Download citation
Download citation
link to html
The structure of a recently found hyperhydrated form of sodium chloride (NaCl·13H2O and NaCl·13D2O) has been determined by in situ single-crystal neutron diffraction at 1.7 GPa and 298 K. It has large hydrogen-bond networks and some water molecules have distorted bonding features such as bifurcated hydrogen bonds and five-coordinated water molecules. The hydrogen-bond network has similarities to ice VI in terms of network topology and disordered hydrogen bonds. Assuming the equivalence of network components connected by pseudo-symmetries, the overall network structure of this hydrate can be expressed by breaking it down into smaller structural units which correspond to the ice VI network structure. This hydrogen-bond network contains orientational disorder of water molecules in contrast to the known salt hydrates. An example is presented here for further insights into a hydrogen-bond network containing ionic species.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520623007199/ne5013sup1.cif
Contains datablocks global, NaCl_13H2O, NaCl_13D2O

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520623007199/ne5013NaCl_13H2Osup2.hkl
Contains datablock NaCl_13H2O

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520623007199/ne5013NaCl_13D2Osup3.hkl
Contains datablock NaCl_13D2O

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520623007199/ne5013sup4.pdf
Supporting information

CCDC references: 2288971; 2288972

Computing details top

Data collection: STARGazer (Ohhara, 2009) for NaCl_13D2O. Cell refinement: STARGazer (Ohhara, 2009) for NaCl_13D2O. Data reduction: STARGazer (Ohhara, 2009) for NaCl_13D2O. Program(s) used to solve structure: SHELXL2018/3 (Sheldrick, 2018) for NaCl_13D2O. For both structures, program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2018).

Sodium chloride tridecahydrate (NaCl_13H2O) top
Crystal data top
NaCl·13(H2O)F(000) = 632
Mr = 292.65Dx = 1.511 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71075 Å
a = 11.403 (4) ÅCell parameters from 1289 reflections
b = 11.882 (2) Åθ = 4.1–33.9°
c = 10.905 (3) ŵ = 0.38 mm1
β = 119.475 (13)°T = 299 K
V = 1286.3 (6) Å3Platelet, colorless
Z = 40.3 × 0.3 × 0.1 mm
Data collection top
RAXIS conversion
diffractometer
360 independent reflections
Radiation source: Sealed Tube360 reflections with I > 2σ(I)
Cmf monochromatorRint = 0.024
Detector resolution: 10 pixels mm-1θmax = 26.3°, θmin = 4.3°
dtprofit.ref scansh = 1112
Absorption correction: numerical
self-made program for diamond anvil cell
k = 1112
Tmin = 0.484, Tmax = 0.569l = 1313
646 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters not defined
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0543P)2 + 3.3523P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max < 0.001
S = 0.96Δρmax = 0.12 e Å3
360 reflectionsΔρmin = 0.15 e Å3
35 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.40651 (15)0.0000000.30805 (14)0.0279 (5)*
Na10.0000000.0000000.0000000.0262 (7)*
Na20.0000000.0000000.5000000.0256 (7)*
O20.8523 (3)0.1397 (2)0.0056 (3)0.0321 (7)*
O10.1066 (5)0.0000000.2434 (5)0.0328 (9)*
O40.9949 (3)0.1494 (2)0.3497 (3)0.0314 (7)*
O60.7407 (3)0.2464 (2)0.2477 (3)0.0338 (8)*
O30.2379 (5)0.0000000.6261 (5)0.0310 (9)*
O80.3064 (5)0.0000000.9121 (5)0.0339 (9)*
O50.3445 (3)0.1626 (2)0.5159 (3)0.0309 (7)*
O70.4808 (3)0.1576 (2)0.1272 (3)0.0356 (8)*
Geometric parameters (Å, º) top
Na1—O12.313 (4)Na2—O3vi2.362 (5)
Na1—O1i2.313 (4)Na2—O32.362 (5)
Na1—O2ii2.386 (3)Na2—O4ii2.398 (3)
Na1—O2iii2.386 (3)Na2—O4vii2.398 (3)
Na1—O2iv2.386 (3)Na2—O4iv2.398 (3)
Na1—O2v2.386 (3)Na2—O4viii2.398 (3)
O1—Na1—O1i180.00 (12)O3vi—Na2—O3180.0
O1—Na1—O2ii87.13 (10)O3vi—Na2—O4ii88.13 (10)
O1i—Na1—O2ii92.87 (10)O3—Na2—O4ii91.87 (10)
O1—Na1—O2iii92.87 (10)O3vi—Na2—O4vii91.87 (10)
O1i—Na1—O2iii87.13 (10)O3—Na2—O4vii88.13 (10)
O2ii—Na1—O2iii180.00 (16)O4ii—Na2—O4vii180.0
O1—Na1—O2iv87.13 (10)O3vi—Na2—O4iv88.13 (10)
O1i—Na1—O2iv92.87 (10)O3—Na2—O4iv91.87 (10)
O2ii—Na1—O2iv88.13 (13)O4ii—Na2—O4iv95.53 (13)
O2iii—Na1—O2iv91.87 (13)O4vii—Na2—O4iv84.47 (13)
O1—Na1—O2v92.87 (10)O3vi—Na2—O4viii91.87 (10)
O1i—Na1—O2v87.13 (10)O3—Na2—O4viii88.13 (10)
O2ii—Na1—O2v91.87 (13)O4ii—Na2—O4viii84.47 (13)
O2iii—Na1—O2v88.13 (13)O4vii—Na2—O4viii95.53 (13)
O2iv—Na1—O2v180.00 (12)O4iv—Na2—O4viii180.0
Symmetry codes: (i) x, y, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x1, y, z; (v) x+1, y, z; (vi) x, y, z+1; (vii) x+1, y, z+1; (viii) x+1, y, z+1.
Deuterated sodium chloride tridecahydrate (NaCl_13D2O) top
Crystal data top
NaCl·13(D2O)F(000) = 10824
Mr = 318.81Dx = 1.667 Mg m3
Monoclinic, C2/mNeutron radiation, λ = 1 Å
