Download citation
Download citation
link to html
Crystals of a new antimony(III) phthalocyanine complex with the formula [Sb(C32H16N8)]4(Sb4I16), or (SbPc)_4^+·[Sb4I16]4-, where Pc is phthalocyaninate, have been obtained by the reaction of pure powdered antimony with phthalo­nitrile under a stream of iodine vapour. The crystals are built up from separate but interacting (SbPc)+ cations and centrosymmetric [Sb4I16]4- anions. Each Sb atom of two independent (SbPc)+ units is bonded to the four iso­indole N atoms of the phthalocyaninate(2-) macrocycle and lies 1.0 Å out of the plane defined by four iso­indole N atoms. The anionic part of the complex consists of four SbI6 distorted octahedra joined together into a centrosymmetric [Sb4I16]4- anion. The arrangement of oppositely charged moieties in the crystal is mainly determined by ionic attraction and by a set of distinct donor-acceptor interactions between (SbPc)+ and [Sb4I16]4- ions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101017590/na1539sup1.cif
Contains datablocks sbpci, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101017590/na1539Isup2.hkl
Contains datablock I

CCDC reference: 180133

Comment top

This study is a part of our investigation on syntheses and characterization of iodine-doped metallophthalocyanines. Earlier, we reported that besides the well characterized iodine-doped metallophthalocyanines and diphthalocyanines, in which the iodine-doped atoms form chains of disordered symmetrical triiodide ions (Janczak et al., 1998; Janczak, Kubiak & Jezierski, 1999; Janczak, Kubiak, Svoboda et al., 2000; Janczak & Kubiak, 1999a; Janczak & Idemori, 2001a) and metallophthalocyanines in which the iodine atoms are directly joined to the central metal ion yielding mono- or diiodometallophthalocyanine complexes (Janczak & Kubiak, 1999b, 1999c; Janczak & Idemori, 2001b) as well as the iodine atoms can form a neutral I2 molecule which is a bridge for dimerization of monoiodometallophthalocyanines (Janczak, Kubiak & Hahn, 1999) or for developing a polymeric supramolecular structure of diiodometallophthalocyanines (Janczak, Razik & Kubiak, 1999) are formed. Quite recently we reported that depending on the condition of the synthesis the iodine-doped atoms could form ordered but unsymmetrical triiodide ions (Janczak & Kubiak, 1999 d; Kubiak et al., 1999; Janczak & Idemori, 2001c). This antimony(III) phthalocyanine–antimony(III) iodine complex, [(SbPc)4(Sb4I16)], is isostructural with the bismuth(III) analogue, [(BiPc)4(Bi4I16)], (Kubiak & Ejsmont, 1999) and to our knowledge it is the second structurally characterized phthalocyaninato compound which contain the same metal in both ionic part of the complex, i.e. in (SbPc)+ as well as in [Sb4I16]4-.

The crystal of the title compound is built up from separate but interacting units of (SbPc)+and (Sb4I16)4- (Fig.1). The two crystallographically independent (SbPc)+ cation-units have essentially the same geometry. In both SbPc cation moieties each of the phthalocyaninato(2-) macrocycle shows saucer-shaped form, as a result of the interaction of the central antimony(III) ion with the oppositely charged (Sb4I16)4- unit. The greatest deviation from the planes defined by four isoindole nitrogen atoms of the Pc macrocycles is observed for the outermost carbon atoms of the phenyl rings C26—C31 (0.157 (3) - 0.464 (3) Å) and C34—C39 [0.286 (3)–0.634 (3) Å] for Sb1Pc and Sb2Pc units, respectively. The positively charged Sb1 and Sb2 atoms are significantly displaced from the N4-isoindole planes towards to the iodine atoms of the (Sb4I16)4- counter ion. The displacements of Sb1 and Sb2 are almost equal, 0.999 (3) Å for Sb1 and 1.010 (3) Å for Sb2. This is quite reasonable because the ionic radius of antimony(III) [about 0.90 Å] is too large to be fitted inside the cavity of the phthalocyaninato(2-) macrocycle (Shannon, 1976), as well as due to the ionic attraction between the positively charged antimony(III) atoms with iodine atoms of (Sb4I16)4-. The influence of the interaction is clearly manifested in the Sb—Nisoindole coordination leading to the molecular symmetry of the Sb—N core close to Cs and not to C4v. A similar deviation of antimony(III) ion from the N4-isoindole plane has been observed in other iodine-doped antimony(III) monophthalocyaninato complexes (Kubiak & Razik, 1998; Kubiak et al., 1999). However, in diphthalocyaninato(2-) antimony(III) complexes, in which the antimony(III) is sandwiched between two phthalocyaninato macrocycles, the displacement of the antimony(III) of about 1.45 Å is mainly determined by the PcPc interaction of the SbPc2 units, for instance in (n-Bu4N)[Sb(III)Pc2].2THF and (PNP)2[Sb(III)Pc2]Br.2Et2O, which are the two sandwich type antimony(III) diphthalocyaninato(2-) complexes, that have been recently structurally characterized (Hückstädt et al., 2001). For a comparison the deviation of the bismuth(III) cation from the N4-isoindole plane in the isostructural bismuth(III) analogue complex is equal to 1.137 (7) Å (Kubiak & Ejsmont, 1999). The difference between the displacemnt of the antimony(III) and bismuth(III) cations from the N4-planes of the Pc macrorings is consistent with the difference between their ionic radii (Shannon, 1976).

The anionic part of the complex consists of four SbI6 deformed octahedra joined together into a centrosymmetric (Sb4I16)4- counter ion. The Sb—I bond lengths fall into two groups: shorter Sb—I bonds with the terminal iodine and longer with the bridging iodine. However in the (Sb4I16)4- anionic complex two different bridging iodine atoms exist. The I2 nd I3 atoms are bridging two antimony ions, while the I1 is a bridge for the three antimony ions. The distortion of the SbI6 polyhedron from the Oh symmetry is likely due to the lone electron pair on the antimony ion. Looking in more details on the differences between the Sb—I bond lengths as well as on the coordination geometry arround the antimony Sb3 and Sb4 atoms (and symmetrically equivalents), it is clear that they have different coordination. The Sb3 atom joins five iodine atoms with relatively short Sb—I bonds, the sixth Sb—-I bond length is relatively long. In the coordination sphere of the second antimony, Sb4, three short Sb—I bonds and three relatively long Sb—I bonds are observed. Concluding, it could be said that the (Sb4I16)4- counter ion is composed from two pair of symmetrically equivalent units: (SbI5)2- and SbI3. The antimony Sb3 atom in (SbI5)2- ion have distorted square pyramidal coordination, four iodine atoms in plane (I1, I2, I3 and I4) and one apical I5 atom. The relatively long Sb3—I1i bond in trans position to the apical iodine atom indicates the stereochemical effect of the electron lone pair. In the coordination sphere of Sb4 atom it is not clear in which direction the electron lone pair points, since three relative long Sb—I bond lengths are very similar. However, the mutual orientation of both (SbI5)2- and SbI3 units related by inversion center in the crystal leads to the formation of a [Sb4I16]4- counter ion. A similar pattern of short and long M—I bond lengths is observed in the [Bi4I16]4-ion of the bismuth(III) phthalocyaninato analogue complex, but no comment was made on this fact (Kubiak & Ejsmont, 1999).

In the unit cell (Fig. 2) there seems to be significant ionic attraction between the (SbPc)+ and (Sb4I16)4- counter ion. Each (Sb4I16)4- anion is surrounded by four (SbPc)+ units. The Sb1 and Sb2 atoms of the (SbPc)+ moieties interact with three iodine atoms of (Sb4I16)4- (Sb1 with I4, I6 and I1, while Sb2 with I2, I4 and I5) since the Sb—I contacts are shorter than 4.35 Å from the antimony atoms, that value being the sum of the van der Waals radii of antimony and iodine (Pauling, 1960). The dihedral angle between mean planes through the Pc-macrocycle of (Sb1Pc)+ and (Sb2Pc)+ units is equal to 106.4°. The centrosymmetric [(SbPc)4(Sb4I16)] aggregates in the crystal form ππ interacted stacks in back-to-back manner of the Pc-macrocycle. The back-to-back distance in the stack of two neighbouring [(SbPc)4(Sb4I16)] molecules is shorter than 3.0 Å. This value indicates on the interaction and overlaping of the π-clouds of phthalocyaninato macrocycle. The ππ intermolecular interaction is a common feature in the field of phthalocyanine chemistry, since the phthalocyanine and its metal complexes tend to aggregate the molecules to each other due to the strong ππ interaction (Nevin et al., 1987; Terekhov et al., 1996; Isago et al., 1997, 1998).

Although the crystals of [(SbPc)4(Sb4I16)] are built up from the opposite charged (SbPc)+ and (Sb4I16)4- ions, the compound does not posses the characteristic properties of the ionic crystals. The solubility of this compound in the polar solvents as water, methanol, ethanol etc is insignificant and it is slightly soluble in pyridine, DMSO, THF and chloronaphthalene. As can be seen from the crystal structure architecture of [(SbPc)4(Sb4I16)] both hydrophilic parts of this complex in the crystal are surrounded by a hydrophobic peripheral phenyl rings of the Pc macrocycle.

Experimental top

The crystals of [(SbPc)4(Sb4I16)] were obtained by the direct reaction of the pure powdered arsenic with phthalonitrile (Kubiak & Janczak, 1993) under a stream of iodine vapours at 513 K.

The measurement has been performed on a KUMA KM-4 diffractometer equipped with a two-dimension area CCD detector. The ω-scan technique was used, the Δω = 0.75° for one image. The 960 images for six different runs covered about 95% of the Ewald sphere. The lattice parameters were calculated using 458 reflections obtained from 50 images for 10 runs with different orientations in reciprocal space and after data collection were refined on 10265 reflections.

Computing details top

Data collection: KUMA KM-4 CCD software (Kuma Diffraction, 1999); cell refinement: KUMA KM-4 CCD software (Kuma Diffraction, 1999); data reduction: KUMA KM-4 CCD software (Kuma Diffraction, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure showing 50% probability displacement ellipsoids (a) two independent SbPc+ units and (b) [Sb4I16]4- counter ion [symmetry code: (i) 1 - x, 1 - y, -z]. H atoms are shown as spheres of an arbitrary radius.
[Figure 2] Fig. 2. Molecular packing in the unit cell showing the Sb···I interaction (dashed lines).
Tetrakis(phthalocyaninato(2-)antimony(III) hexadecaiodotetraantimony(III) top
Crystal data top
[(C32H16N8)Sb]4[Sb4I16]F(000) = 2312
Mr = 5054.62Dx = 2.421 Mg m3
Dm = 2.42 Mg m3
Dm measured by floatation
Triclinic, P1Melting point: decomposition K
a = 15.963 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 16.051 (3) ÅCell parameters from 10265 reflections
c = 16.552 (3) Åθ = 3–27°
α = 88.59 (3)°µ = 5.16 mm1
β = 62.54 (3)°T = 293 K
γ = 69.16 (3)°Parallelepiped, dark-violet
V = 3466.9 (11) Å30.20 × 0.12 × 0.08 mm
Z = 1
Data collection top
KUMA KM-4 with two dimensional area CCD detector
diffractometer
14695 independent reflections
Radiation source: fine-focus sealed tube10265 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 1024x1024 with blocks 2x2 pixels mm-1θmax = 27.2°, θmin = 2.8°
ω–scanh = 2017
Absorption correction: analytical
face-indexed, SHELXTL (Sheldrick, 1990)
k = 2020
Tmin = 0.425, Tmax = 0.683l = 2121
29594 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0351P)2 + 0.0131P]
where P = (Fo2 + 2Fc2)/3
14695 reflections(Δ/σ)max = 0.002
829 parametersΔρmax = 1.21 e Å3
0 restraintsΔρmin = 1.17 e Å3
Crystal data top
[(C32H16N8)Sb]4[Sb4I16]γ = 69.16 (3)°
Mr = 5054.62V = 3466.9 (11) Å3
Triclinic, P1Z = 1
a = 15.963 (3) ÅMo Kα radiation
b = 16.051 (3) ŵ = 5.16 mm1
c = 16.552 (3) ÅT = 293 K
α = 88.59 (3)°0.20 × 0.12 × 0.08 mm
β = 62.54 (3)°
Data collection top
KUMA KM-4 with two dimensional area CCD detector
diffractometer
14695 independent reflections
Absorption correction: analytical
face-indexed, SHELXTL (Sheldrick, 1990)
10265 reflections with I > 2σ(I)
Tmin = 0.425, Tmax = 0.683Rint = 0.026
29594 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 1.21 e Å3
14695 reflectionsΔρmin = 1.17 e Å3
829 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.44173 (3)0.50667 (2)0.08872 (2)0.04754 (9)
I20.32763 (3)0.76097 (2)0.09585 (3)0.04782 (10)
I30.31639 (4)0.39256 (3)0.15588 (3)0.07056 (13)
I40.21661 (3)0.62902 (2)0.33004 (2)0.05142 (10)
I50.11982 (3)0.65177 (3)0.13332 (4)0.07356 (14)
I60.46698 (3)0.74273 (2)0.26448 (3)0.05999 (11)
I70.54873 (4)0.87614 (3)0.03333 (4)0.07912 (15)
I80.75696 (4)0.64200 (4)0.05513 (5)0.09866 (19)
Sb30.31258 (3)0.57793 (2)0.12772 (2)0.03965 (9)
Sb40.56431 (3)0.70030 (2)0.06838 (3)0.04799 (10)
Sb10.45956 (2)0.52091 (2)0.33145 (2)0.03776 (9)
N10.6171 (3)0.4845 (3)0.3025 (3)0.0460 (11)
N20.5977 (3)0.6162 (3)0.3904 (3)0.0495 (11)
N30.4381 (3)0.5932 (3)0.4545 (3)0.0424 (10)
N40.2614 (3)0.6145 (3)0.5614 (3)0.0452 (11)
N50.3452 (3)0.4804 (2)0.4442 (3)0.0377 (9)
N60.3667 (4)0.3458 (3)0.3611 (3)0.0485 (11)
N70.5225 (3)0.3741 (3)0.2900 (3)0.0462 (11)
N80.7015 (4)0.3462 (3)0.1901 (3)0.0546 (12)
C10.6992 (4)0.4179 (4)0.2290 (4)0.0550 (15)
C20.7880 (4)0.4396 (5)0.2012 (5)0.0654 (17)
C30.8881 (6)0.3976 (6)0.1289 (6)0.103 (3)
H30.90850.34430.09130.124*
C40.9538 (6)0.4373 (8)0.1159 (7)0.126 (4)
H41.02030.41110.06700.151*
C50.9269 (6)0.5162 (8)0.1725 (8)0.124 (4)
H50.97540.54060.16100.148*
C60.8279 (5)0.5584 (6)0.2459 (6)0.091 (2)
H60.80890.61060.28420.109*
C70.7587 (4)0.5191 (5)0.2594 (4)0.0647 (17)
C80.6509 (4)0.5456 (4)0.3222 (4)0.0499 (14)
C90.4985 (4)0.6376 (4)0.4519 (4)0.0434 (12)
C100.4409 (4)0.7132 (4)0.5260 (4)0.0465 (13)
C110.4647 (5)0.7810 (4)0.5542 (4)0.0534 (15)
H110.53030.78090.52350.064*
C120.3877 (5)0.8458 (4)0.6279 (4)0.0597 (16)
H120.40060.89290.64470.072*
C130.2904 (5)0.8443 (4)0.6792 (4)0.0589 (16)
H130.24110.88830.73090.071*
C140.2663 (5)0.7775 (4)0.6535 (4)0.0526 (14)
H140.20140.77630.68730.063*
C150.3417 (4)0.7131 (3)0.5765 (4)0.0429 (12)
C160.3421 (4)0.6367 (3)0.5300 (4)0.0416 (12)
C170.2642 (4)0.5418 (3)0.5208 (4)0.0396 (12)
C180.1776 (4)0.5154 (3)0.5557 (4)0.0467 (13)
C190.0790 (4)0.5542 (4)0.6316 (5)0.074 (2)
H190.05800.60610.67140.089*
C200.0151 (5)0.5098 (5)0.6432 (6)0.095 (3)
H200.05230.53480.69070.114*
C210.0461 (6)0.4316 (5)0.5884 (6)0.096 (3)
H210.00030.40380.60120.116*
C220.1427 (5)0.3926 (4)0.5152 (5)0.0713 (19)
H220.16310.33900.47810.086*
C230.2093 (4)0.4359 (4)0.4981 (4)0.0507 (14)
C240.3141 (4)0.4165 (3)0.4286 (4)0.0424 (12)
C250.4639 (4)0.3252 (3)0.2980 (4)0.0474 (13)
C260.5251 (5)0.2443 (3)0.2302 (4)0.0537 (15)
C270.5030 (5)0.1736 (4)0.2101 (4)0.0666 (18)
H270.43720.17410.24210.080*
C280.5814 (8)0.1034 (4)0.1416 (5)0.089 (3)
H280.56880.05520.12680.107*
C290.6805 (7)0.1032 (5)0.0933 (5)0.086 (3)
H290.73270.05400.04800.103*
C300.7025 (5)0.1730 (4)0.1109 (4)0.071 (2)
H300.76790.17320.07740.086*
C310.6232 (5)0.2440 (3)0.1809 (4)0.0530 (15)
C320.6204 (5)0.3269 (3)0.2193 (4)0.0480 (14)
Sb20.08550 (2)0.84664 (2)0.29813 (2)0.03758 (9)
N90.0008 (3)0.8539 (3)0.4495 (3)0.0418 (10)
N100.1174 (3)0.8741 (3)0.4958 (3)0.0441 (10)
N110.1461 (3)0.9241 (3)0.3472 (3)0.0408 (10)
N120.2069 (3)1.0012 (3)0.2163 (3)0.0450 (11)
N130.0685 (3)0.9636 (3)0.2273 (3)0.0423 (10)
N140.0674 (3)0.9640 (3)0.1953 (3)0.0478 (11)
N150.0750 (3)0.8892 (3)0.3263 (3)0.0414 (10)
N160.1394 (3)0.8176 (3)0.4606 (3)0.0460 (11)
C330.0790 (4)0.8250 (3)0.4916 (4)0.0396 (12)
C340.0898 (4)0.8028 (3)0.5799 (4)0.0402 (12)
C350.1584 (4)0.7731 (3)0.6519 (4)0.0494 (14)
H350.21130.76480.64800.059*
C360.1452 (5)0.7567 (4)0.7281 (4)0.0620 (17)
H360.18910.73620.77570.074*
C370.0671 (5)0.7703 (4)0.7353 (4)0.0609 (17)
H370.06030.75830.78770.073*
C380.0002 (4)0.8008 (3)0.6674 (4)0.0484 (14)
H380.05080.81070.67330.058*
C390.0117 (4)0.8164 (3)0.5886 (3)0.0430 (13)
C400.0422 (4)0.8497 (3)0.5075 (4)0.0452 (13)
C410.1645 (4)0.9088 (3)0.4209 (4)0.0412 (12)
C420.2399 (4)0.9433 (3)0.4123 (4)0.0531 (15)
C430.2854 (4)0.9430 (4)0.4660 (5)0.0570 (15)
H430.26650.91940.52060.068*
C440.3603 (5)0.9790 (4)0.4366 (5)0.0593 (16)
H440.39230.97950.47130.071*
C450.3866 (5)1.0142 (4)0.3546 (5)0.0672 (18)
H450.43621.03860.33680.081*
C460.3441 (4)1.0155 (4)0.2980 (5)0.0562 (16)
H460.36381.03880.24320.067*
C470.2680 (4)0.9784 (3)0.3306 (4)0.0455 (13)
C480.2061 (4)0.9688 (3)0.2910 (4)0.0441 (13)
C490.1404 (4)1.0024 (3)0.1902 (4)0.0398 (12)
C500.1252 (4)1.0540 (3)0.1214 (4)0.0430 (12)
C510.1741 (5)1.1067 (4)0.0671 (4)0.0543 (15)
H510.22921.11210.06920.065*
C520.1386 (5)1.1506 (4)0.0103 (4)0.0628 (17)
H520.16931.18730.02580.075*
C530.0588 (5)1.1414 (4)0.0058 (4)0.0648 (18)
H530.03731.17170.03410.078*
C540.0091 (5)1.0888 (4)0.0584 (4)0.0639 (17)
H540.04561.08350.05530.077*
C550.0451 (4)1.0439 (3)0.1165 (3)0.0429 (12)
C560.0095 (4)0.9866 (3)0.1822 (4)0.0418 (12)
C570.1058 (4)0.9194 (3)0.2626 (4)0.0432 (13)
C580.1910 (4)0.8941 (3)0.2782 (4)0.0453 (13)
C590.2489 (5)0.9088 (4)0.2340 (4)0.0566 (15)
H590.23740.94140.18550.068*
C600.3245 (5)0.8740 (5)0.2633 (5)0.0712 (19)
H600.36380.88240.23400.085*
C610.3412 (5)0.8251 (5)0.3385 (5)0.074 (2)
H610.39040.80040.35680.089*
C620.2866 (5)0.8139 (4)0.3843 (4)0.0635 (17)
H620.29970.78370.43470.076*
C630.2102 (4)0.8488 (4)0.3537 (4)0.0460 (13)
C640.1385 (4)0.8496 (3)0.3844 (4)0.0423 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0546 (2)0.04202 (18)0.0429 (2)0.01792 (16)0.02194 (18)0.01002 (15)
I20.0411 (2)0.03921 (17)0.0586 (2)0.01824 (15)0.01892 (18)0.01487 (16)
I30.0798 (3)0.0481 (2)0.0678 (3)0.0346 (2)0.0166 (2)0.0189 (2)
I40.0397 (2)0.0562 (2)0.0433 (2)0.00805 (16)0.01647 (17)0.01290 (17)
I50.0574 (3)0.0805 (3)0.0984 (4)0.0294 (2)0.0476 (3)0.0093 (3)
I60.0696 (3)0.0444 (2)0.0645 (3)0.01706 (19)0.0349 (2)0.00688 (18)
I70.0756 (3)0.0481 (2)0.1133 (4)0.0355 (2)0.0377 (3)0.0260 (2)
I80.0435 (3)0.0903 (4)0.1557 (6)0.0254 (2)0.0438 (3)0.0210 (3)
Sb30.03525 (19)0.03459 (16)0.0422 (2)0.01349 (14)0.01344 (16)0.00644 (14)
Sb40.0358 (2)0.03883 (18)0.0621 (2)0.01751 (15)0.01591 (18)0.00777 (17)
Sb10.03278 (18)0.03495 (16)0.04061 (19)0.01089 (14)0.01567 (16)0.00776 (14)
N10.031 (2)0.056 (3)0.036 (2)0.012 (2)0.008 (2)0.003 (2)
N20.043 (3)0.065 (3)0.048 (3)0.028 (2)0.023 (2)0.015 (2)
N30.036 (2)0.045 (2)0.046 (3)0.022 (2)0.014 (2)0.008 (2)
N40.036 (2)0.042 (2)0.051 (3)0.0175 (19)0.015 (2)0.002 (2)
N50.035 (2)0.033 (2)0.038 (2)0.0112 (17)0.013 (2)0.0046 (18)
N60.056 (3)0.039 (2)0.047 (3)0.019 (2)0.023 (2)0.009 (2)
N70.047 (3)0.038 (2)0.040 (3)0.008 (2)0.016 (2)0.0007 (19)
N80.047 (3)0.047 (3)0.044 (3)0.006 (2)0.011 (2)0.006 (2)
C10.036 (3)0.066 (4)0.050 (4)0.008 (3)0.019 (3)0.022 (3)
C20.033 (3)0.077 (4)0.071 (4)0.016 (3)0.018 (3)0.017 (4)
C30.050 (5)0.107 (6)0.108 (7)0.022 (4)0.009 (5)0.001 (5)
C40.048 (5)0.146 (9)0.119 (8)0.033 (6)0.009 (5)0.008 (7)
C50.052 (5)0.151 (9)0.161 (10)0.058 (6)0.033 (6)0.034 (8)
C60.047 (4)0.120 (6)0.117 (7)0.047 (4)0.038 (5)0.034 (5)
C70.039 (3)0.088 (5)0.063 (4)0.030 (3)0.018 (3)0.031 (4)
C80.035 (3)0.063 (4)0.055 (4)0.020 (3)0.025 (3)0.023 (3)
C90.035 (3)0.052 (3)0.047 (3)0.022 (2)0.019 (3)0.012 (3)
C100.054 (4)0.051 (3)0.046 (3)0.027 (3)0.029 (3)0.020 (3)
C110.076 (4)0.063 (4)0.057 (4)0.050 (3)0.044 (3)0.034 (3)
C120.085 (5)0.048 (3)0.066 (4)0.033 (3)0.047 (4)0.008 (3)
C130.080 (5)0.050 (3)0.053 (4)0.015 (3)0.044 (4)0.004 (3)
C140.054 (4)0.047 (3)0.054 (4)0.013 (3)0.028 (3)0.010 (3)
C150.049 (3)0.033 (2)0.054 (3)0.016 (2)0.030 (3)0.011 (2)
C160.033 (3)0.040 (3)0.047 (3)0.015 (2)0.016 (3)0.009 (2)
C170.031 (3)0.036 (3)0.045 (3)0.011 (2)0.014 (2)0.008 (2)
C180.042 (3)0.037 (3)0.058 (3)0.021 (2)0.018 (3)0.006 (2)
C190.038 (3)0.057 (4)0.097 (5)0.023 (3)0.005 (4)0.004 (4)
C200.047 (4)0.064 (4)0.130 (7)0.029 (3)0.001 (4)0.011 (4)
C210.071 (5)0.087 (5)0.141 (8)0.059 (5)0.039 (5)0.016 (5)
C220.072 (5)0.050 (3)0.092 (5)0.043 (3)0.027 (4)0.010 (3)
C230.048 (3)0.046 (3)0.057 (4)0.022 (3)0.022 (3)0.005 (3)
C240.049 (3)0.032 (2)0.049 (3)0.017 (2)0.024 (3)0.011 (2)
C250.052 (4)0.042 (3)0.048 (3)0.015 (3)0.027 (3)0.016 (3)
C260.074 (4)0.034 (3)0.047 (3)0.011 (3)0.032 (3)0.008 (2)
C270.083 (5)0.051 (3)0.054 (4)0.013 (3)0.033 (4)0.001 (3)
C280.153 (8)0.049 (4)0.066 (5)0.031 (5)0.059 (6)0.010 (4)
C290.121 (7)0.050 (4)0.056 (5)0.002 (4)0.041 (5)0.008 (3)
C300.081 (5)0.056 (4)0.037 (3)0.007 (3)0.022 (3)0.004 (3)
C310.068 (4)0.038 (3)0.038 (3)0.005 (3)0.026 (3)0.012 (2)
C320.051 (4)0.039 (3)0.043 (3)0.004 (3)0.024 (3)0.013 (2)
Sb20.03268 (18)0.03033 (16)0.0430 (2)0.01266 (13)0.01278 (16)0.00555 (14)
N90.034 (2)0.035 (2)0.054 (3)0.0149 (18)0.018 (2)0.0117 (19)
N100.038 (3)0.041 (2)0.049 (3)0.014 (2)0.019 (2)0.006 (2)
N110.035 (2)0.039 (2)0.050 (3)0.0199 (19)0.018 (2)0.014 (2)
N120.040 (3)0.033 (2)0.055 (3)0.0176 (19)0.015 (2)0.007 (2)
N130.036 (2)0.038 (2)0.046 (3)0.0168 (19)0.013 (2)0.0134 (19)
N140.040 (3)0.045 (2)0.055 (3)0.017 (2)0.021 (2)0.009 (2)
N150.026 (2)0.046 (2)0.046 (3)0.0182 (19)0.010 (2)0.011 (2)
N160.041 (3)0.043 (2)0.048 (3)0.020 (2)0.015 (2)0.009 (2)
C330.036 (3)0.031 (2)0.043 (3)0.011 (2)0.014 (2)0.005 (2)
C340.034 (3)0.031 (2)0.046 (3)0.010 (2)0.013 (2)0.007 (2)
C350.049 (3)0.037 (3)0.051 (3)0.020 (2)0.013 (3)0.003 (2)
C360.077 (5)0.042 (3)0.043 (4)0.023 (3)0.010 (3)0.003 (3)
C370.083 (5)0.039 (3)0.040 (3)0.013 (3)0.021 (3)0.002 (3)
C380.052 (3)0.044 (3)0.039 (3)0.014 (3)0.017 (3)0.002 (2)
C390.042 (3)0.038 (3)0.036 (3)0.015 (2)0.010 (2)0.001 (2)
C400.033 (3)0.048 (3)0.048 (3)0.018 (2)0.014 (3)0.006 (2)
C410.034 (3)0.030 (2)0.052 (3)0.010 (2)0.016 (3)0.002 (2)
C420.044 (3)0.036 (3)0.069 (4)0.009 (2)0.024 (3)0.004 (3)
C430.051 (4)0.056 (3)0.071 (4)0.021 (3)0.035 (3)0.006 (3)
C440.055 (4)0.064 (4)0.077 (5)0.027 (3)0.043 (4)0.014 (3)
C450.049 (4)0.063 (4)0.102 (6)0.027 (3)0.042 (4)0.017 (4)
C460.046 (3)0.046 (3)0.086 (5)0.022 (3)0.037 (3)0.016 (3)
C470.035 (3)0.029 (2)0.064 (4)0.008 (2)0.020 (3)0.002 (2)
C480.028 (3)0.034 (3)0.058 (4)0.008 (2)0.013 (3)0.004 (2)
C490.031 (3)0.031 (2)0.050 (3)0.015 (2)0.011 (2)0.009 (2)
C500.041 (3)0.036 (3)0.041 (3)0.014 (2)0.011 (3)0.000 (2)
C510.071 (4)0.044 (3)0.043 (3)0.036 (3)0.013 (3)0.010 (3)
C520.088 (5)0.050 (3)0.046 (4)0.041 (3)0.020 (4)0.008 (3)
C530.092 (5)0.054 (3)0.046 (4)0.034 (4)0.028 (4)0.019 (3)
C540.074 (4)0.053 (3)0.060 (4)0.023 (3)0.031 (4)0.014 (3)
C550.041 (3)0.033 (2)0.039 (3)0.012 (2)0.009 (3)0.006 (2)
C560.032 (3)0.033 (2)0.051 (3)0.010 (2)0.015 (3)0.005 (2)
C570.032 (3)0.040 (3)0.054 (3)0.016 (2)0.016 (3)0.012 (3)
C580.033 (3)0.046 (3)0.052 (3)0.016 (2)0.016 (3)0.005 (3)
C590.056 (4)0.070 (4)0.048 (3)0.027 (3)0.028 (3)0.015 (3)
C600.056 (4)0.098 (5)0.078 (5)0.043 (4)0.038 (4)0.021 (4)
C610.077 (5)0.108 (6)0.086 (5)0.069 (4)0.054 (4)0.042 (4)
C620.059 (4)0.089 (5)0.066 (4)0.052 (4)0.033 (4)0.030 (4)
C630.034 (3)0.061 (3)0.046 (3)0.023 (3)0.019 (3)0.016 (3)
C640.036 (3)0.035 (3)0.052 (3)0.015 (2)0.018 (3)0.009 (2)
Geometric parameters (Å, º) top
Sb3—I13.179 (1)C28—H280.9300
Sb3—I23.046 (1)C29—C301.361 (10)
Sb3—I32.984 (1)C29—H290.9300
Sb3—I42.957 (1)C30—C311.389 (8)
Sb3—I52.834 (1)C30—H300.9300
Sb3—I1i3.400 (1)C31—C321.467 (8)
Sb4—I62.849 (1)Sb2—N112.185 (4)
Sb4—I72.814 (1)Sb2—N132.189 (4)
Sb4—I82.779 (1)Sb2—N92.212 (4)
Sb4—I23.354 (1)Sb2—N152.217 (4)
Sb4—I1i3.362 (1)Sb2—I23.5426 (9)
Sb4—I3i3.3705 (9)Sb2—I43.548 (1)
Sb1—N12.181 (4)Sb2—I53.918 (1)
Sb1—N72.189 (4)N9—C331.383 (6)
Sb1—N32.191 (4)N9—C401.383 (7)
Sb1—N52.209 (4)N10—C401.322 (6)
Sb1—I43.653 (1)N10—C411.347 (7)
Sb1—I63.729 (1)N11—C411.378 (7)
Sb1—I1i3.546 (1)N11—C481.390 (6)
N1—C81.383 (7)N12—C491.313 (6)
N1—C11.391 (7)N12—C481.326 (7)
N2—C81.331 (7)N13—C491.386 (6)
N2—C91.344 (6)N13—C561.404 (6)
N3—C91.375 (6)N14—C561.323 (6)
N3—C161.384 (6)N14—C571.332 (6)
N4—C161.325 (6)N15—C571.367 (7)
N4—C171.338 (6)N15—C641.374 (6)
N5—C241.363 (6)N16—C331.321 (6)
N5—C171.376 (6)N16—C641.347 (7)
N6—C241.328 (6)C33—C341.441 (7)
N6—C251.328 (7)C34—C391.407 (7)
N7—C321.379 (7)C34—C351.410 (7)
N7—C251.381 (7)C35—C361.377 (8)
N8—C321.306 (7)C35—H350.9300
N8—C11.313 (7)C36—C371.395 (9)
C1—C21.443 (8)C36—H360.9300
C2—C31.396 (9)C37—C381.372 (8)
C2—C71.413 (9)C37—H370.9300
C3—C41.346 (11)C38—C391.405 (7)
C3—H30.9300C38—H380.9300
C4—C51.403 (12)C39—C401.433 (7)
C4—H40.9300C41—C421.445 (7)
C5—C61.393 (11)C42—C431.383 (8)
C5—H50.9300C42—C471.389 (8)
C6—C71.389 (9)C43—C441.392 (8)
C6—H60.9300C43—H430.9300
C7—C81.440 (8)C44—C451.394 (9)
C9—C101.435 (7)C44—H440.9300
C10—C151.409 (7)C45—C461.384 (8)
C10—C111.424 (7)C45—H450.9300
C11—C121.360 (8)C46—C471.420 (7)
C11—H110.9300C46—H460.9300
C12—C131.394 (8)C47—C481.464 (7)
C12—H120.9300C49—C501.452 (7)
C13—C141.396 (8)C50—C551.381 (7)
C13—H130.9300C50—C511.384 (7)
C14—C151.381 (7)C51—C521.369 (8)
C14—H140.9300C51—H510.9300
C15—C161.460 (7)C52—C531.368 (9)
C17—C181.446 (7)C52—H520.9300
C18—C231.396 (7)C53—C541.379 (8)
C18—C191.400 (8)C53—H530.9300
C19—C201.384 (8)C54—C551.399 (8)
C19—H190.9300C54—H540.9300
C20—C211.358 (10)C55—C561.452 (7)
C20—H200.9300C57—C581.464 (7)
C21—C221.365 (9)C58—C591.380 (7)
C21—H210.9300C58—C631.394 (7)
C22—C231.390 (7)C59—C601.390 (8)
C22—H220.9300C59—H590.9300
C23—C241.446 (7)C60—C611.426 (9)
C25—C261.434 (7)C60—H600.9300
C26—C311.390 (8)C61—C621.363 (8)
C26—C271.392 (8)C61—H610.9300
C27—C281.368 (9)C62—C631.399 (7)
C27—H270.9300C62—H620.9300
C28—C291.405 (11)C63—C641.455 (7)
I1—Sb3—I388.53 (4)C30—C29—C28121.9 (7)
I1—Sb3—I290.36 (4)C30—C29—H29119.1
I1—Sb3—I595.39 (4)C28—C29—H29119.1
I1—Sb3—I4172.56 (2)C29—C30—C31117.3 (7)
I1—Sb3—I1i77.15 (4)C29—C30—H30121.4
I2—Sb3—I1i88.77 (3)C31—C30—H30121.4
I2—Sb3—I3175.08 (2)C30—C31—C26121.4 (6)
I2—Sb3—I491.79 (4)C30—C31—C32131.6 (7)
I2—Sb3—I587.81 (3)C26—C31—C32107.0 (5)
I3—Sb3—I488.73 (4)N8—C32—N7129.0 (5)
I3—Sb3—I597.06 (3)N8—C32—C31122.7 (5)
I4—Sb3—I591.81 (4)N7—C32—C31108.3 (5)
I6—Sb4—I796.70 (4)N11—Sb2—N1377.7 (2)
I6—Sb4—I891.32 (4)N11—Sb2—N978.0 (2)
I6—Sb4—I1i89.12 (4)N13—Sb2—N9124.4 (2)
I6—Sb4—I2i113.17 (4)N11—Sb2—N15126.4 (2)
I6—Sb4—I3i168.44 (2)N13—Sb2—N1578.3 (2)
I7—Sb4—I896.66 (4)N9—Sb2—N1577.4 (2)
I7—Sb4—I3i94.86 (4)C33—N9—C40107.7 (4)
I8—Sb4—I1i92.25 (4)C33—N9—Sb2122.7 (3)
I8—Sb4—I3i87.32 (4)C40—N9—Sb2124.4 (3)
Sb3—I2—Sb496.53 (3)C40—N10—C41121.7 (5)
Sb3—I1—Sb4i94.08 (4)C41—N11—C48108.3 (4)
Sb3—I3—Sb4i97.61 (4)C41—N11—Sb2124.4 (3)
N1—Sb1—N778.7 (2)C48—N11—Sb2123.2 (4)
N1—Sb1—N378.0 (2)C49—N12—C48122.3 (5)
N7—Sb1—N3126.6 (2)C49—N13—C56107.8 (4)
N1—Sb1—N5125.0 (2)C49—N13—Sb2124.0 (3)
N7—Sb1—N577.3 (2)C56—N13—Sb2123.9 (3)
N3—Sb1—N578.0 (2)C56—N14—C57122.2 (5)
C8—N1—C1109.1 (5)C57—N15—C64108.1 (4)
C8—N1—Sb1122.8 (3)C57—N15—Sb2123.4 (3)
C1—N1—Sb1121.9 (4)C64—N15—Sb2121.6 (3)
C8—N2—C9122.3 (5)C33—N16—C64122.3 (4)
C9—N3—C16107.6 (4)N16—C33—N9128.4 (5)
C9—N3—Sb1123.6 (3)N16—C33—C34122.4 (5)
C16—N3—Sb1121.8 (3)N9—C33—C34109.2 (5)
C16—N4—C17122.1 (4)C39—C34—C35119.5 (5)
C24—N5—C17107.7 (4)C39—C34—C33106.7 (5)
C24—N5—Sb1122.6 (3)C35—C34—C33133.8 (5)
C17—N5—Sb1121.5 (3)C36—C35—C34118.3 (6)
C24—N6—C25122.8 (5)C36—C35—H35120.9
C32—N7—C25108.0 (4)C34—C35—H35120.9
C32—N7—Sb1122.5 (4)C35—C36—C37121.4 (6)
C25—N7—Sb1123.9 (3)C35—C36—H36119.3
C32—N8—C1121.9 (5)C37—C36—H36119.3
N8—C1—N1129.1 (5)C38—C37—C36121.9 (6)
N8—C1—C2123.6 (6)C38—C37—H37119.0
N1—C1—C2107.3 (6)C36—C37—H37119.0
C3—C2—C7120.7 (7)C37—C38—C39117.3 (6)
C3—C2—C1130.8 (7)C37—C38—H38121.3
C7—C2—C1108.5 (5)C39—C38—H38121.3
C4—C3—C2117.3 (8)C38—C39—C34121.6 (5)
C4—C3—H3121.3C38—C39—C40131.6 (5)
C2—C3—H3121.3C34—C39—C40106.8 (5)
C3—C4—C5123.2 (8)N10—C40—N9127.9 (5)
C3—C4—H4118.4N10—C40—C39122.5 (5)
C5—C4—H4118.4N9—C40—C39109.6 (4)
C6—C5—C4120.4 (8)N10—C41—N11128.5 (5)
C6—C5—H5119.8N10—C41—C42121.6 (5)
C4—C5—H5119.8N11—C41—C42109.6 (5)
C7—C6—C5117.1 (8)C43—C42—C47120.9 (6)
C7—C6—H6121.4C43—C42—C41132.3 (6)
C5—C6—H6121.4C47—C42—C41106.7 (5)
C6—C7—C2121.2 (6)C42—C43—C44118.6 (6)
C6—C7—C8132.9 (7)C42—C43—H43120.7
C2—C7—C8105.7 (5)C44—C43—H43120.7
N2—C8—N1127.9 (5)C45—C44—C43119.3 (6)
N2—C8—C7122.6 (6)C45—C44—H44120.4
N1—C8—C7109.4 (5)C43—C44—H44120.4
N2—C9—N3126.8 (5)C46—C45—C44124.5 (6)
N2—C9—C10122.6 (5)C46—C45—H45117.7
N3—C9—C10110.5 (4)C44—C45—H45117.7
C15—C10—C11119.8 (5)C45—C46—C47114.4 (6)
C15—C10—C9106.4 (4)C45—C46—H46122.8
C11—C10—C9133.8 (5)C47—C46—H46122.8
C12—C11—C10117.5 (6)C42—C47—C46122.3 (6)
C12—C11—H11121.3C42—C47—C48107.4 (5)
C10—C11—H11121.3C46—C47—C48130.3 (6)
C11—C12—C13122.6 (5)N12—C48—N11127.9 (5)
C11—C12—H12118.7N12—C48—C47124.1 (5)
C13—C12—H12118.7N11—C48—C47107.9 (5)
C12—C13—C14120.6 (5)N12—C49—N13127.3 (5)
C12—C13—H13119.7N12—C49—C50123.4 (4)
C14—C13—H13119.7N13—C49—C50109.1 (5)
C15—C14—C13118.0 (6)C55—C50—C51121.2 (5)
C15—C14—H14121.0C55—C50—C49107.1 (4)
C13—C14—H14121.0C51—C50—C49131.8 (5)
C14—C15—C10121.5 (5)C52—C51—C50117.8 (6)
C14—C15—C16132.2 (5)C52—C51—H51121.1
C10—C15—C16106.4 (4)C50—C51—H51121.1
N4—C16—N3128.3 (5)C51—C52—C53121.3 (6)
N4—C16—C15122.6 (5)C51—C52—H52119.4
N3—C16—C15109.1 (4)C53—C52—H52119.4
N4—C17—N5128.0 (5)C52—C53—C54122.3 (6)
N4—C17—C18122.6 (4)C52—C53—H53118.8
N5—C17—C18109.4 (4)C54—C53—H53118.8
C23—C18—C19121.8 (5)C53—C54—C55116.5 (6)
C23—C18—C17106.6 (5)C53—C54—H54121.7
C19—C18—C17131.6 (5)C55—C54—H54121.7
C20—C19—C18115.2 (6)C50—C55—C54120.9 (5)
C20—C19—H19122.4C50—C55—C56107.9 (5)
C18—C19—H19122.4C54—C55—C56131.1 (5)
C21—C20—C19123.1 (7)N14—C56—N13128.6 (5)
C21—C20—H20118.5N14—C56—C55123.4 (5)
C19—C20—H20118.5N13—C56—C55108.0 (4)
C20—C21—C22121.9 (6)N14—C57—N15128.0 (5)
C20—C21—H21119.0N14—C57—C58122.9 (5)
C22—C21—H21119.0N15—C57—C58109.1 (4)
C21—C22—C23117.6 (6)C59—C58—C63121.2 (5)
C21—C22—H22121.2C59—C58—C57131.9 (5)
C23—C22—H22121.2C63—C58—C57106.9 (5)
C22—C23—C18120.3 (5)C58—C59—C60118.9 (6)
C22—C23—C24133.5 (5)C58—C59—H59120.6
C18—C23—C24106.2 (4)C60—C59—H59120.6
N6—C24—N5128.2 (5)C59—C60—C61119.4 (6)
N6—C24—C23121.7 (5)C59—C60—H60120.3
N5—C24—C23110.1 (4)C61—C60—H60120.3
N6—C25—N7126.4 (5)C62—C61—C60121.5 (6)
N6—C25—C26123.6 (5)C62—C61—H61119.3
N7—C25—C26109.9 (5)C60—C61—H61119.3
C31—C26—C27120.8 (5)C61—C62—C63118.4 (6)
C31—C26—C25106.8 (5)C61—C62—H62120.8
C27—C26—C25132.4 (6)C63—C62—H62120.8
C28—C27—C26117.7 (7)C58—C63—C62120.6 (5)
C28—C27—H27121.2C58—C63—C64105.9 (5)
C26—C27—H27121.2C62—C63—C64133.5 (5)
C27—C28—C29120.9 (7)N16—C64—N15127.1 (5)
C27—C28—H28119.5N16—C64—C63123.0 (5)
C29—C28—H28119.5N15—C64—C63109.9 (5)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[(C32H16N8)Sb]4[Sb4I16]
Mr5054.62
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)15.963 (3), 16.051 (3), 16.552 (3)
α, β, γ (°)88.59 (3), 62.54 (3), 69.16 (3)
V3)3466.9 (11)
Z1
Radiation typeMo Kα
µ (mm1)5.16
Crystal size (mm)0.20 × 0.12 × 0.08
Data collection
DiffractometerKUMA KM-4 with two dimensional area CCD detector
diffractometer
Absorption correctionAnalytical
face-indexed, SHELXTL (Sheldrick, 1990)
Tmin, Tmax0.425, 0.683
No. of measured, independent and
observed [I > 2σ(I)] reflections
29594, 14695, 10265
Rint0.026
(sin θ/λ)max1)0.643
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.079, 1.01
No. of reflections14695
No. of parameters829
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.21, 1.17

Computer programs: KUMA KM-4 CCD software (Kuma Diffraction, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1990).

Selected geometric parameters (Å, º) top
Sb3—I13.179 (1)Sb1—N72.189 (4)
Sb3—I23.046 (1)Sb1—N32.191 (4)
Sb3—I32.984 (1)Sb1—N52.209 (4)
Sb3—I42.957 (1)Sb1—I43.653 (1)
Sb3—I52.834 (1)Sb1—I63.729 (1)
Sb3—I1i3.400 (1)Sb1—I1i3.546 (1)
Sb4—I62.849 (1)Sb2—N112.185 (4)
Sb4—I72.814 (1)Sb2—N132.189 (4)
Sb4—I82.779 (1)Sb2—N92.212 (4)
Sb4—I23.354 (1)Sb2—N152.217 (4)
Sb4—I1i3.362 (1)Sb2—I23.5426 (9)
Sb4—I3i3.3705 (9)Sb2—I43.548 (1)
Sb1—N12.181 (4)Sb2—I53.918 (1)
I1—Sb3—I388.53 (4)I7—Sb4—I3i94.86 (4)
I1—Sb3—I290.36 (4)I8—Sb4—I1i92.25 (4)
I1—Sb3—I595.39 (4)I8—Sb4—I3i87.32 (4)
I1—Sb3—I4172.56 (2)Sb3—I2—Sb496.53 (3)
I1—Sb3—I1i77.15 (4)Sb3—I1—Sb4i94.08 (4)
I2—Sb3—I1i88.77 (3)Sb3—I3—Sb4i97.61 (4)
I2—Sb3—I3175.08 (2)N1—Sb1—N778.7 (2)
I2—Sb3—I491.79 (4)N1—Sb1—N378.0 (2)
I2—Sb3—I587.81 (3)N7—Sb1—N3126.6 (2)
I3—Sb3—I488.73 (4)N1—Sb1—N5125.0 (2)
I3—Sb3—I597.06 (3)N7—Sb1—N577.3 (2)
I4—Sb3—I591.81 (4)N3—Sb1—N578.0 (2)
I6—Sb4—I796.70 (4)N11—Sb2—N1377.7 (2)
I6—Sb4—I891.32 (4)N11—Sb2—N978.0 (2)
I6—Sb4—I1i89.12 (4)N13—Sb2—N9124.4 (2)
I6—Sb4—I2i113.17 (4)N11—Sb2—N15126.4 (2)
I6—Sb4—I3i168.44 (2)N13—Sb2—N1578.3 (2)
I7—Sb4—I896.66 (4)N9—Sb2—N1577.4 (2)
Symmetry code: (i) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds