N4—H4B···O6i | 0.90 (1) | 2.20 (1) | 3.081 (3) | 166 (2) |
Symmetry code: (i) −x+3/2, y+1/2, z. |
(II) bis[µ-
N'-(5-nitro-2-
oxidobenzylidene)benzohydrazidato]bis[(morpholine)zinc(II)
top
Crystal data top
[Zn2(C14H10N2O3)2(C4H9NO)2] | F(000) = 1680 |
Mr = 813.46 | Dx = 1.536 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 2484 reflections |
a = 17.004 (5) Å | θ = 3.0–27.5° |
b = 11.130 (4) Å | µ = 1.43 mm−1 |
c = 18.590 (5) Å | T = 293 K |
V = 3518.3 (19) Å3 | Block, yellow |
Z = 4 | 0.38 × 0.26 × 0.08 mm |
Data collection top
Rigaku R-AXIS RAPID imaging-plate diffractometer | 3994 independent reflections |
Radiation source: fine-focus sealed tube | 2484 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.087 |
ω scans | θmax = 27.5°, θmin = 3.0° |
Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999) | h = −21→22 |
Tmin = 0.614, Tmax = 0.895 | k = −14→14 |
28663 measured reflections | l = −23→23 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.138 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0706P)2 + 0.1235P] where P = (Fo2 + 2Fc2)/3 |
3994 reflections | (Δ/σ)max = 0.001 |
243 parameters | Δρmax = 1.38 e Å−3 |
2 restraints | Δρmin = −0.73 e Å−3 |
Crystal data top
[Zn2(C14H10N2O3)2(C4H9NO)2] | V = 3518.3 (19) Å3 |
Mr = 813.46 | Z = 4 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 17.004 (5) Å | µ = 1.43 mm−1 |
b = 11.130 (4) Å | T = 293 K |
c = 18.590 (5) Å | 0.38 × 0.26 × 0.08 mm |
Data collection top
Rigaku R-AXIS RAPID imaging-plate diffractometer | 3994 independent reflections |
Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999) | 2484 reflections with I > 2σ(I) |
Tmin = 0.614, Tmax = 0.895 | Rint = 0.087 |
28663 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.049 | 2 restraints |
wR(F2) = 0.138 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 1.38 e Å−3 |
3994 reflections | Δρmin = −0.73 e Å−3 |
243 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Zn1 | 0.05686 (2) | 0.38931 (4) | 0.50721 (2) | 0.03643 (16) | |
O1 | 0.04565 (12) | 0.5514 (2) | 0.45266 (13) | 0.0383 (6) | |
O2 | 0.10013 (13) | 0.2732 (2) | 0.58282 (14) | 0.0468 (6) | |
O3 | 0.34424 (15) | 0.2231 (3) | 0.57922 (16) | 0.0567 (8) | |
H3C | 0.316 (3) | 0.271 (5) | 0.557 (3) | 0.14 (3)* | |
O4 | 0.0506 (2) | 0.0904 (3) | 0.32068 (19) | 0.0833 (11) | |
N1 | 0.17589 (17) | 0.4112 (2) | 0.49636 (14) | 0.0366 (7) | |
N2 | 0.21994 (16) | 0.3268 (3) | 0.53453 (16) | 0.0392 (7) | |
N3 | 0.02004 (17) | 0.2728 (3) | 0.42704 (17) | 0.0429 (7) | |
H3B | −0.0318 (8) | 0.288 (3) | 0.4256 (19) | 0.050 (11)* | |
C1 | 0.0996 (2) | 0.6148 (3) | 0.41558 (18) | 0.0352 (8) | |
C2 | 0.18056 (19) | 0.5814 (3) | 0.41560 (18) | 0.0349 (8) | |
C3 | 0.2330 (2) | 0.6500 (3) | 0.3750 (2) | 0.0434 (9) | |
H3A | 0.2857 | 0.6279 | 0.3743 | 0.052* | |
C4 | 0.2098 (2) | 0.7494 (4) | 0.3360 (2) | 0.0495 (10) | |
H4A | 0.2458 | 0.7933 | 0.3091 | 0.059* | |
C5 | 0.1313 (2) | 0.7816 (3) | 0.3380 (2) | 0.0484 (10) | |
H5A | 0.1143 | 0.8489 | 0.3127 | 0.058* | |
C6 | 0.0783 (2) | 0.7159 (3) | 0.3767 (2) | 0.0453 (9) | |
H6A | 0.0259 | 0.7399 | 0.3770 | 0.054* | |
C7 | 0.21415 (19) | 0.4839 (3) | 0.45664 (19) | 0.0399 (8) | |
H7A | 0.2683 | 0.4732 | 0.4538 | 0.048* | |
C8 | 0.1742 (2) | 0.2627 (3) | 0.57800 (19) | 0.0370 (8) | |
C9 | 0.21523 (19) | 0.1711 (3) | 0.62187 (19) | 0.0389 (8) | |
C10 | 0.2968 (2) | 0.1542 (3) | 0.6201 (2) | 0.0419 (9) | |
C11 | 0.3311 (2) | 0.0635 (4) | 0.6608 (2) | 0.0518 (10) | |
H11A | 0.3853 | 0.0524 | 0.6593 | 0.062* | |
C12 | 0.2861 (3) | −0.0092 (4) | 0.7029 (2) | 0.0593 (11) | |
H12A | 0.3099 | −0.0696 | 0.7298 | 0.071* | |
C13 | 0.2048 (3) | 0.0058 (4) | 0.7062 (2) | 0.0631 (12) | |
H13A | 0.1741 | −0.0439 | 0.7350 | 0.076* | |
C14 | 0.1708 (2) | 0.0953 (3) | 0.6660 (2) | 0.0510 (10) | |
H14A | 0.1166 | 0.1058 | 0.6682 | 0.061* | |
C15 | 0.0351 (3) | 0.1447 (4) | 0.4451 (2) | 0.0626 (12) | |
H15A | 0.0065 | 0.1240 | 0.4885 | 0.075* | |
H15B | 0.0908 | 0.1340 | 0.4547 | 0.075* | |
C16 | 0.0108 (4) | 0.0614 (4) | 0.3855 (3) | 0.0871 (16) | |
H16A | 0.0228 | −0.0208 | 0.3990 | 0.104* | |
H16B | −0.0455 | 0.0674 | 0.3781 | 0.104* | |
C17 | 0.0310 (3) | 0.2096 (5) | 0.2995 (3) | 0.0777 (14) | |
H17A | −0.0253 | 0.2151 | 0.2915 | 0.093* | |
H17B | 0.0572 | 0.2284 | 0.2545 | 0.093* | |
C18 | 0.0549 (2) | 0.2996 (4) | 0.3557 (2) | 0.0556 (11) | |
H18A | 0.1118 | 0.2999 | 0.3599 | 0.067* | |
H18B | 0.0385 | 0.3791 | 0.3405 | 0.067* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Zn1 | 0.0238 (2) | 0.0349 (3) | 0.0506 (3) | 0.00320 (16) | −0.00026 (16) | 0.00426 (18) |
O1 | 0.0264 (12) | 0.0325 (13) | 0.0559 (15) | 0.0034 (10) | 0.0071 (10) | 0.0082 (11) |
O2 | 0.0255 (13) | 0.0489 (16) | 0.0660 (17) | 0.0055 (11) | −0.0009 (11) | 0.0175 (13) |
O3 | 0.0300 (15) | 0.069 (2) | 0.0707 (19) | 0.0120 (13) | 0.0021 (13) | 0.0165 (17) |
O4 | 0.109 (3) | 0.062 (2) | 0.079 (2) | 0.0156 (19) | 0.011 (2) | −0.0190 (18) |
N1 | 0.0278 (15) | 0.0367 (17) | 0.0452 (17) | 0.0044 (12) | −0.0034 (12) | 0.0048 (13) |
N2 | 0.0269 (15) | 0.0401 (17) | 0.0506 (17) | 0.0031 (13) | −0.0046 (13) | 0.0087 (15) |
N3 | 0.0312 (17) | 0.0371 (18) | 0.060 (2) | 0.0050 (13) | 0.0028 (14) | 0.0013 (15) |
C1 | 0.0317 (19) | 0.0340 (19) | 0.0399 (19) | 0.0012 (15) | 0.0040 (14) | −0.0021 (16) |
C2 | 0.0269 (18) | 0.034 (2) | 0.0436 (19) | −0.0005 (14) | 0.0028 (14) | −0.0012 (15) |
C3 | 0.0241 (18) | 0.053 (2) | 0.053 (2) | −0.0016 (16) | 0.0024 (15) | 0.0053 (19) |
C4 | 0.043 (2) | 0.050 (2) | 0.056 (2) | −0.0086 (19) | 0.0065 (18) | 0.002 (2) |
C5 | 0.053 (2) | 0.038 (2) | 0.055 (2) | 0.0031 (17) | 0.0061 (18) | 0.0119 (18) |
C6 | 0.035 (2) | 0.043 (2) | 0.057 (2) | 0.0058 (16) | 0.0084 (16) | 0.0089 (19) |
C7 | 0.0250 (18) | 0.045 (2) | 0.050 (2) | 0.0007 (15) | 0.0009 (15) | 0.0032 (18) |
C8 | 0.0311 (19) | 0.034 (2) | 0.046 (2) | 0.0018 (15) | −0.0052 (15) | −0.0029 (16) |
C9 | 0.0329 (19) | 0.037 (2) | 0.047 (2) | 0.0058 (15) | −0.0093 (15) | −0.0024 (17) |
C10 | 0.034 (2) | 0.042 (2) | 0.050 (2) | 0.0049 (16) | −0.0054 (16) | −0.0046 (18) |
C11 | 0.043 (2) | 0.052 (2) | 0.061 (2) | 0.0131 (19) | −0.0139 (19) | 0.002 (2) |
C12 | 0.063 (3) | 0.047 (3) | 0.069 (3) | 0.011 (2) | −0.017 (2) | 0.011 (2) |
C13 | 0.059 (3) | 0.054 (3) | 0.077 (3) | −0.003 (2) | −0.013 (2) | 0.019 (2) |
C14 | 0.041 (2) | 0.051 (3) | 0.061 (2) | 0.0001 (18) | −0.0069 (18) | 0.009 (2) |
C15 | 0.087 (3) | 0.035 (2) | 0.066 (3) | 0.001 (2) | 0.009 (2) | 0.000 (2) |
C16 | 0.117 (5) | 0.046 (3) | 0.098 (4) | −0.009 (3) | 0.016 (4) | −0.013 (3) |
C17 | 0.096 (4) | 0.075 (4) | 0.062 (3) | 0.011 (3) | −0.006 (3) | −0.010 (3) |
C18 | 0.056 (3) | 0.054 (3) | 0.058 (3) | 0.006 (2) | 0.002 (2) | 0.006 (2) |
Geometric parameters (Å, º) top
Zn1—O1i | 2.007 (2) | C4—H4A | 0.9300 |
Zn1—O2 | 2.046 (2) | C5—C6 | 1.365 (5) |
Zn1—N1 | 2.048 (3) | C5—H5A | 0.9300 |
Zn1—N3 | 2.072 (3) | C6—H6A | 0.9300 |
Zn1—O1 | 2.079 (2) | C7—H7A | 0.9300 |
Zn1—Zn1i | 3.1437 (11) | C8—C9 | 1.480 (5) |
O1—C1 | 1.348 (4) | C9—C14 | 1.399 (5) |
O1—Zn1i | 2.007 (2) | C9—C10 | 1.400 (5) |
O2—C8 | 1.269 (4) | C10—C11 | 1.391 (5) |
O3—C10 | 1.348 (5) | C11—C12 | 1.360 (6) |
O3—H3C | 0.82 (3) | C11—H11A | 0.9300 |
O4—C16 | 1.419 (6) | C12—C13 | 1.395 (6) |
O4—C17 | 1.424 (6) | C12—H12A | 0.9300 |
N1—C7 | 1.274 (4) | C13—C14 | 1.372 (5) |
N1—N2 | 1.396 (4) | C13—H13A | 0.9300 |
N2—C8 | 1.329 (4) | C14—H14A | 0.9300 |
N3—C18 | 1.483 (5) | C15—C16 | 1.503 (6) |
N3—C15 | 1.487 (5) | C15—H15A | 0.9700 |
N3—H3B | 0.899 (10) | C15—H15B | 0.9700 |
C1—C6 | 1.385 (5) | C16—H16A | 0.9700 |
C1—C2 | 1.425 (5) | C16—H16B | 0.9700 |
C2—C3 | 1.395 (5) | C17—C18 | 1.503 (6) |
C2—C7 | 1.445 (5) | C17—H17A | 0.9700 |
C3—C4 | 1.380 (5) | C17—H17B | 0.9700 |
C3—H3A | 0.9300 | C18—H18A | 0.9700 |
C4—C5 | 1.383 (5) | C18—H18B | 0.9700 |
| | | |
O1i—Zn1—O2 | 105.34 (10) | N1—C7—C2 | 125.5 (3) |
O1i—Zn1—N1 | 148.80 (11) | N1—C7—H7A | 117.2 |
O2—Zn1—N1 | 77.73 (10) | C2—C7—H7A | 117.2 |
O1i—Zn1—N3 | 102.15 (11) | O2—C8—N2 | 125.1 (3) |
O2—Zn1—N3 | 101.97 (12) | O2—C8—C9 | 119.5 (3) |
N1—Zn1—N3 | 107.59 (11) | N2—C8—C9 | 115.4 (3) |
O1i—Zn1—O1 | 79.42 (10) | C14—C9—C10 | 117.9 (3) |
O2—Zn1—O1 | 156.40 (10) | C14—C9—C8 | 119.0 (3) |
N1—Zn1—O1 | 86.52 (10) | C10—C9—C8 | 123.1 (3) |
N3—Zn1—O1 | 99.47 (11) | O3—C10—C11 | 118.0 (3) |
O1i—Zn1—Zn1i | 40.54 (7) | O3—C10—C9 | 122.0 (3) |
O2—Zn1—Zn1i | 140.78 (8) | C11—C10—C9 | 120.0 (4) |
N1—Zn1—Zn1i | 120.41 (8) | C12—C11—C10 | 120.6 (4) |
N3—Zn1—Zn1i | 104.08 (9) | C12—C11—H11A | 119.7 |
O1—Zn1—Zn1i | 38.88 (6) | C10—C11—H11A | 119.7 |
C1—O1—Zn1i | 127.6 (2) | C11—C12—C13 | 120.7 (4) |
C1—O1—Zn1 | 129.9 (2) | C11—C12—H12A | 119.6 |
Zn1i—O1—Zn1 | 100.58 (10) | C13—C12—H12A | 119.6 |
C8—O2—Zn1 | 111.5 (2) | C14—C13—C12 | 118.7 (4) |
C10—O3—H3C | 108 (5) | C14—C13—H13A | 120.6 |
C16—O4—C17 | 109.6 (4) | C12—C13—H13A | 120.6 |
C7—N1—N2 | 116.6 (3) | C13—C14—C9 | 122.0 (4) |
C7—N1—Zn1 | 129.6 (2) | C13—C14—H14A | 119.0 |
N2—N1—Zn1 | 113.6 (2) | C9—C14—H14A | 119.0 |
C8—N2—N1 | 110.9 (3) | N3—C15—C16 | 112.2 (4) |
C18—N3—C15 | 109.0 (3) | N3—C15—H15A | 109.2 |
C18—N3—Zn1 | 113.4 (2) | C16—C15—H15A | 109.2 |
C15—N3—Zn1 | 112.7 (2) | N3—C15—H15B | 109.2 |
C18—N3—H3B | 109 (2) | C16—C15—H15B | 109.2 |
C15—N3—H3B | 111 (2) | H15A—C15—H15B | 107.9 |
Zn1—N3—H3B | 101 (2) | O4—C16—C15 | 110.7 (4) |
O1—C1—C6 | 120.9 (3) | O4—C16—H16A | 109.5 |
O1—C1—C2 | 121.4 (3) | C15—C16—H16A | 109.5 |
C6—C1—C2 | 117.7 (3) | O4—C16—H16B | 109.5 |
C3—C2—C1 | 118.3 (3) | C15—C16—H16B | 109.5 |
C3—C2—C7 | 116.4 (3) | H16A—C16—H16B | 108.1 |
C1—C2—C7 | 125.3 (3) | O4—C17—C18 | 111.4 (4) |
C4—C3—C2 | 122.7 (3) | O4—C17—H17A | 109.3 |
C4—C3—H3A | 118.7 | C18—C17—H17A | 109.3 |
C2—C3—H3A | 118.7 | O4—C17—H17B | 109.3 |
C3—C4—C5 | 118.0 (4) | C18—C17—H17B | 109.3 |
C3—C4—H4A | 121.0 | H17A—C17—H17B | 108.0 |
C5—C4—H4A | 121.0 | N3—C18—C17 | 112.3 (4) |
C6—C5—C4 | 120.8 (4) | N3—C18—H18A | 109.1 |
C6—C5—H5A | 119.6 | C17—C18—H18A | 109.1 |
C4—C5—H5A | 119.6 | N3—C18—H18B | 109.1 |
C5—C6—C1 | 122.5 (3) | C17—C18—H18B | 109.1 |
C5—C6—H6A | 118.8 | H18A—C18—H18B | 107.9 |
C1—C6—H6A | 118.8 | | |
| | | |
O1i—Zn1—O1—C1 | 164.7 (3) | C6—C1—C2—C3 | −1.8 (5) |
O2—Zn1—O1—C1 | 60.6 (4) | O1—C1—C2—C7 | −3.5 (5) |
N1—Zn1—O1—C1 | 12.7 (3) | C6—C1—C2—C7 | 175.8 (3) |
N3—Zn1—O1—C1 | −94.6 (3) | C1—C2—C3—C4 | 1.0 (5) |
Zn1i—Zn1—O1—C1 | 164.7 (3) | C7—C2—C3—C4 | −176.8 (3) |
O1i—Zn1—O1—Zn1i | 0.0 | C2—C3—C4—C5 | 0.4 (6) |
O2—Zn1—O1—Zn1i | −104.2 (2) | C3—C4—C5—C6 | −0.9 (6) |
N1—Zn1—O1—Zn1i | −152.02 (12) | C4—C5—C6—C1 | 0.0 (6) |
N3—Zn1—O1—Zn1i | 100.72 (12) | O1—C1—C6—C5 | −179.4 (3) |
O1i—Zn1—O2—C8 | −156.4 (2) | C2—C1—C6—C5 | 1.4 (5) |
N1—Zn1—O2—C8 | −8.4 (2) | N2—N1—C7—C2 | −176.8 (3) |
N3—Zn1—O2—C8 | 97.3 (2) | Zn1—N1—C7—C2 | 8.8 (5) |
O1—Zn1—O2—C8 | −57.6 (4) | C3—C2—C7—N1 | −179.5 (3) |
Zn1i—Zn1—O2—C8 | −131.9 (2) | C1—C2—C7—N1 | 2.8 (6) |
O1i—Zn1—N1—C7 | −76.3 (4) | Zn1—O2—C8—N2 | 6.1 (4) |
O2—Zn1—N1—C7 | −175.7 (3) | Zn1—O2—C8—C9 | −172.3 (2) |
N3—Zn1—N1—C7 | 85.5 (3) | N1—N2—C8—O2 | 2.3 (5) |
O1—Zn1—N1—C7 | −13.4 (3) | N1—N2—C8—C9 | −179.3 (3) |
Zn1i—Zn1—N1—C7 | −33.3 (3) | O2—C8—C9—C14 | 2.1 (5) |
O1i—Zn1—N1—N2 | 109.2 (3) | N2—C8—C9—C14 | −176.4 (3) |
O2—Zn1—N1—N2 | 9.8 (2) | O2—C8—C9—C10 | −179.6 (3) |
N3—Zn1—N1—N2 | −89.1 (2) | N2—C8—C9—C10 | 1.9 (5) |
O1—Zn1—N1—N2 | 172.1 (2) | C14—C9—C10—O3 | −179.9 (3) |
Zn1i—Zn1—N1—N2 | 152.14 (18) | C8—C9—C10—O3 | 1.8 (6) |
C7—N1—N2—C8 | 175.1 (3) | C14—C9—C10—C11 | 0.6 (5) |
Zn1—N1—N2—C8 | −9.6 (3) | C8—C9—C10—C11 | −177.7 (3) |
O1i—Zn1—N3—C18 | 126.2 (2) | O3—C10—C11—C12 | −179.7 (4) |
O2—Zn1—N3—C18 | −125.0 (2) | C9—C10—C11—C12 | −0.3 (6) |
N1—Zn1—N3—C18 | −44.2 (3) | C10—C11—C12—C13 | −0.1 (6) |
O1—Zn1—N3—C18 | 45.1 (3) | C11—C12—C13—C14 | 0.1 (7) |
Zn1i—Zn1—N3—C18 | 84.6 (2) | C12—C13—C14—C9 | 0.3 (6) |
O1i—Zn1—N3—C15 | −109.4 (3) | C10—C9—C14—C13 | −0.7 (6) |
O2—Zn1—N3—C15 | −0.6 (3) | C8—C9—C14—C13 | 177.7 (4) |
N1—Zn1—N3—C15 | 80.1 (3) | C18—N3—C15—C16 | −51.3 (5) |
O1—Zn1—N3—C15 | 169.5 (3) | Zn1—N3—C15—C16 | −178.0 (3) |
Zn1i—Zn1—N3—C15 | −151.1 (2) | C17—O4—C16—C15 | −61.1 (6) |
Zn1i—O1—C1—C6 | −25.6 (5) | N3—C15—C16—O4 | 57.8 (6) |
Zn1—O1—C1—C6 | 173.5 (2) | C16—O4—C17—C18 | 60.5 (6) |
Zn1i—O1—C1—C2 | 153.6 (2) | C15—N3—C18—C17 | 50.4 (5) |
Zn1—O1—C1—C2 | −7.3 (5) | Zn1—N3—C18—C17 | 176.7 (3) |
O1—C1—C2—C3 | 179.0 (3) | O4—C17—C18—N3 | −56.2 (5) |
Symmetry code: (i) −x, −y+1, −z+1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3B···O3ii | 0.90 (1) | 2.11 (1) | 2.992 (4) | 165 (3) |
O3—H3C···N2 | 0.82 (3) | 1.80 (4) | 2.547 (4) | 149 (6) |
Symmetry code: (ii) x−1/2, −y+1/2, −z+1. |
Experimental details
| (I) | (II) |
Crystal data |
Chemical formula | [Ni(C14H9N3O5)(C4H9NO)] | [Zn2(C14H10N2O3)2(C4H9NO)2] |
Mr | 445.07 | 813.46 |
Crystal system, space group | Orthorhombic, Pbca | Orthorhombic, Pbca |
Temperature (K) | 293 | 293 |
a, b, c (Å) | 11.548 (4), 8.479 (2), 37.184 (10) | 17.004 (5), 11.130 (4), 18.590 (5) |
V (Å3) | 3640.8 (19) | 3518.3 (19) |
Z | 8 | 4 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 1.11 | 1.43 |
Crystal size (mm) | 0.45 × 0.28 × 0.15 | 0.38 × 0.26 × 0.08 |
|
Data collection |
Diffractometer | Rigaku R-AXIS RAPID imaging-plate diffractometer | Rigaku R-AXIS RAPID imaging-plate diffractometer |
Absorption correction | Multi-scan (TEXRAY; Molecular Structure Corporation, 1999) | Multi-scan (TEXRAY; Molecular Structure Corporation, 1999) |
Tmin, Tmax | 0.635, 0.851 | 0.614, 0.895 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 32687, 4139, 3196 | 28663, 3994, 2484 |
Rint | 0.061 | 0.087 |
(sin θ/λ)max (Å−1) | 0.649 | 0.649 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.088, 1.03 | 0.049, 0.138, 1.07 |
No. of reflections | 4139 | 3994 |
No. of parameters | 270 | 243 |
No. of restraints | 2 | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.40, −0.37 | 1.38, −0.73 |
Selected geometric parameters (Å, º) for (I) topNi1—O1 | 1.8280 (16) | O3—N1 | 1.218 (3) |
Ni1—N2 | 1.8325 (19) | O4—C8 | 1.298 (3) |
Ni1—O4 | 1.8442 (15) | N2—C7 | 1.290 (3) |
Ni1—N4 | 1.9422 (19) | N2—N3 | 1.394 (2) |
O1—C1 | 1.304 (3) | N3—C8 | 1.315 (3) |
O2—N1 | 1.219 (3) | | |
| | | |
O1—Ni1—N2 | 95.50 (7) | O1—Ni1—N4 | 87.47 (7) |
O1—Ni1—O4 | 178.15 (7) | N2—Ni1—N4 | 175.92 (8) |
N2—Ni1—O4 | 83.99 (7) | O4—Ni1—N4 | 93.13 (7) |
Hydrogen-bond geometry (Å, º) for (I) top
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5B···N3 | 0.822 (18) | 1.86 (3) | 2.578 (3) | 145 (4) |
N4—H4B···O6i | 0.900 (10) | 2.202 (11) | 3.081 (3) | 166 (2) |
Symmetry code: (i) −x+3/2, y+1/2, z. |
Selected geometric parameters (Å, º) for (II) topZn1—O1i | 2.007 (2) | O2—C8 | 1.269 (4) |
Zn1—O2 | 2.046 (2) | N1—C7 | 1.274 (4) |
Zn1—N1 | 2.048 (3) | N1—N2 | 1.396 (4) |
Zn1—N3 | 2.072 (3) | N2—C8 | 1.329 (4) |
Zn1—O1 | 2.079 (2) | | |
| | | |
O1i—Zn1—O2 | 105.34 (10) | N1—Zn1—N3 | 107.59 (11) |
O1i—Zn1—N1 | 148.80 (11) | O1i—Zn1—O1 | 79.42 (10) |
O2—Zn1—N1 | 77.73 (10) | O2—Zn1—O1 | 156.40 (10) |
O1i—Zn1—N3 | 102.15 (11) | N1—Zn1—O1 | 86.52 (10) |
O2—Zn1—N3 | 101.97 (12) | N3—Zn1—O1 | 99.47 (11) |
Symmetry code: (i) −x, −y+1, −z+1. |
Hydrogen-bond geometry (Å, º) for (II) top
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3B···O3ii | 0.899 (10) | 2.113 (14) | 2.992 (4) | 165 (3) |
O3—H3C···N2 | 0.82 (3) | 1.80 (4) | 2.547 (4) | 149 (6) |
Symmetry code: (ii) x−1/2, −y+1/2, −z+1. |
Table 5. Comparative geometric parameters (Å, °) for the Zn2(µ2-O)2
fragment in zinc complexes topComplex | Zn—Oi | Zn—O | Zn···Zni | Zn—O—Zni |
(II)a | 2.007 (2) | 2.079 (2) | 3.144 (1) | 100.6 (1) |
[Zn(C15H12N2O2)(C2H6OS)]2b | 2.004 (1) | 2.068 (2) | 3.137 (1) | 100.76 (5) |
[Zn(C15H12N2O3)(py)]2.2DMFc | 2.022 (2) | 2.023 (2) | 3.141 (2) | 101.9 (1) |
[Zn(SHSH)(2-Me-py)]2d | 1.991 (3) | 2.118 (1) | 3.161 (2) | 100.57 (6) |
[Zn(SHSH)(py)]2.2DMFe | 1.998 (2) | 2.080 (2) | 3.149 (2) | 100.67 (7) |
References: (a) this work; (b) Ali et al. (2003); (c) Huang et
al. (2005);
(d) Hu et al. (2007); (e) Huang & Li (2007). |
In recent years, self-assemblies of coordination compounds to one-, two- and three-dimensional supramolecules have been of much interest (Bai et al., 2006; Batten & Robson, 1998; Padhi et al., 2008; Rayati et al., 2008). The general strategies used for self-assemblies into such extended supramolecular network structures are the metal ion's preference for different coordination geometry, use of suitable bridging bidentate ligands such as pyrazine (Warda, 1998b) and dioxane (Warda, 1998a), and weak intermolecular interactions such as hydrogen bonding and π–π interactions (Bauer & Weber, 2008; Mukhopadhyay et al., 2003; Padhi et al., 2008). Aroylhydrazones have been extensively investigated by chemists in the synthesis of coordination polymers owing to their inherent coordination and hydrogen-bonding donor/acceptor functionalities, as well as their biological activities (Rayati et al., 2008; Dutta et al., 1995; Lian et al., 2008). In the following account, we report two mixed-ligand bivalent nickel/zinc complexes, [Ni(L1)(C4H9NO)], (I) and [Zn(L2)(C4H9NO)]2, (II). The common ligand in both complexes is the tridentate aroylhydrazone ligand, N-5-nitrosalicylaldehyde-N'-salicyloylhydrazone (H2L1) or N-salicylaldehyde-N'-salicyloylhydrazone (H2L2). Neutral N-donor morpholine has been used as the ancillary ligand. The self-assembly of both complex molecules via intermolecular hydrogen bonds involving the heterocyclic morpholine NH group has been demonstrated. As far as we know, complex (II) is the first example of a dinuclear zinc hydrazone complex with morpholine as the ancillary ligand; (II) exhibits an infinite two-dimensional supramolecular network structure.
As shown in Fig. 1, in (I), the tridentate L12- ligand coordinates the NiII ion via the phenolate O1, carbonyl O4 and hydrazone N2 atoms, forming one five- and one six-membered chelating ring. The fourth site is occupied by atom N4 of the heterocycle to complete a square-planar N2O2 geometry around the metal center. There is nearly no deviation of the metal center from the N2O2 square plane; atom Ni1 deviates from the basal plane by 0.0092 (8) Å. The N—N, N═C, and C—O bond distances in the ═ N—N═C(O-)- fragment of L12- are consistent with the enolate form of the hydrazone functionalities (Chen, 2008; Lin et al., 2007; Lian et al., 2008). The Ni1—N2, Ni1—O1 and Ni1—O4 bond distances (Table 1) are normal, as observed in some similar square-planar NiII complexes with aroylhydrazone ligands (Chen, 2008; Lin et al., 2007; Lian et al., 2008). The Ni1—N4 bond length is comparable to the distance observed in the lone example of a tetracoordinated NiII complex (Lian et al., 2008) containing a monodentate neutral morpholine moiety.
Both the six-membered chelating ring [r.m.s deviation = 0.0332 (1) Å] and the five-membered chelating ring [r.m.s deviation = 0.0338 (8) Å] are close to planar, and the dihedral angle between them is 3.6 (1)°. The dihedral angle between the phenyl ring and the substituent –NO2 group is 4.1 (4)°. However, the dihedral angle between the two phenyl rings of the hydrazone ligand in complex (I) is 12.6 (1)°, indicating a slight twist of the whole ligand.
There exists a weak O5—H5B···N3 intramolecular contact (Table 2). In the crystal structure, the asymmetric units are linked by intermolecular N4—H4B···O6i interactions (symmetry code as in Table 2), forming a one-dimensional zigzag supramolecular network (Fig. 2). The Ni···Ni distance in this uniform arrangement is 8.935 (3) Å.
As shown in Fig. 3, the structure of (II) consists of a centrosymmetric binuclear entity with a coplanar Zn2(µ2-O)2 fragment. Phenolate O atoms bridge the ZnII ions, with Zn1—O1i and Zn1i—O1 bonds of 2.007 (2) Å [symmetry code: (i) -x, y + 1, -z + 1]. Each ZnII ion is well described as having a distorted square-pyramidal configuration, as evidenced by the structural index parameter τ of 12.7% (Addison et al., 1984). The basal plane is occupied by one N atom from the hydrazone group and three O atoms (two bridging phenolate O atoms and one from the carbonyl group), with an r.m.s deviation from the mean plane of 0.0735 (2) Å. The apical position at each ZnII ion is occupied by the N atom from the heterocyclic morpholine ligand. Atom Zn1 deviates from the basal plane by a distance of 0.449 (1) Å towards the apical atom N3.
The distances in the coordination plane (Table 3) are comparable to those found in the similar compounds [Zn(C15H12N2O2)(C2H6OS)]2 (Ali et al., 2003) and [Zn(C15H12N2O3)(py)]2.2DMF (Huang et al., 2005). The Zn1···Zn1i separation within the binuclear unit is 3.144 (1) Å. The Zn—O(ph)—Zn bridging angle is 100.6 (1)°, which is in the range observed for five-coordinated ZnII complexes of related ligands with a coplanar Zn2(µ2-O)2 fragment. For the purpose of comparison, the dimensions of the Zn2(µ2-O)2 fragment in some binuclear zinc complexes of similar O,N,O-ligands are shown in Table 5. Structurally characterized mononuclear ZnII complexes containing neutral morpholine as a ligand are rare (Ivanov et al., 2001), and complex (II) is the first example of a binuclear ZnII complex with a coordinated heterocyclic morpholine ligand. In (II), the apical Zn—N(morpholine) bond distance is 2.072 (3) Å, similar to those found in the above mononuclear ZnII complexes ranging from 2.061 (6) to 2.106 (5) Å. The C8—O2 and C8═ N2 bond distances suggest that the L22- ligands also take the enolate form of the hydrazone functionality, similar to that of (I).
All the non-H atoms of each ligand are nearly coplanar, with a mean deviation of 0.0726 (3) Å from the mean plane. There exists one intramolecular O—H(phenol)···N(hydrazone) hydrogen bond in each ligand, forming a six-membered ring (H3C—O3—C10—C9—C8—N2) (Table 4). On the other hand, in contrast to the one-dimensional assemblies of the complexes [Zn(C15H12N2O2)(C2H6OS)]2 (Ali et al., 2003), [Zn(C15H12N2O3)(py)]2.2DMF (Huang et al., 2005) and [Zn(SHSH)(2-Me-py)]2 (Hu et al., 2007), and the discrete entity of the complex [Zn(SHSH)(py)]2.2DMF (Huang & Li, 2007), each complex molecule (II) is linked to four adjacent molecules by two pairs of intermolecular N—H(morpholine)···Oii(phenol) hydrogen bonds [symmetry code: (ii) x - 1/2, -y + 1/2 , -z + 1] to form an infinite two-dimensional supramolecular network (see Table 4 and Fig. 4). It is interesting that the packing in the unit cell is also stabilized by weak π–π interactions. The centroid Cg1 (C9–C14) is involved in a weak π–π interaction with Cg2iii [C8/N1/N2/Zn1/O2; symmetry code: (iii) -x + 1/2 , y - 1/2, z] between the interleaved ligands at a distance of 3.993 (1) Å (see Fig. 4).
The IR spectra of the free ligand H2L2 displays three bands attributed to C═O, C═N and N—H at 1637, 1619 and 3260 cm-1, respectively, indicative of its ketonic nature. In (II), these bands are absent, but a new C—O- stretch appears at 1420 cm-1 (Rao et al., 1999). In addition, a strong band found at 1600 cm-1 is attributed to the >C═N—N═C< group (Kuriakose et al., 2007). Such behavior is considered diagnostic for the enolization of the hydrazone residue. Out of the two ν(C—OH) bands observed at 1158 and 1231 cm-1 in the free ligand, the latter shows shift to 1259 cm-1, while the former remains unchanged in complex (II). This indicates that one of the phenolate O atoms has undergone deprotonation and coordinated to the metal center (Rao et al., 1999). Thus the Schiff ligand acts as a dianionic tridentate ligand in complex (II), corresponding to the X-ray structure determination. A band also appears at 3500 cm-1, which may be attributed to the hydrogen-bond interaction. Additionally, in complex (II), coordination of the N and O atoms to the Zn atom is observed by the presence of bands at 460–535 cm-1, assignable to ν(Zn—N) and ν(Zn—O) (Hu et al., 2007).