a = 11.3436 (1) ÅCell parameters from 50 reflections
b = 11.8254 (10) Åθ = 53.8–84.2°
c = 10.8625 (2) ŵ = 0.07 mm1
β = 119.3454 (4)°T = 298 K
V = 1270.15 (11) Å3Platelet, colorless
Z = 40.10 × 0.10 × 0.10 mm
Data collection top
Time-of-flight Laue-type single crystal neutron
diffractometer
1086 independent reflections
Radiation source: spallation neutron1086 reflections with I > 10σ(I)
Detector resolution: 4 pixels mm-1Rint = 0.145
time–of–flight Laue method scansθmax = 80.9°, θmin = 9.2°
Absorption correction: numerical
self-made program for diamond anvil cell
h = 1416
Tmin = 0.474, Tmax = 0.853k = 107
1086 measured reflectionsl = 1414
Refinement top
Refinement on F23 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.075(Δ/σ)max = 0.019
wR(F2) = 0.182Δρmax = 1.26 e Å3
S = 1.78Δρmin = 1.39 e Å3
1086 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
139 parametersExtinction coefficient: 0.0020 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl0.4053 (8)0.0000000.3063 (9)0.017 (3)*
Na10.0000000.0000000.0000000.018 (9)*
Na20.0000000.0000000.5000000.007 (7)*
O10.1057 (18)0.0000000.2433 (19)0.019 (5)*
O20.8542 (14)0.141 (2)0.0073 (18)0.026 (4)*
O30.2391 (16)0.0000000.6277 (18)0.021 (5)*
O40.9954 (17)0.148 (2)0.3485 (16)0.029 (4)*
O50.3464 (16)0.170 (2)0.5176 (19)0.031 (3)*
O60.7411 (15)0.245 (2)0.2486 (16)0.029 (3)*
O70.4810 (18)0.156 (2)0.1264 (19)0.029 (4)*
O80.305 (2)0.0000000.916 (3)0.039 (5)*
D1A0.1984 (17)0.0000000.2768 (17)0.035 (5)*
D1B0.079 (2)0.059 (3)0.281 (2)0.030 (6)*0.5
D2A0.7969 (12)0.101 (2)0.0362 (15)0.056 (4)*
D2B0.8940 (17)0.206 (3)0.0622 (19)0.042 (5)*0.88 (2)
D2C0.803 (7)0.144 (9)0.091 (10)0.00 (2)*0.12 (2)
D30.2679 (10)0.0640 (17)0.5944 (13)0.042 (4)*
D4A1.048 (2)0.212 (3)0.392 (2)0.039 (5)*0.86 (3)
D4B1.036 (3)0.107 (4)0.299 (3)0.045 (8)*0.5
D4C0.907 (2)0.183 (3)0.309 (2)0.048 (7)*0.64 (3)
D5A0.3002 (15)0.183 (2)0.423 (2)0.042 (5)*0.86 (3)
D5B0.4097 (14)0.107 (2)0.5225 (16)0.062 (5)*
D5C0.412 (8)0.224 (13)0.573 (8)0.008 (19)*0.14 (3)
D6A0.7233 (14)0.299 (2)0.1728 (19)0.046 (5)*0.88 (2)
D6B0.819 (4)0.207 (5)0.269 (3)0.035 (11)*0.36 (3)
D6C0.656 (3)0.208 (3)0.215 (2)0.038 (6)*0.62 (2)
D6D0.776 (12)0.27 (2)0.35 (2)0.08 (4)*0.14 (3)
D7A0.4615 (10)0.1146 (18)0.1913 (14)0.037 (4)*
D7B0.571 (4)0.180 (6)0.175 (4)0.042 (11)*0.38 (2)
D7C0.436 (3)0.113 (5)0.040 (4)0.054 (8)*0.5
D7D0.441 (10)0.218 (15)0.105 (9)0.01 (2)*0.12 (2)
D8A0.2894 (16)0.0000000.817 (2)0.047 (5)*
D8B0.374 (3)0.056 (4)0.960 (4)0.063 (9)*0.5
Geometric parameters (Å, º) top
Na1—O1i2.305 (18)O3—D30.962 (16)
Na1—O12.305 (18)O4—D4A0.93 (3)
Na1—O2ii2.381 (19)O4—D4C0.97 (3)
Na1—O2iii2.381 (19)O4—D4B0.99 (4)
Na1—O2iv2.381 (19)O5—D5A0.913 (19)
Na1—O2v2.381 (19)O5—D5C0.94 (13)
Na1—D2Cii2.59 (9)O5—D5B1.02 (3)
Na1—D2Ciii2.59 (9)O6—D6B0.91 (4)
Na1—D2Civ2.59 (9)O6—D6C0.95 (3)
Na1—D2Cv2.59 (9)O6—D6D1.0 (2)
Na2—O3vi2.365 (16)O6—D6A0.98 (3)
Na2—O32.365 (16)O7—D7D0.83 (17)
Na2—O4ii2.388 (19)O7—D7B0.94 (4)
Na2—O4vii2.388 (19)O7—D7C0.96 (5)
Na2—O4iv2.388 (19)O7—D7A0.97 (2)
Na2—O4viii2.388 (19)O8—D8B0.96 (4)
O1—D1A0.929 (16)O8—D8Bix0.96 (4)
O1—D1Bix0.93 (3)O8—D8A1.00 (2)
O1—D1B0.93 (3)D4C—D6B0.92 (4)
O2—D2C0.93 (8)D6B—D4C0.92 (4)
O2—D2B0.93 (3)D6C—D7B0.90 (4)
O2—D2A0.974 (18)D7B—D6C0.90 (4)
O3—D3ix0.962 (16)
O1i—Na1—O1180.0O3—Na2—O4iv92.0 (5)
O1i—Na1—O2ii93.4 (5)O4ii—Na2—O4iv94.5 (10)
O1—Na1—O2ii86.6 (5)O4vii—Na2—O4iv85.5 (10)
O1i—Na1—O2iii86.6 (5)O3vi—Na2—O4viii92.0 (5)
O1—Na1—O2iii93.4 (5)O3—Na2—O4viii88.0 (5)
O2ii—Na1—O2iii180.0 (9)O4ii—Na2—O4viii85.5 (10)
O1i—Na1—O2iv93.4 (5)O4vii—Na2—O4viii94.5 (10)
O1—Na1—O2iv86.6 (5)O4iv—Na2—O4viii180.0
O2ii—Na1—O2iv89.3 (10)D1A—O1—D1Bix112 (2)
O2iii—Na1—O2iv90.7 (10)D1A—O1—D1B112 (2)
O1i—Na1—O2v86.6 (5)D1Bix—O1—D1B98 (4)
O1—Na1—O2v93.4 (5)D1A—O1—Na1107.6 (17)
O2ii—Na1—O2v90.7 (10)D1Bix—O1—Na1113.9 (19)
O2iii—Na1—O2v89.3 (10)D1B—O1—Na1113.9 (19)
O2iv—Na1—O2v180.0 (7)D2C—O2—D2B122 (7)
O1i—Na1—D2Cii72 (2)D2C—O2—D2A104 (5)
O1—Na1—D2Cii108 (2)D2B—O2—D2A113 (2)
O2ii—Na1—D2Cii21.0 (18)D2C—O2—Na1x92 (6)
O2iii—Na1—D2Cii159.0 (18)D2B—O2—Na1x117.8 (15)
O2iv—Na1—D2Cii90 (2)D2A—O2—Na1x104 (2)
O2v—Na1—D2Cii90 (2)D3ix—O3—D3104 (3)
O1i—Na1—D2Ciii108 (2)D3ix—O3—Na2106.4 (14)
O1—Na1—D2Ciii72 (2)D3—O3—Na2106.4 (14)
O2ii—Na1—D2Ciii159.0 (18)D4A—O4—D4C98 (3)
O2iii—Na1—D2Ciii21.0 (18)D4A—O4—D4B109 (3)
O2iv—Na1—D2Ciii90 (2)D4C—O4—D4B129 (3)
O2v—Na1—D2Ciii90 (2)D4A—O4—Na2x116.6 (16)
D2Cii—Na1—D2Ciii180 (5)D4C—O4—Na2x107 (2)
O1i—Na1—D2Civ72 (2)D4B—O4—Na2x99 (3)
O1—Na1—D2Civ108 (2)D5A—O5—D5C116 (6)
O2ii—Na1—D2Civ90 (2)D5A—O5—D5B100 (2)
O2iii—Na1—D2Civ90 (2)D5C—O5—D5B99 (6)
O2iv—Na1—D2Civ21.0 (18)D6B—O6—D6C123 (5)
O2v—Na1—D2Civ159.0 (18)D6B—O6—D6D93 (9)
D2Cii—Na1—D2Civ82 (4)D6C—O6—D6D108 (8)
D2Ciii—Na1—D2Civ98 (4)D6B—O6—D6A107 (3)
O1i—Na1—D2Cv108 (2)D6C—O6—D6A103 (2)
O1—Na1—D2Cv72 (2)D6D—O6—D6A124 (10)
O2ii—Na1—D2Cv90 (2)D7D—O7—D7B101 (8)
O2iii—Na1—D2Cv90 (2)D7D—O7—D7C103 (7)
O2iv—Na1—D2Cv159.0 (18)D7B—O7—D7C128 (4)
O2v—Na1—D2Cv21.0 (18)D7D—O7—D7A111 (5)
D2Cii—Na1—D2Cv98 (4)D7B—O7—D7A109 (3)
D2Ciii—Na1—D2Cv82 (4)D7C—O7—D7A104 (4)
D2Civ—Na1—D2Cv180 (5)D8B—O8—D8Bix88 (5)
O3vi—Na2—O3180.0D8B—O8—D8A101 (3)
O3vi—Na2—O4ii88.0 (5)D8Bix—O8—D8A101 (3)
O3—Na2—O4ii92.0 (5)O2—D2C—Na1x67 (5)
O3vi—Na2—O4vii92.0 (5)D6B—D4C—O4173 (5)
O3—Na2—O4vii88.0 (5)O6—D6B—D4C165 (6)
O4ii—Na2—O4vii180.0D7B—D6C—O6173 (4)
O3vi—Na2—O4iv88.0 (5)D6C—D7B—O7174 (7)
D2B—O2—D2C—Na1x125 (3)D6D—O6—D6B—D4C28 (24)
D2A—O2—D2C—Na1x106 (3)D6A—O6—D6B—D4C99 (20)
D6C—O6—D6B—D4C142 (19)
Symmetry codes: (i) x, y, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x1, y, z; (v) x+1, y, z; (vi) x, y, z+1; (vii) x+1, y, z+1; (viii) x+1, y, z+1; (ix) x, y, z; (x) x+1, y, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds