Download citation
Download citation
link to html
In the complex (morpholine)[2-hydroxy-N′-(5-nitro-2-oxidobenzyl­id­ene)­benzohydrazidato]nickel(II), [Ni(C14H9N3O5)(C4H9NO)], (I), the NiII center is in a square-planar N2O2 coordination geometry. The complex bis­[μ-2-hydroxy-N′-(2-oxidobenzyl­idene)benzohydrazidato]bis­[(morpholine)zinc(II)], [Zn2(C14H10N2O3)2(C4H9NO)2], (II), consists of a neutral centrosymmetric dimer with a coplanar Zn22-O)2 core. The two ZnII centers are bridged by phenolate O atoms. Each ZnII center exhibits a distorted square-pyramidal stereochemistry, in which the four in-plane donors come from the O,N,O′-tridentate 2-hydroxy-N′-(2-oxidobenzyl­idene)benzo­hydrazidate(2−) ligand and a symmetry-related phenol­ate O atom, and the axial position is coordinated to the N atom from the morpholine mol­ecule. There are intra­molecular phenol–hydrazide O—H...N hydrogen bonds present in both (I) and (II). In (I), square-planar nickel complexes are linked by inter­molecular morpholine–morpholine N—H...O hydrogen bonds, leading to a one-dimensional chain, while in (II) an infinite two-dimensional network is formed via inter­molecular hydrogen bonds between the coordinated morpholine NH groups and the uncoordinated phenolate O atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109011263/mx3009sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109011263/mx3009Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109011263/mx3009IIsup3.hkl
Contains datablock II

CCDC references: 735106; 735107

Comment top

In recent years, self-assemblies of coordination compounds to one-, two- and three-dimensional supramolecules have been of much interest (Bai et al., 2006; Batten & Robson, 1998; Padhi et al., 2008; Rayati et al., 2008). The general strategies used for self-assemblies into such extended supramolecular network structures are the metal ion's preference for different coordination geometry, use of suitable bridging bidentate ligands such as pyrazine (Warda, 1998b) and dioxane (Warda, 1998a), and weak intermolecular interactions such as hydrogen bonding and ππ interactions (Bauer & Weber, 2008; Mukhopadhyay et al., 2003; Padhi et al., 2008). Aroylhydrazones have been extensively investigated by chemists in the synthesis of coordination polymers owing to their inherent coordination and hydrogen-bonding donor/acceptor functionalities, as well as their biological activities (Rayati et al., 2008; Dutta et al., 1995; Lian et al., 2008). In the following account, we report two mixed-ligand bivalent nickel/zinc complexes, [Ni(L1)(C4H9NO)], (I) and [Zn(L2)(C4H9NO)]2, (II). The common ligand in both complexes is the tridentate aroylhydrazone ligand, N-5-nitrosalicylaldehyde-N'-salicyloylhydrazone (H2L1) or N-salicylaldehyde-N'-salicyloylhydrazone (H2L2). Neutral N-donor morpholine has been used as the ancillary ligand. The self-assembly of both complex molecules via intermolecular hydrogen bonds involving the heterocyclic morpholine NH group has been demonstrated. As far as we know, complex (II) is the first example of a dinuclear zinc hydrazone complex with morpholine as the ancillary ligand; (II) exhibits an infinite two-dimensional supramolecular network structure.

As shown in Fig. 1, in (I), the tridentate L12- ligand coordinates the NiII ion via the phenolate O1, carbonyl O4 and hydrazone N2 atoms, forming one five- and one six-membered chelating ring. The fourth site is occupied by atom N4 of the heterocycle to complete a square-planar N2O2 geometry around the metal center. There is nearly no deviation of the metal center from the N2O2 square plane; atom Ni1 deviates from the basal plane by 0.0092 (8) Å. The N—N, NC, and C—O bond distances in the N—NC(O-)- fragment of L12- are consistent with the enolate form of the hydrazone functionalities (Chen, 2008; Lin et al., 2007; Lian et al., 2008). The Ni1—N2, Ni1—O1 and Ni1—O4 bond distances (Table 1) are normal, as observed in some similar square-planar NiII complexes with aroylhydrazone ligands (Chen, 2008; Lin et al., 2007; Lian et al., 2008). The Ni1—N4 bond length is comparable to the distance observed in the lone example of a tetracoordinated NiII complex (Lian et al., 2008) containing a monodentate neutral morpholine moiety.

Both the six-membered chelating ring [r.m.s deviation = 0.0332 (1) Å] and the five-membered chelating ring [r.m.s deviation = 0.0338 (8) Å] are close to planar, and the dihedral angle between them is 3.6 (1)°. The dihedral angle between the phenyl ring and the substituent –NO2 group is 4.1 (4)°. However, the dihedral angle between the two phenyl rings of the hydrazone ligand in complex (I) is 12.6 (1)°, indicating a slight twist of the whole ligand.

There exists a weak O5—H5B···N3 intramolecular contact (Table 2). In the crystal structure, the asymmetric units are linked by intermolecular N4—H4B···O6i interactions (symmetry code as in Table 2), forming a one-dimensional zigzag supramolecular network (Fig. 2). The Ni···Ni distance in this uniform arrangement is 8.935 (3) Å.

As shown in Fig. 3, the structure of (II) consists of a centrosymmetric binuclear entity with a coplanar Zn22-O)2 fragment. Phenolate O atoms bridge the ZnII ions, with Zn1—O1i and Zn1i—O1 bonds of 2.007 (2) Å [symmetry code: (i) -x, y + 1, -z + 1]. Each ZnII ion is well described as having a distorted square-pyramidal configuration, as evidenced by the structural index parameter τ of 12.7% (Addison et al., 1984). The basal plane is occupied by one N atom from the hydrazone group and three O atoms (two bridging phenolate O atoms and one from the carbonyl group), with an r.m.s deviation from the mean plane of 0.0735 (2) Å. The apical position at each ZnII ion is occupied by the N atom from the heterocyclic morpholine ligand. Atom Zn1 deviates from the basal plane by a distance of 0.449 (1) Å towards the apical atom N3.

The distances in the coordination plane (Table 3) are comparable to those found in the similar compounds [Zn(C15H12N2O2)(C2H6OS)]2 (Ali et al., 2003) and [Zn(C15H12N2O3)(py)]2.2DMF (Huang et al., 2005). The Zn1···Zn1i separation within the binuclear unit is 3.144 (1) Å. The Zn—O(ph)—Zn bridging angle is 100.6 (1)°, which is in the range observed for five-coordinated ZnII complexes of related ligands with a coplanar Zn22-O)2 fragment. For the purpose of comparison, the dimensions of the Zn22-O)2 fragment in some binuclear zinc complexes of similar O,N,O-ligands are shown in Table 5. Structurally characterized mononuclear ZnII complexes containing neutral morpholine as a ligand are rare (Ivanov et al., 2001), and complex (II) is the first example of a binuclear ZnII complex with a coordinated heterocyclic morpholine ligand. In (II), the apical Zn—N(morpholine) bond distance is 2.072 (3) Å, similar to those found in the above mononuclear ZnII complexes ranging from 2.061 (6) to 2.106 (5) Å. The C8—O2 and C8 N2 bond distances suggest that the L22- ligands also take the enolate form of the hydrazone functionality, similar to that of (I).

All the non-H atoms of each ligand are nearly coplanar, with a mean deviation of 0.0726 (3) Å from the mean plane. There exists one intramolecular O—H(phenol)···N(hydrazone) hydrogen bond in each ligand, forming a six-membered ring (H3C—O3—C10—C9—C8—N2) (Table 4). On the other hand, in contrast to the one-dimensional assemblies of the complexes [Zn(C15H12N2O2)(C2H6OS)]2 (Ali et al., 2003), [Zn(C15H12N2O3)(py)]2.2DMF (Huang et al., 2005) and [Zn(SHSH)(2-Me-py)]2 (Hu et al., 2007), and the discrete entity of the complex [Zn(SHSH)(py)]2.2DMF (Huang & Li, 2007), each complex molecule (II) is linked to four adjacent molecules by two pairs of intermolecular N—H(morpholine)···Oii(phenol) hydrogen bonds [symmetry code: (ii) x - 1/2, -y + 1/2 , -z + 1] to form an infinite two-dimensional supramolecular network (see Table 4 and Fig. 4). It is interesting that the packing in the unit cell is also stabilized by weak ππ interactions. The centroid Cg1 (C9–C14) is involved in a weak ππ interaction with Cg2iii [C8/N1/N2/Zn1/O2; symmetry code: (iii) -x + 1/2 , y - 1/2, z] between the interleaved ligands at a distance of 3.993 (1) Å (see Fig. 4).

The IR spectra of the free ligand H2L2 displays three bands attributed to CO, CN and N—H at 1637, 1619 and 3260 cm-1, respectively, indicative of its ketonic nature. In (II), these bands are absent, but a new C—O- stretch appears at 1420 cm-1 (Rao et al., 1999). In addition, a strong band found at 1600 cm-1 is attributed to the >CN—NC< group (Kuriakose et al., 2007). Such behavior is considered diagnostic for the enolization of the hydrazone residue. Out of the two ν(C—OH) bands observed at 1158 and 1231 cm-1 in the free ligand, the latter shows shift to 1259 cm-1, while the former remains unchanged in complex (II). This indicates that one of the phenolate O atoms has undergone deprotonation and coordinated to the metal center (Rao et al., 1999). Thus the Schiff ligand acts as a dianionic tridentate ligand in complex (II), corresponding to the X-ray structure determination. A band also appears at 3500 cm-1, which may be attributed to the hydrogen-bond interaction. Additionally, in complex (II), coordination of the N and O atoms to the Zn atom is observed by the presence of bands at 460–535 cm-1, assignable to ν(Zn—N) and ν(Zn—O) (Hu et al., 2007).

Related literature top

For related literature, see: Addison et al., (1984); Ali et al., (2003); Bai et al., (2006); Batten & Robson, (1998); Bauer & Weber, (2008); Chen, (2008); Dutta et al., (1995); Hu et al., (2007); Huang & Li, (2007); Huang et al., (2005); Ivanov et al., (2001); Kuriakose et al., (2007); Lian et al., (2008); Lin et al., (2007); Mukhopadhyay et al., (2003); Padhi et al., (2008); Rayati et al., (2008); Rao et al., (1999); Warda, (1998a); Warda, (1998b).

Experimental top

The Schiff base ligands H2L1 and H2L2 were prepared by following a procedure previously reported by Chen (2008).

H2L1 (0.2 mmol) and [Ni(OAc)2].4H2O (0.2 mmol) were dissolved in C2H5OH (15 ml). After stirring for 15 min, morpholine (1 ml) was added to the solution, which was then stirred for another 1 h and filtered. Red single crystals of complex (I) were obtained after 2 d. Analysis calculated for C18H18N4NiO6: C 48.58, H 4.08, N 12.59%; found: C 48.69, H 4.03, N 12.52%.

H2L2 (0.2 mmol) and [Zn(OAc)2].H2O (0.2 mmol) were dissolved in a mixture of DMF (5 ml) and C2H5OH (5 ml). After stirring for 15 min, morpholine (1 ml) was added to the mixed solution, which was then stirred for another 1 h and filtered. Yellow single crystals of complex (II) were obtained after one week. Analysis calculated for C36H38N6O8Zn2: C 53.16, H 4.71, N 10.33%; found: C 53.29, H 4.67, N 10.25%.

The molar conductance values of the two complexes measured in DMF solutions are 6.32 and 5.21 S cm2 mol-1, respectively, indicating that both are non-conducting in DMF solutions.

Refinement top

H atoms bonded to C atoms in (I) and (II) were positioned geometrically and refined using a riding model [C—H = 0.93—0.97 Å and Uiso(H) = 1.2Ueq(C)]. H atoms bonded to phenolate O and morpholine N atoms were located in a difference Fourier map and were refined with O—H and N—H distance restraints of 0.82 and 0.90 Å, respectively [please provide s.u. values], and with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N) [from data in CIF these appear to have been refined; please check].

Computing details top

For both compounds, data collection: TEXRAY (Molecular Structure Corporation, 1999); cell refinement: TEXRAY (Molecular Structure Corporation, 1999); data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97/2 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate hydrogen bonding. Only H atoms involved in hydrogen bonds have been included.
[Figure 2] Fig. 2. A packing diagram for (I), with hydrogen bonds shown as dashed lines. Only H atoms involved in hydrogen bonds have been included.
[Figure 3] Fig. 3. A view of (II), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate hydrogen bonding. Only H atoms involved in hydrogen bonds have been included. [Symmetry code: (i) -x, -y + 1, -z +1.]
[Figure 4] Fig. 4. A packing diagram for (II), with hydrogen bonds and ππ stacking interactions, with Cg···Cg distances of 3.991 (3) Å, shown as dashed lines. Only H atoms involved in hydrogen bonds have been included.
(I) (morpholine)[N'-(5-nitro-2-oxidobenzylidene)benzohydrazidato]nickel(II) top
Crystal data top
[Ni(C14H9N3O5)(C4H9NO)]F(000) = 1840
Mr = 445.07Dx = 1.624 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3196 reflections
a = 11.548 (4) Åθ = 3.0–27.5°
b = 8.479 (2) ŵ = 1.11 mm1
c = 37.184 (10) ÅT = 293 K
V = 3640.8 (19) Å3Block, red
Z = 80.45 × 0.28 × 0.15 mm
Data collection top
Rigaku R-AXIS RAPID imaging-plate
diffractometer
4139 independent reflections
Radiation source: fine-focus sealed tube3196 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(TEXRAY; Molecular Structure Corporation, 1999)
h = 1414
Tmin = 0.635, Tmax = 0.851k = 1010
32687 measured reflectionsl = 4848
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0378P)2 + 2.0267P]
where P = (Fo2 + 2Fc2)/3
4139 reflections(Δ/σ)max = 0.001
270 parametersΔρmax = 0.40 e Å3
2 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Ni(C14H9N3O5)(C4H9NO)]V = 3640.8 (19) Å3
Mr = 445.07Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.548 (4) ŵ = 1.11 mm1
b = 8.479 (2) ÅT = 293 K
c = 37.184 (10) Å0.45 × 0.28 × 0.15 mm
Data collection top
Rigaku R-AXIS RAPID imaging-plate
diffractometer
4139 independent reflections
Absorption correction: multi-scan
(TEXRAY; Molecular Structure Corporation, 1999)
3196 reflections with I > 2σ(I)
Tmin = 0.635, Tmax = 0.851Rint = 0.061
32687 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.40 e Å3
4139 reflectionsΔρmin = 0.37 e Å3
270 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.40946 (2)0.20813 (3)0.375534 (7)0.02781 (10)
O10.45421 (13)0.35169 (18)0.40947 (4)0.0361 (4)
O20.2384 (2)0.7523 (3)0.53215 (5)0.0725 (6)
O30.0854 (2)0.6383 (3)0.51299 (7)0.0840 (8)
O40.36297 (13)0.06861 (17)0.34033 (4)0.0325 (3)
O50.00510 (16)0.0741 (3)0.32098 (6)0.0628 (6)
H5B0.040 (3)0.111 (4)0.3384 (7)0.089 (13)*
O60.76874 (15)0.0470 (2)0.36348 (5)0.0470 (4)
N10.1889 (2)0.6649 (3)0.51118 (6)0.0501 (6)
N20.25364 (15)0.2368 (2)0.38219 (5)0.0285 (4)
N30.18373 (15)0.1513 (2)0.35867 (5)0.0322 (4)
N40.57251 (15)0.1616 (2)0.36836 (5)0.0300 (4)
H4B0.607 (2)0.2566 (17)0.3671 (7)0.038 (7)*
C10.38672 (19)0.4294 (3)0.43130 (6)0.0325 (5)
C20.26355 (19)0.4145 (2)0.43204 (6)0.0311 (5)
C30.2000 (2)0.4945 (3)0.45845 (6)0.0358 (5)
H3A0.11990.48380.45940.043*
C40.2555 (2)0.5881 (3)0.48288 (6)0.0374 (5)
C50.3747 (2)0.6118 (3)0.48147 (6)0.0406 (6)
H5A0.41050.67950.49770.049*
C60.4387 (2)0.5346 (3)0.45599 (6)0.0393 (5)
H6A0.51820.55180.45490.047*
C70.20267 (18)0.3205 (2)0.40646 (6)0.0317 (5)
H7A0.12220.31940.40730.038*
C80.25099 (18)0.0682 (2)0.33735 (6)0.0298 (5)
C90.19681 (19)0.0251 (3)0.30838 (6)0.0326 (5)
C100.0785 (2)0.0151 (3)0.30131 (7)0.0420 (6)
C110.0325 (2)0.0976 (4)0.27229 (7)0.0546 (7)
H11A0.04620.09010.26730.066*
C120.1019 (3)0.1896 (3)0.25107 (8)0.0559 (8)
H12A0.07000.24330.23160.067*
C130.2191 (3)0.2035 (3)0.25829 (7)0.0488 (6)
H13A0.26570.26830.24420.059*
C140.2658 (2)0.1201 (3)0.28656 (6)0.0387 (5)
H14A0.34470.12730.29120.046*
C150.6041 (2)0.0758 (3)0.33509 (6)0.0426 (6)
H15A0.58110.13790.31440.051*
H15B0.56210.02330.33430.051*
C160.7324 (2)0.0430 (3)0.33309 (7)0.0459 (6)
H16A0.74960.01470.31120.055*
H16B0.77460.14180.33240.055*
C170.7479 (2)0.0409 (3)0.39552 (7)0.0470 (6)
H17B0.79060.13930.39460.056*
H17C0.77510.01860.41610.056*
C180.6201 (2)0.0753 (3)0.39979 (6)0.0408 (6)
H18B0.57840.02320.40270.049*
H18C0.60820.13770.42130.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01951 (14)0.02964 (15)0.03427 (16)0.00021 (10)0.00105 (11)0.00023 (12)
O10.0247 (8)0.0391 (8)0.0444 (9)0.0014 (7)0.0007 (7)0.0085 (8)
O20.0823 (16)0.0827 (15)0.0526 (12)0.0030 (13)0.0024 (12)0.0307 (12)
O30.0569 (15)0.0984 (18)0.0968 (18)0.0021 (13)0.0255 (13)0.0436 (16)
O40.0226 (7)0.0359 (8)0.0391 (8)0.0008 (6)0.0006 (6)0.0021 (7)
O50.0268 (10)0.1034 (17)0.0583 (12)0.0033 (10)0.0089 (9)0.0137 (13)
O60.0389 (10)0.0472 (10)0.0550 (10)0.0160 (8)0.0024 (8)0.0055 (9)
N10.0560 (15)0.0475 (13)0.0468 (13)0.0104 (11)0.0071 (11)0.0031 (11)
N20.0218 (9)0.0301 (9)0.0335 (9)0.0000 (7)0.0020 (7)0.0058 (8)
N30.0241 (9)0.0386 (10)0.0339 (10)0.0026 (8)0.0037 (7)0.0019 (9)
N40.0223 (9)0.0301 (9)0.0377 (10)0.0002 (7)0.0006 (7)0.0014 (8)
C10.0318 (12)0.0305 (11)0.0352 (12)0.0030 (9)0.0022 (9)0.0029 (10)
C20.0303 (11)0.0295 (10)0.0335 (11)0.0020 (9)0.0002 (9)0.0066 (10)
C30.0325 (12)0.0325 (11)0.0424 (13)0.0056 (9)0.0029 (10)0.0058 (11)
C40.0468 (14)0.0319 (11)0.0334 (11)0.0095 (10)0.0030 (10)0.0024 (10)
C50.0460 (14)0.0353 (12)0.0404 (13)0.0039 (10)0.0096 (11)0.0021 (11)
C60.0309 (12)0.0424 (13)0.0445 (13)0.0028 (10)0.0046 (10)0.0009 (12)
C70.0239 (11)0.0328 (11)0.0384 (12)0.0030 (8)0.0010 (9)0.0080 (10)
C80.0251 (11)0.0307 (11)0.0338 (11)0.0034 (8)0.0017 (9)0.0086 (10)
C90.0314 (12)0.0343 (12)0.0320 (11)0.0087 (9)0.0037 (9)0.0078 (10)
C100.0321 (13)0.0546 (15)0.0393 (12)0.0071 (11)0.0053 (10)0.0084 (12)
C110.0419 (16)0.0708 (19)0.0512 (15)0.0153 (14)0.0167 (12)0.0031 (15)
C120.070 (2)0.0556 (17)0.0426 (14)0.0194 (15)0.0164 (13)0.0015 (14)
C130.0613 (18)0.0448 (14)0.0404 (14)0.0057 (13)0.0030 (12)0.0002 (13)
C140.0404 (13)0.0376 (13)0.0383 (12)0.0044 (10)0.0025 (10)0.0053 (11)
C150.0330 (13)0.0590 (16)0.0358 (12)0.0082 (11)0.0014 (10)0.0044 (12)
C160.0340 (13)0.0595 (16)0.0440 (13)0.0111 (12)0.0031 (11)0.0042 (13)
C170.0357 (13)0.0585 (16)0.0468 (14)0.0169 (11)0.0076 (11)0.0017 (13)
C180.0347 (13)0.0506 (14)0.0371 (12)0.0081 (11)0.0023 (10)0.0009 (12)
Geometric parameters (Å, º) top
Ni1—O11.8280 (16)C5—C61.368 (3)
Ni1—N21.8325 (19)C5—H5A0.9300
Ni1—O41.8442 (15)C6—H6A0.9300
Ni1—N41.9422 (19)C7—H7A0.9300
O1—C11.304 (3)C8—C91.475 (3)
O2—N11.219 (3)C9—C141.393 (3)
O3—N11.218 (3)C9—C101.394 (3)
O4—C81.298 (3)C10—C111.391 (4)
O5—C101.351 (3)C11—C121.369 (4)
O5—H5B0.822 (18)C11—H11A0.9300
O6—C171.426 (3)C12—C131.385 (4)
O6—C161.427 (3)C12—H12A0.9300
N1—C41.457 (3)C13—C141.377 (3)
N2—C71.290 (3)C13—H13A0.9300
N2—N31.394 (2)C14—H14A0.9300
N3—C81.315 (3)C15—C161.510 (3)
N4—C151.481 (3)C15—H15A0.9700
N4—C181.484 (3)C15—H15B0.9700
N4—H4B0.900 (10)C16—H16A0.9700
C1—C61.414 (3)C16—H16B0.9700
C1—C21.428 (3)C17—C181.513 (3)
C2—C31.401 (3)C17—H17B0.9700
C2—C71.427 (3)C17—H17C0.9700
C3—C41.366 (3)C18—H18B0.9700
C3—H3A0.9300C18—H18C0.9700
C4—C51.392 (4)
O1—Ni1—N295.50 (7)O4—C8—C9119.10 (19)
O1—Ni1—O4178.15 (7)N3—C8—C9118.49 (19)
N2—Ni1—O483.99 (7)C14—C9—C10119.0 (2)
O1—Ni1—N487.47 (7)C14—C9—C8119.5 (2)
N2—Ni1—N4175.92 (8)C10—C9—C8121.4 (2)
O4—Ni1—N493.13 (7)O5—C10—C11117.5 (2)
C1—O1—Ni1126.66 (14)O5—C10—C9123.1 (2)
C8—O4—Ni1110.64 (13)C11—C10—C9119.3 (3)
C10—O5—H5B110 (3)C12—C11—C10120.7 (3)
C17—O6—C16109.43 (18)C12—C11—H11A119.7
O3—N1—O2122.5 (2)C10—C11—H11A119.7
O3—N1—C4118.4 (2)C11—C12—C13120.6 (3)
O2—N1—C4119.1 (2)C11—C12—H12A119.7
C7—N2—N3117.43 (18)C13—C12—H12A119.7
C7—N2—Ni1128.00 (15)C14—C13—C12119.1 (3)
N3—N2—Ni1114.51 (13)C14—C13—H13A120.4
C8—N3—N2108.36 (17)C12—C13—H13A120.4
C15—N4—C18108.92 (18)C13—C14—C9121.2 (2)
C15—N4—Ni1116.94 (14)C13—C14—H14A119.4
C18—N4—Ni1110.54 (14)C9—C14—H14A119.4
C15—N4—H4B106.8 (16)N4—C15—C16111.93 (19)
C18—N4—H4B108.5 (16)N4—C15—H15A109.2
Ni1—N4—H4B104.7 (16)C16—C15—H15A109.2
O1—C1—C6118.0 (2)N4—C15—H15B109.2
O1—C1—C2124.3 (2)C16—C15—H15B109.2
C6—C1—C2117.8 (2)H15A—C15—H15B107.9
C3—C2—C7118.7 (2)O6—C16—C15110.4 (2)
C3—C2—C1119.5 (2)O6—C16—H16A109.6
C7—C2—C1121.8 (2)C15—C16—H16A109.6
C4—C3—C2120.1 (2)O6—C16—H16B109.6
C4—C3—H3A119.9C15—C16—H16B109.6
C2—C3—H3A119.9H16A—C16—H16B108.1
C3—C4—C5121.5 (2)O6—C17—C18110.7 (2)
C3—C4—N1119.5 (2)O6—C17—H17B109.5
C5—C4—N1119.0 (2)C18—C17—H17B109.5
C6—C5—C4119.4 (2)O6—C17—H17C109.5
C6—C5—H5A120.3C18—C17—H17C109.5
C4—C5—H5A120.3H17B—C17—H17C108.1
C5—C6—C1121.5 (2)N4—C18—C17111.9 (2)
C5—C6—H6A119.3N4—C18—H18B109.2
C1—C6—H6A119.3C17—C18—H18B109.2
N2—C7—C2123.3 (2)N4—C18—H18C109.2
N2—C7—H7A118.4C17—C18—H18C109.2
C2—C7—H7A118.4H18B—C18—H18C107.9
O4—C8—N3122.39 (19)
N2—Ni1—O1—C15.01 (18)N1—C4—C5—C6177.1 (2)
O4—Ni1—O1—C179 (2)C4—C5—C6—C10.9 (4)
N4—Ni1—O1—C1172.18 (18)O1—C1—C6—C5175.2 (2)
O1—Ni1—O4—C871 (2)C2—C1—C6—C54.5 (3)
N2—Ni1—O4—C82.93 (14)N3—N2—C7—C2179.49 (18)
N4—Ni1—O4—C8179.97 (14)Ni1—N2—C7—C23.4 (3)
O1—Ni1—N2—C76.66 (19)C3—C2—C7—N2176.7 (2)
O4—Ni1—N2—C7175.13 (19)C1—C2—C7—N23.4 (3)
N4—Ni1—N2—C7129.9 (10)Ni1—O4—C8—N33.7 (2)
O1—Ni1—N2—N3176.19 (13)Ni1—O4—C8—C9174.54 (14)
O4—Ni1—N2—N32.02 (13)N2—N3—C8—O42.0 (3)
N4—Ni1—N2—N347.2 (11)N2—N3—C8—C9176.18 (17)
C7—N2—N3—C8176.82 (18)O4—C8—C9—C144.8 (3)
Ni1—N2—N3—C80.6 (2)N3—C8—C9—C14176.88 (19)
O1—Ni1—N4—C15163.62 (17)O4—C8—C9—C10172.4 (2)
N2—Ni1—N4—C1559.6 (11)N3—C8—C9—C105.9 (3)
O4—Ni1—N4—C1514.62 (17)C14—C9—C10—O5179.9 (2)
O1—Ni1—N4—C1871.01 (15)C8—C9—C10—O52.7 (4)
N2—Ni1—N4—C1865.8 (11)C14—C9—C10—C111.3 (3)
O4—Ni1—N4—C18110.74 (15)C8—C9—C10—C11175.9 (2)
Ni1—O1—C1—C6179.38 (15)O5—C10—C11—C12179.6 (2)
Ni1—O1—C1—C20.3 (3)C9—C10—C11—C120.9 (4)
O1—C1—C2—C3175.1 (2)C10—C11—C12—C130.6 (4)
C6—C1—C2—C34.6 (3)C11—C12—C13—C141.7 (4)
O1—C1—C2—C75.1 (3)C12—C13—C14—C91.4 (4)
C6—C1—C2—C7175.26 (19)C10—C9—C14—C130.1 (3)
C7—C2—C3—C4178.7 (2)C8—C9—C14—C13177.1 (2)
C1—C2—C3—C41.2 (3)C18—N4—C15—C1652.3 (3)
C2—C3—C4—C52.6 (3)Ni1—N4—C15—C16178.49 (17)
C2—C3—C4—N1177.3 (2)C17—O6—C16—C1561.7 (3)
O3—N1—C4—C32.7 (4)N4—C15—C16—O658.3 (3)
O2—N1—C4—C3177.6 (2)C16—O6—C17—C1861.2 (3)
O3—N1—C4—C5177.2 (3)C15—N4—C18—C1751.7 (3)
O2—N1—C4—C52.5 (3)Ni1—N4—C18—C17178.51 (17)
C3—C4—C5—C62.8 (4)O6—C17—C18—N457.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···N30.82 (2)1.86 (3)2.578 (3)145 (4)
N4—H4B···O6i0.90 (1)2.20 (1)3.081 (3)166 (2)
Symmetry code: (i) x+3/2, y+1/2, z.
(II) bis[µ-N'-(5-nitro-2- oxidobenzylidene)benzohydrazidato]bis[(morpholine)zinc(II) top
Crystal data top
[Zn2(C14H10N2O3)2(C4H9NO)2]F(000) = 1680
Mr = 813.46Dx = 1.536 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2484 reflections
a = 17.004 (5) Åθ = 3.0–27.5°
b = 11.130 (4) ŵ = 1.43 mm1
c = 18.590 (5) ÅT = 293 K
V = 3518.3 (19) Å3Block, yellow
Z = 40.38 × 0.26 × 0.08 mm
Data collection top
Rigaku R-AXIS RAPID imaging-plate
diffractometer
3994 independent reflections
Radiation source: fine-focus sealed tube2484 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(TEXRAY; Molecular Structure Corporation, 1999)
h = 2122
Tmin = 0.614, Tmax = 0.895k = 1414
28663 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0706P)2 + 0.1235P]
where P = (Fo2 + 2Fc2)/3
3994 reflections(Δ/σ)max = 0.001
243 parametersΔρmax = 1.38 e Å3
2 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Zn2(C14H10N2O3)2(C4H9NO)2]V = 3518.3 (19) Å3
Mr = 813.46Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 17.004 (5) ŵ = 1.43 mm1
b = 11.130 (4) ÅT = 293 K
c = 18.590 (5) Å0.38 × 0.26 × 0.08 mm
Data collection top
Rigaku R-AXIS RAPID imaging-plate
diffractometer
3994 independent reflections
Absorption correction: multi-scan
(TEXRAY; Molecular Structure Corporation, 1999)
2484 reflections with I > 2σ(I)
Tmin = 0.614, Tmax = 0.895Rint = 0.087
28663 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0492 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 1.38 e Å3
3994 reflectionsΔρmin = 0.73 e Å3
243 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.05686 (2)0.38931 (4)0.50721 (2)0.03643 (16)
O10.04565 (12)0.5514 (2)0.45266 (13)0.0383 (6)
O20.10013 (13)0.2732 (2)0.58282 (14)0.0468 (6)
O30.34424 (15)0.2231 (3)0.57922 (16)0.0567 (8)
H3C0.316 (3)0.271 (5)0.557 (3)0.14 (3)*
O40.0506 (2)0.0904 (3)0.32068 (19)0.0833 (11)
N10.17589 (17)0.4112 (2)0.49636 (14)0.0366 (7)
N20.21994 (16)0.3268 (3)0.53453 (16)0.0392 (7)
N30.02004 (17)0.2728 (3)0.42704 (17)0.0429 (7)
H3B0.0318 (8)0.288 (3)0.4256 (19)0.050 (11)*
C10.0996 (2)0.6148 (3)0.41558 (18)0.0352 (8)
C20.18056 (19)0.5814 (3)0.41560 (18)0.0349 (8)
C30.2330 (2)0.6500 (3)0.3750 (2)0.0434 (9)
H3A0.28570.62790.37430.052*
C40.2098 (2)0.7494 (4)0.3360 (2)0.0495 (10)
H4A0.24580.79330.30910.059*
C50.1313 (2)0.7816 (3)0.3380 (2)0.0484 (10)
H5A0.11430.84890.31270.058*
C60.0783 (2)0.7159 (3)0.3767 (2)0.0453 (9)
H6A0.02590.73990.37700.054*
C70.21415 (19)0.4839 (3)0.45664 (19)0.0399 (8)
H7A0.26830.47320.45380.048*
C80.1742 (2)0.2627 (3)0.57800 (19)0.0370 (8)
C90.21523 (19)0.1711 (3)0.62187 (19)0.0389 (8)
C100.2968 (2)0.1542 (3)0.6201 (2)0.0419 (9)
C110.3311 (2)0.0635 (4)0.6608 (2)0.0518 (10)
H11A0.38530.05240.65930.062*
C120.2861 (3)0.0092 (4)0.7029 (2)0.0593 (11)
H12A0.30990.06960.72980.071*
C130.2048 (3)0.0058 (4)0.7062 (2)0.0631 (12)
H13A0.17410.04390.73500.076*
C140.1708 (2)0.0953 (3)0.6660 (2)0.0510 (10)
H14A0.11660.10580.66820.061*
C150.0351 (3)0.1447 (4)0.4451 (2)0.0626 (12)
H15A0.00650.12400.48850.075*
H15B0.09080.13400.45470.075*
C160.0108 (4)0.0614 (4)0.3855 (3)0.0871 (16)
H16A0.02280.02080.39900.104*
H16B0.04550.06740.37810.104*
C170.0310 (3)0.2096 (5)0.2995 (3)0.0777 (14)
H17A0.02530.21510.29150.093*
H17B0.05720.22840.25450.093*
C180.0549 (2)0.2996 (4)0.3557 (2)0.0556 (11)
H18A0.11180.29990.35990.067*
H18B0.03850.37910.34050.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0238 (2)0.0349 (3)0.0506 (3)0.00320 (16)0.00026 (16)0.00426 (18)
O10.0264 (12)0.0325 (13)0.0559 (15)0.0034 (10)0.0071 (10)0.0082 (11)
O20.0255 (13)0.0489 (16)0.0660 (17)0.0055 (11)0.0009 (11)0.0175 (13)
O30.0300 (15)0.069 (2)0.0707 (19)0.0120 (13)0.0021 (13)0.0165 (17)
O40.109 (3)0.062 (2)0.079 (2)0.0156 (19)0.011 (2)0.0190 (18)
N10.0278 (15)0.0367 (17)0.0452 (17)0.0044 (12)0.0034 (12)0.0048 (13)
N20.0269 (15)0.0401 (17)0.0506 (17)0.0031 (13)0.0046 (13)0.0087 (15)
N30.0312 (17)0.0371 (18)0.060 (2)0.0050 (13)0.0028 (14)0.0013 (15)
C10.0317 (19)0.0340 (19)0.0399 (19)0.0012 (15)0.0040 (14)0.0021 (16)
C20.0269 (18)0.034 (2)0.0436 (19)0.0005 (14)0.0028 (14)0.0012 (15)
C30.0241 (18)0.053 (2)0.053 (2)0.0016 (16)0.0024 (15)0.0053 (19)
C40.043 (2)0.050 (2)0.056 (2)0.0086 (19)0.0065 (18)0.002 (2)
C50.053 (2)0.038 (2)0.055 (2)0.0031 (17)0.0061 (18)0.0119 (18)
C60.035 (2)0.043 (2)0.057 (2)0.0058 (16)0.0084 (16)0.0089 (19)
C70.0250 (18)0.045 (2)0.050 (2)0.0007 (15)0.0009 (15)0.0032 (18)
C80.0311 (19)0.034 (2)0.046 (2)0.0018 (15)0.0052 (15)0.0029 (16)
C90.0329 (19)0.037 (2)0.047 (2)0.0058 (15)0.0093 (15)0.0024 (17)
C100.034 (2)0.042 (2)0.050 (2)0.0049 (16)0.0054 (16)0.0046 (18)
C110.043 (2)0.052 (2)0.061 (2)0.0131 (19)0.0139 (19)0.002 (2)
C120.063 (3)0.047 (3)0.069 (3)0.011 (2)0.017 (2)0.011 (2)
C130.059 (3)0.054 (3)0.077 (3)0.003 (2)0.013 (2)0.019 (2)
C140.041 (2)0.051 (3)0.061 (2)0.0001 (18)0.0069 (18)0.009 (2)
C150.087 (3)0.035 (2)0.066 (3)0.001 (2)0.009 (2)0.000 (2)
C160.117 (5)0.046 (3)0.098 (4)0.009 (3)0.016 (4)0.013 (3)
C170.096 (4)0.075 (4)0.062 (3)0.011 (3)0.006 (3)0.010 (3)
C180.056 (3)0.054 (3)0.058 (3)0.006 (2)0.002 (2)0.006 (2)
Geometric parameters (Å, º) top
Zn1—O1i2.007 (2)C4—H4A0.9300
Zn1—O22.046 (2)C5—C61.365 (5)
Zn1—N12.048 (3)C5—H5A0.9300
Zn1—N32.072 (3)C6—H6A0.9300
Zn1—O12.079 (2)C7—H7A0.9300
Zn1—Zn1i3.1437 (11)C8—C91.480 (5)
O1—C11.348 (4)C9—C141.399 (5)
O1—Zn1i2.007 (2)C9—C101.400 (5)
O2—C81.269 (4)C10—C111.391 (5)
O3—C101.348 (5)C11—C121.360 (6)
O3—H3C0.82 (3)C11—H11A0.9300
O4—C161.419 (6)C12—C131.395 (6)
O4—C171.424 (6)C12—H12A0.9300
N1—C71.274 (4)C13—C141.372 (5)
N1—N21.396 (4)C13—H13A0.9300
N2—C81.329 (4)C14—H14A0.9300
N3—C181.483 (5)C15—C161.503 (6)
N3—C151.487 (5)C15—H15A0.9700
N3—H3B0.899 (10)C15—H15B0.9700
C1—C61.385 (5)C16—H16A0.9700
C1—C21.425 (5)C16—H16B0.9700
C2—C31.395 (5)C17—C181.503 (6)
C2—C71.445 (5)C17—H17A0.9700
C3—C41.380 (5)C17—H17B0.9700
C3—H3A0.9300C18—H18A0.9700
C4—C51.383 (5)C18—H18B0.9700
O1i—Zn1—O2105.34 (10)N1—C7—C2125.5 (3)
O1i—Zn1—N1148.80 (11)N1—C7—H7A117.2
O2—Zn1—N177.73 (10)C2—C7—H7A117.2
O1i—Zn1—N3102.15 (11)O2—C8—N2125.1 (3)
O2—Zn1—N3101.97 (12)O2—C8—C9119.5 (3)
N1—Zn1—N3107.59 (11)N2—C8—C9115.4 (3)
O1i—Zn1—O179.42 (10)C14—C9—C10117.9 (3)
O2—Zn1—O1156.40 (10)C14—C9—C8119.0 (3)
N1—Zn1—O186.52 (10)C10—C9—C8123.1 (3)
N3—Zn1—O199.47 (11)O3—C10—C11118.0 (3)
O1i—Zn1—Zn1i40.54 (7)O3—C10—C9122.0 (3)
O2—Zn1—Zn1i140.78 (8)C11—C10—C9120.0 (4)
N1—Zn1—Zn1i120.41 (8)C12—C11—C10120.6 (4)
N3—Zn1—Zn1i104.08 (9)C12—C11—H11A119.7
O1—Zn1—Zn1i38.88 (6)C10—C11—H11A119.7
C1—O1—Zn1i127.6 (2)C11—C12—C13120.7 (4)
C1—O1—Zn1129.9 (2)C11—C12—H12A119.6
Zn1i—O1—Zn1100.58 (10)C13—C12—H12A119.6
C8—O2—Zn1111.5 (2)C14—C13—C12118.7 (4)
C10—O3—H3C108 (5)C14—C13—H13A120.6
C16—O4—C17109.6 (4)C12—C13—H13A120.6
C7—N1—N2116.6 (3)C13—C14—C9122.0 (4)
C7—N1—Zn1129.6 (2)C13—C14—H14A119.0
N2—N1—Zn1113.6 (2)C9—C14—H14A119.0
C8—N2—N1110.9 (3)N3—C15—C16112.2 (4)
C18—N3—C15109.0 (3)N3—C15—H15A109.2
C18—N3—Zn1113.4 (2)C16—C15—H15A109.2
C15—N3—Zn1112.7 (2)N3—C15—H15B109.2
C18—N3—H3B109 (2)C16—C15—H15B109.2
C15—N3—H3B111 (2)H15A—C15—H15B107.9
Zn1—N3—H3B101 (2)O4—C16—C15110.7 (4)
O1—C1—C6120.9 (3)O4—C16—H16A109.5
O1—C1—C2121.4 (3)C15—C16—H16A109.5
C6—C1—C2117.7 (3)O4—C16—H16B109.5
C3—C2—C1118.3 (3)C15—C16—H16B109.5
C3—C2—C7116.4 (3)H16A—C16—H16B108.1
C1—C2—C7125.3 (3)O4—C17—C18111.4 (4)
C4—C3—C2122.7 (3)O4—C17—H17A109.3
C4—C3—H3A118.7C18—C17—H17A109.3
C2—C3—H3A118.7O4—C17—H17B109.3
C3—C4—C5118.0 (4)C18—C17—H17B109.3
C3—C4—H4A121.0H17A—C17—H17B108.0
C5—C4—H4A121.0N3—C18—C17112.3 (4)
C6—C5—C4120.8 (4)N3—C18—H18A109.1
C6—C5—H5A119.6C17—C18—H18A109.1
C4—C5—H5A119.6N3—C18—H18B109.1
C5—C6—C1122.5 (3)C17—C18—H18B109.1
C5—C6—H6A118.8H18A—C18—H18B107.9
C1—C6—H6A118.8
O1i—Zn1—O1—C1164.7 (3)C6—C1—C2—C31.8 (5)
O2—Zn1—O1—C160.6 (4)O1—C1—C2—C73.5 (5)
N1—Zn1—O1—C112.7 (3)C6—C1—C2—C7175.8 (3)
N3—Zn1—O1—C194.6 (3)C1—C2—C3—C41.0 (5)
Zn1i—Zn1—O1—C1164.7 (3)C7—C2—C3—C4176.8 (3)
O1i—Zn1—O1—Zn1i0.0C2—C3—C4—C50.4 (6)
O2—Zn1—O1—Zn1i104.2 (2)C3—C4—C5—C60.9 (6)
N1—Zn1—O1—Zn1i152.02 (12)C4—C5—C6—C10.0 (6)
N3—Zn1—O1—Zn1i100.72 (12)O1—C1—C6—C5179.4 (3)
O1i—Zn1—O2—C8156.4 (2)C2—C1—C6—C51.4 (5)
N1—Zn1—O2—C88.4 (2)N2—N1—C7—C2176.8 (3)
N3—Zn1—O2—C897.3 (2)Zn1—N1—C7—C28.8 (5)
O1—Zn1—O2—C857.6 (4)C3—C2—C7—N1179.5 (3)
Zn1i—Zn1—O2—C8131.9 (2)C1—C2—C7—N12.8 (6)
O1i—Zn1—N1—C776.3 (4)Zn1—O2—C8—N26.1 (4)
O2—Zn1—N1—C7175.7 (3)Zn1—O2—C8—C9172.3 (2)
N3—Zn1—N1—C785.5 (3)N1—N2—C8—O22.3 (5)
O1—Zn1—N1—C713.4 (3)N1—N2—C8—C9179.3 (3)
Zn1i—Zn1—N1—C733.3 (3)O2—C8—C9—C142.1 (5)
O1i—Zn1—N1—N2109.2 (3)N2—C8—C9—C14176.4 (3)
O2—Zn1—N1—N29.8 (2)O2—C8—C9—C10179.6 (3)
N3—Zn1—N1—N289.1 (2)N2—C8—C9—C101.9 (5)
O1—Zn1—N1—N2172.1 (2)C14—C9—C10—O3179.9 (3)
Zn1i—Zn1—N1—N2152.14 (18)C8—C9—C10—O31.8 (6)
C7—N1—N2—C8175.1 (3)C14—C9—C10—C110.6 (5)
Zn1—N1—N2—C89.6 (3)C8—C9—C10—C11177.7 (3)
O1i—Zn1—N3—C18126.2 (2)O3—C10—C11—C12179.7 (4)
O2—Zn1—N3—C18125.0 (2)C9—C10—C11—C120.3 (6)
N1—Zn1—N3—C1844.2 (3)C10—C11—C12—C130.1 (6)
O1—Zn1—N3—C1845.1 (3)C11—C12—C13—C140.1 (7)
Zn1i—Zn1—N3—C1884.6 (2)C12—C13—C14—C90.3 (6)
O1i—Zn1—N3—C15109.4 (3)C10—C9—C14—C130.7 (6)
O2—Zn1—N3—C150.6 (3)C8—C9—C14—C13177.7 (4)
N1—Zn1—N3—C1580.1 (3)C18—N3—C15—C1651.3 (5)
O1—Zn1—N3—C15169.5 (3)Zn1—N3—C15—C16178.0 (3)
Zn1i—Zn1—N3—C15151.1 (2)C17—O4—C16—C1561.1 (6)
Zn1i—O1—C1—C625.6 (5)N3—C15—C16—O457.8 (6)
Zn1—O1—C1—C6173.5 (2)C16—O4—C17—C1860.5 (6)
Zn1i—O1—C1—C2153.6 (2)C15—N3—C18—C1750.4 (5)
Zn1—O1—C1—C27.3 (5)Zn1—N3—C18—C17176.7 (3)
O1—C1—C2—C3179.0 (3)O4—C17—C18—N356.2 (5)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O3ii0.90 (1)2.11 (1)2.992 (4)165 (3)
O3—H3C···N20.82 (3)1.80 (4)2.547 (4)149 (6)
Symmetry code: (ii) x1/2, y+1/2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Ni(C14H9N3O5)(C4H9NO)][Zn2(C14H10N2O3)2(C4H9NO)2]
Mr445.07813.46
Crystal system, space groupOrthorhombic, PbcaOrthorhombic, Pbca
Temperature (K)293293
a, b, c (Å)11.548 (4), 8.479 (2), 37.184 (10)17.004 (5), 11.130 (4), 18.590 (5)
V3)3640.8 (19)3518.3 (19)
Z84
Radiation typeMo KαMo Kα
µ (mm1)1.111.43
Crystal size (mm)0.45 × 0.28 × 0.150.38 × 0.26 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID imaging-plate
diffractometer
Rigaku R-AXIS RAPID imaging-plate
diffractometer
Absorption correctionMulti-scan
(TEXRAY; Molecular Structure Corporation, 1999)
Multi-scan
(TEXRAY; Molecular Structure Corporation, 1999)
Tmin, Tmax0.635, 0.8510.614, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
32687, 4139, 3196 28663, 3994, 2484
Rint0.0610.087
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.088, 1.03 0.049, 0.138, 1.07
No. of reflections41393994
No. of parameters270243
No. of restraints22
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.371.38, 0.73

Computer programs: TEXRAY (Molecular Structure Corporation, 1999), TEXSAN (Molecular Structure Corporation, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEX (McArdle, 1995), SHELXL97/2 (Sheldrick, 2008).

Selected geometric parameters (Å, º) for (I) top
Ni1—O11.8280 (16)O3—N11.218 (3)
Ni1—N21.8325 (19)O4—C81.298 (3)
Ni1—O41.8442 (15)N2—C71.290 (3)
Ni1—N41.9422 (19)N2—N31.394 (2)
O1—C11.304 (3)N3—C81.315 (3)
O2—N11.219 (3)
O1—Ni1—N295.50 (7)O1—Ni1—N487.47 (7)
O1—Ni1—O4178.15 (7)N2—Ni1—N4175.92 (8)
N2—Ni1—O483.99 (7)O4—Ni1—N493.13 (7)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···N30.822 (18)1.86 (3)2.578 (3)145 (4)
N4—H4B···O6i0.900 (10)2.202 (11)3.081 (3)166 (2)
Symmetry code: (i) x+3/2, y+1/2, z.
Selected geometric parameters (Å, º) for (II) top
Zn1—O1i2.007 (2)O2—C81.269 (4)
Zn1—O22.046 (2)N1—C71.274 (4)
Zn1—N12.048 (3)N1—N21.396 (4)
Zn1—N32.072 (3)N2—C81.329 (4)
Zn1—O12.079 (2)
O1i—Zn1—O2105.34 (10)N1—Zn1—N3107.59 (11)
O1i—Zn1—N1148.80 (11)O1i—Zn1—O179.42 (10)
O2—Zn1—N177.73 (10)O2—Zn1—O1156.40 (10)
O1i—Zn1—N3102.15 (11)N1—Zn1—O186.52 (10)
O2—Zn1—N3101.97 (12)N3—Zn1—O199.47 (11)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O3ii0.899 (10)2.113 (14)2.992 (4)165 (3)
O3—H3C···N20.82 (3)1.80 (4)2.547 (4)149 (6)
Symmetry code: (ii) x1/2, y+1/2, z+1.
Table 5. Comparative geometric parameters (Å, °) for the Zn22-O)2 fragment in zinc complexes top
ComplexZn—OiZn—OZn···ZniZn—O—Zni
(II)a2.007 (2)2.079 (2)3.144 (1)100.6 (1)
[Zn(C15H12N2O2)(C2H6OS)]2b2.004 (1)2.068 (2)3.137 (1)100.76 (5)
[Zn(C15H12N2O3)(py)]2.2DMFc2.022 (2)2.023 (2)3.141 (2)101.9 (1)
[Zn(SHSH)(2-Me-py)]2d1.991 (3)2.118 (1)3.161 (2)100.57 (6)
[Zn(SHSH)(py)]2.2DMFe1.998 (2)2.080 (2)3.149 (2)100.67 (7)
References: (a) this work; (b) Ali et al. (2003); (c) Huang et al. (2005); (d) Hu et al. (2007); (e) Huang & Li (2007).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds