Download citation
Download citation
link to html
In the dinuclear centrosymmetric title complex, [Hg2Br4(C17H13N5O2)2]·2C3H7NO, the HgII atom is coordinated by two Br atoms and two N atoms from two different ligands in a distorted tetra­hedral geometry. The solvent mol­ecule is linked to the 28-atom ring by two hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808028754/ng2488sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808028754/ng2488Isup2.hkl
Contains datablock I

CCDC reference: 705955

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.037
  • wR factor = 0.067
  • Data-to-parameter ratio = 17.8

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Hg1 -- Br1 .. 10.05 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Hg1 -- Br2 .. 24.84 su
Alert level C PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Hg1 -- N5 .. 6.16 su PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.65 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 3000 Deg. PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for N6 PLAT731_ALERT_1_C Bond Calc 0.86(3), Rep 0.856(10) ...... 3.00 su-Ra N2 -H21 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.86(3), Rep 0.859(10) ...... 3.00 su-Ra N4 -H22 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.86(3), Rep 0.859(10) ...... 3.00 su-Ra N4 -H22 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.86(3), Rep 0.856(10) ...... 3.00 su-Ra N2 -H21 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.86(3), Rep 0.856(10) ...... 3.00 su-Ra N2 -H21 1.555 1.555
Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C40 H40 Br4 Hg2 N12 O6 Atom count from _chemical_formula_moiety: ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.650 Tmax scaled 0.183 Tmin scaled 0.156 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 12 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 11 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Metal-organic frameworks (MOFs) with microporous is currently of great interest because of their interesting structures and potential applications. So far, some interesting microporous MOFs have been documented (Chae et al. 2004, and references cited therein). One of the popular strategies to fabricate such compounds is to design the rigid ligands which have the ability to bridge the metal centers with big ring by utilizing their coordination sites. The rigid conjugated clamp-like multi-pyridine ligand N,N'-bis(pyridin-3-yl)-2,6-pyridinedicarboxamide has been known as a good candidate in the construction of MOFs with big ring (Qin et al. 2003; Baer et al. 2002). In this work, we selected this ligand as linker, generating a new coordination complex, [HgIIBr2(C17N5O2)](DMF), (I), which is reported here. In compound (I) each HgII atom is four-coordinated by two N atoms from two ligands and two Br atoms in a distorted tetrahedral coordination sphere (Fig. 1). The two HgII atoms are bridged with two N,N'-bis(pyridin-3-yl)-2,6-pyridinedicarboxamide ligands to form a microporous MOFs with 28-number ring. The neighbouring units are linked by the interactions to form a two-dimensional network (Fig. 2) and hydrogen bonds arising between the DMF and N,N'-bis(pyridin-3-yl)-2,6-pyridinedicarboxamide ligand (Table 2) complete the structure.

Related literature top

For related literature, see: Baer et al. (2002); Chae et al. (2004 and references cited therein); Qin et al. (2003).

Experimental top

The ligand N,N'-bis(pyridin-3-yl)-2,6-pyridinedicarboxamide (0.05 mmol, 0.016 g) in DMF (5 ml) was added dropwise to a solution of HgBr2 (0.1 mmol, 0.036 g) in methanol (3 ml). The precipitate was filtered and the resulting solution was allowed to stand at room temperature in the dark. After one week good quality colorless crystals were obtained and dried in air.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title complex, showing the labeling of the non-H atoms and 30% probability ellipsolids. H atoms have been omitted.
[Figure 2] Fig. 2. A view of the crystal packing along the a axis. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Supplementary figure.
Bis(µ-N,N'-di-3-pyridylpyridine-2,6-dicarboxamide- κ2N:N')bis[dibromidomercury(II)] N,N-dimethylformamide disolvate top
Crystal data top
[Hg2Br4(C17H13N5O2)2]·2C3H7NOZ = 1
Mr = 1505.62F(000) = 712
Triclinic, P1Dx = 2.130 Mg m3
a = 7.7609 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.267 (3) ÅCell parameters from 3306 reflections
c = 13.296 (3) Åθ = 3.2–27.5°
α = 92.27 (3)°µ = 10.00 mm1
β = 105.82 (3)°T = 293 K
γ = 104.07 (3)°Prism, colourless
V = 1173.7 (4) Å30.20 × 0.18 × 0.17 mm
Data collection top
Rigaku Saturn724
diffractometer
5337 independent reflections
Radiation source: fine-focus sealed tube4364 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.2°
dtprofit.ref scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
k = 1515
Tmin = 0.240, Tmax = 0.281l = 1717
14249 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0274P)2]
where P = (Fo2 + 2Fc2)/3
5337 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.61 e Å3
2 restraintsΔρmin = 0.71 e Å3
Crystal data top
[Hg2Br4(C17H13N5O2)2]·2C3H7NOγ = 104.07 (3)°
Mr = 1505.62V = 1173.7 (4) Å3
Triclinic, P1Z = 1
a = 7.7609 (16) ÅMo Kα radiation
b = 12.267 (3) ŵ = 10.00 mm1
c = 13.296 (3) ÅT = 293 K
α = 92.27 (3)°0.20 × 0.18 × 0.17 mm
β = 105.82 (3)°
Data collection top
Rigaku Saturn724
diffractometer
5337 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
4364 reflections with I > 2σ(I)
Tmin = 0.240, Tmax = 0.281Rint = 0.032
14249 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.61 e Å3
5337 reflectionsΔρmin = 0.71 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.35413 (3)0.143038 (15)0.325732 (13)0.04901 (8)
Br10.37301 (7)0.05158 (4)0.27313 (4)0.05602 (14)
Br20.63842 (7)0.30874 (4)0.39232 (4)0.06222 (15)
O10.8838 (6)0.5153 (3)1.1145 (3)0.0790 (12)
O20.1707 (5)0.0697 (3)0.7966 (2)0.0565 (9)
N10.8086 (5)0.7906 (3)0.8251 (3)0.0394 (8)
N20.7259 (5)0.5300 (3)0.9465 (3)0.0399 (9)
N30.5289 (5)0.3133 (3)0.9248 (2)0.0342 (8)
N40.3039 (5)0.2237 (3)0.7291 (3)0.0375 (8)
N50.1886 (5)0.1582 (3)0.4441 (3)0.0388 (8)
C10.9457 (6)0.8600 (4)0.9012 (3)0.0410 (11)
H10.99480.93350.88880.049*
C21.0151 (6)0.8257 (4)0.9966 (3)0.0458 (11)
H21.10840.87661.04850.055*
C30.9496 (6)0.7169 (4)1.0172 (3)0.0429 (11)
H30.99790.69351.08220.051*
C40.8082 (6)0.6423 (3)0.9377 (3)0.0323 (9)
C50.7417 (6)0.6847 (3)0.8436 (3)0.0356 (10)
H50.64540.63690.79070.043*
C60.7650 (6)0.4739 (4)1.0323 (3)0.0423 (11)
C70.6516 (6)0.3533 (3)1.0186 (3)0.0376 (10)
C80.6773 (7)0.2900 (4)1.1030 (3)0.0466 (12)
H80.76480.32111.16700.056*
C90.5708 (7)0.1802 (4)1.0900 (3)0.0477 (12)
H90.58510.13561.14510.057*
C100.4421 (6)0.1373 (4)0.9935 (4)0.0421 (11)
H100.36790.06330.98270.050*
C110.4256 (6)0.2061 (3)0.9135 (3)0.0353 (10)
C120.2874 (6)0.1602 (3)0.8079 (3)0.0380 (10)
C130.1959 (6)0.1874 (3)0.6234 (3)0.0352 (10)
C140.0045 (6)0.1485 (3)0.5954 (4)0.0418 (11)
H140.05820.14440.64620.050*
C150.0910 (6)0.1160 (4)0.4913 (4)0.0468 (12)
H150.21980.09010.47070.056*
C160.0035 (7)0.1218 (4)0.4176 (4)0.0463 (11)
H160.06290.09980.34720.056*
C170.2825 (6)0.1910 (3)0.5445 (3)0.0343 (9)
H170.41110.21750.56270.041*
H220.396 (4)0.283 (2)0.745 (3)0.044 (13)*
H210.642 (4)0.491 (3)0.8924 (19)0.039 (12)*
O30.4162 (5)0.5774 (3)0.2838 (2)0.0568 (9)
N60.1662 (6)0.5374 (3)0.3463 (3)0.0465 (10)
C180.0003 (7)0.5662 (5)0.3550 (4)0.0653 (15)
H18A0.01860.62820.31520.098*
H18B0.01320.58750.42750.098*
H18C0.10540.50190.32800.098*
C190.2125 (9)0.4419 (4)0.3969 (4)0.0719 (17)
H19A0.31990.42870.38130.108*
H19B0.10990.37590.37150.108*
H19C0.23850.45760.47160.108*
C200.2735 (8)0.5963 (4)0.2962 (3)0.0503 (12)
H20A0.23920.65830.26710.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.06762 (15)0.04080 (12)0.03641 (11)0.01450 (9)0.01118 (9)0.00594 (8)
Br10.0631 (3)0.0433 (3)0.0679 (3)0.0189 (2)0.0251 (3)0.0047 (2)
Br20.0546 (3)0.0547 (3)0.0623 (3)0.0063 (3)0.0000 (3)0.0042 (3)
O10.105 (3)0.053 (2)0.039 (2)0.011 (2)0.016 (2)0.0158 (17)
O20.067 (2)0.0389 (18)0.049 (2)0.0133 (17)0.0173 (17)0.0083 (16)
N10.044 (2)0.035 (2)0.0344 (19)0.0063 (17)0.0071 (17)0.0039 (16)
N20.047 (2)0.037 (2)0.0269 (19)0.0029 (18)0.0026 (17)0.0033 (17)
N30.041 (2)0.0331 (19)0.0315 (19)0.0101 (16)0.0143 (16)0.0078 (16)
N40.042 (2)0.0298 (19)0.034 (2)0.0031 (17)0.0113 (17)0.0018 (16)
N50.048 (2)0.0330 (19)0.0318 (19)0.0080 (17)0.0082 (17)0.0027 (16)
C10.044 (3)0.031 (2)0.045 (3)0.004 (2)0.013 (2)0.005 (2)
C20.045 (3)0.043 (3)0.036 (2)0.002 (2)0.001 (2)0.001 (2)
C30.044 (3)0.040 (3)0.035 (2)0.006 (2)0.001 (2)0.004 (2)
C40.036 (2)0.031 (2)0.028 (2)0.0082 (18)0.0086 (18)0.0045 (17)
C50.040 (3)0.033 (2)0.027 (2)0.0048 (19)0.0043 (19)0.0013 (18)
C60.052 (3)0.040 (3)0.030 (2)0.010 (2)0.005 (2)0.010 (2)
C70.046 (3)0.038 (2)0.033 (2)0.013 (2)0.014 (2)0.011 (2)
C80.056 (3)0.051 (3)0.036 (2)0.014 (2)0.016 (2)0.012 (2)
C90.060 (3)0.048 (3)0.038 (3)0.014 (2)0.018 (2)0.018 (2)
C100.052 (3)0.034 (2)0.050 (3)0.013 (2)0.027 (2)0.012 (2)
C110.044 (3)0.030 (2)0.036 (2)0.0066 (19)0.021 (2)0.0063 (18)
C120.044 (3)0.032 (2)0.042 (3)0.009 (2)0.020 (2)0.004 (2)
C130.039 (3)0.027 (2)0.038 (2)0.0062 (18)0.011 (2)0.0052 (18)
C140.041 (3)0.033 (2)0.054 (3)0.010 (2)0.018 (2)0.006 (2)
C150.040 (3)0.032 (2)0.060 (3)0.007 (2)0.003 (2)0.004 (2)
C160.057 (3)0.033 (2)0.042 (3)0.014 (2)0.000 (2)0.004 (2)
C170.036 (2)0.032 (2)0.032 (2)0.0054 (18)0.0080 (19)0.0023 (18)
O30.059 (2)0.053 (2)0.052 (2)0.0049 (18)0.0235 (18)0.0038 (17)
N60.058 (3)0.038 (2)0.044 (2)0.0050 (19)0.021 (2)0.0033 (18)
C180.063 (4)0.070 (4)0.063 (4)0.018 (3)0.022 (3)0.010 (3)
C190.104 (5)0.049 (3)0.080 (4)0.024 (3)0.048 (4)0.023 (3)
C200.065 (3)0.041 (3)0.036 (3)0.002 (3)0.010 (3)0.000 (2)
Geometric parameters (Å, º) top
Hg1—N52.315 (3)C7—C81.386 (6)
Hg1—N1i2.351 (3)C8—C91.374 (6)
Hg1—Br12.5108 (8)C8—H80.9300
Hg1—Br22.5289 (12)C9—C101.383 (6)
O1—C61.218 (5)C9—H90.9300
O2—C121.225 (5)C10—C111.382 (6)
N1—C51.335 (5)C10—H100.9300
N1—C11.337 (5)C11—C121.503 (6)
N1—Hg1i2.351 (3)C13—C141.384 (6)
N2—C61.357 (5)C13—C171.389 (5)
N2—C41.394 (5)C14—C151.369 (6)
N2—H210.856 (10)C14—H140.9300
N3—C71.334 (5)C15—C161.370 (6)
N3—C111.342 (5)C15—H150.9300
N4—C121.346 (5)C16—H160.9300
N4—C131.414 (5)C17—H170.9300
N4—H220.859 (10)O3—C201.236 (6)
N5—C171.326 (5)N6—C201.306 (6)
N5—C161.337 (6)N6—C191.446 (6)
C1—C21.361 (6)N6—C181.452 (6)
C1—H10.9300C18—H18A0.9600
C2—C31.374 (6)C18—H18B0.9600
C2—H20.9300C18—H18C0.9600
C3—C41.401 (5)C19—H19A0.9600
C3—H30.9300C19—H19B0.9600
C4—C51.390 (5)C19—H19C0.9600
C5—H50.9300C20—H20A0.9300
C6—C71.502 (6)
N5—Hg1—N1i103.47 (12)C8—C9—H9120.6
N5—Hg1—Br1117.00 (9)C10—C9—H9120.6
N1i—Hg1—Br1107.93 (9)C11—C10—C9118.8 (4)
N5—Hg1—Br2102.81 (9)C11—C10—H10120.6
N1i—Hg1—Br2100.41 (9)C9—C10—H10120.6
Br1—Hg1—Br2122.54 (3)N3—C11—C10123.1 (4)
C5—N1—C1118.4 (4)N3—C11—C12117.5 (3)
C5—N1—Hg1i118.6 (3)C10—C11—C12119.4 (4)
C1—N1—Hg1i122.0 (3)O2—C12—N4123.6 (4)
C6—N2—C4126.9 (4)O2—C12—C11120.7 (4)
C6—N2—H21116 (3)N4—C12—C11115.7 (4)
C4—N2—H21118 (3)C14—C13—C17118.3 (4)
C7—N3—C11117.1 (3)C14—C13—N4122.0 (4)
C12—N4—C13122.6 (4)C17—C13—N4119.8 (4)
C12—N4—H22116 (3)C15—C14—C13118.7 (4)
C13—N4—H22121 (3)C15—C14—H14120.7
C17—N5—C16118.9 (4)C13—C14—H14120.7
C17—N5—Hg1118.2 (3)C14—C15—C16119.9 (4)
C16—N5—Hg1122.4 (3)C14—C15—H15120.0
N1—C1—C2121.6 (4)C16—C15—H15120.0
N1—C1—H1119.2N5—C16—C15121.8 (4)
C2—C1—H1119.2N5—C16—H16119.1
C1—C2—C3121.0 (4)C15—C16—H16119.1
C1—C2—H2119.5N5—C17—C13122.5 (4)
C3—C2—H2119.5N5—C17—H17118.8
C2—C3—C4118.2 (4)C13—C17—H17118.8
C2—C3—H3120.9C20—N6—C19120.5 (4)
C4—C3—H3120.9C20—N6—C18121.7 (4)
C5—C4—N2117.6 (4)C19—N6—C18117.7 (4)
C5—C4—C3117.2 (4)N6—C18—H18A109.5
N2—C4—C3125.2 (4)N6—C18—H18B109.5
N1—C5—C4123.5 (4)H18A—C18—H18B109.5
N1—C5—H5118.2N6—C18—H18C109.5
C4—C5—H5118.2H18A—C18—H18C109.5
O1—C6—N2124.0 (4)H18B—C18—H18C109.5
O1—C6—C7121.1 (4)N6—C19—H19A109.5
N2—C6—C7114.9 (4)N6—C19—H19B109.5
N3—C7—C8123.5 (4)H19A—C19—H19B109.5
N3—C7—C6117.3 (3)N6—C19—H19C109.5
C8—C7—C6119.2 (4)H19A—C19—H19C109.5
C9—C8—C7118.7 (4)H19B—C19—H19C109.5
C9—C8—H8120.7O3—C20—N6126.2 (5)
C7—C8—H8120.7O3—C20—H20A116.9
C8—C9—C10118.8 (4)N6—C20—H20A116.9
N1i—Hg1—N5—C17141.8 (3)C6—C7—C8—C9179.1 (4)
Br1—Hg1—N5—C1799.7 (3)C7—C8—C9—C100.1 (7)
Br2—Hg1—N5—C1737.6 (3)C8—C9—C10—C110.2 (7)
N1i—Hg1—N5—C1646.8 (3)C7—N3—C11—C100.3 (6)
Br1—Hg1—N5—C1671.7 (3)C7—N3—C11—C12179.8 (3)
Br2—Hg1—N5—C16151.0 (3)C9—C10—C11—N30.0 (6)
C5—N1—C1—C21.1 (6)C9—C10—C11—C12179.5 (4)
Hg1i—N1—C1—C2167.2 (3)C13—N4—C12—O24.8 (7)
N1—C1—C2—C31.6 (7)C13—N4—C12—C11174.0 (4)
C1—C2—C3—C40.5 (7)N3—C11—C12—O2169.3 (4)
C6—N2—C4—C5177.3 (4)C10—C11—C12—O211.2 (6)
C6—N2—C4—C30.9 (7)N3—C11—C12—N411.9 (6)
C2—C3—C4—C51.1 (6)C10—C11—C12—N4167.7 (4)
C2—C3—C4—N2179.4 (4)C12—N4—C13—C1451.7 (6)
C1—N1—C5—C40.7 (6)C12—N4—C13—C17128.8 (4)
Hg1i—N1—C5—C4169.4 (3)C17—C13—C14—C150.4 (6)
N2—C4—C5—N1179.9 (4)N4—C13—C14—C15179.2 (4)
C3—C4—C5—N11.8 (6)C13—C14—C15—C160.5 (6)
C4—N2—C6—O11.7 (8)C17—N5—C16—C151.0 (6)
C4—N2—C6—C7179.3 (4)Hg1—N5—C16—C15170.4 (3)
C11—N3—C7—C80.4 (6)C14—C15—C16—N50.2 (7)
C11—N3—C7—C6178.9 (4)C16—N5—C17—C131.0 (6)
O1—C6—C7—N3177.7 (4)Hg1—N5—C17—C13170.7 (3)
N2—C6—C7—N31.3 (6)C14—C13—C17—N50.3 (6)
O1—C6—C7—C83.0 (7)N4—C13—C17—N5179.9 (4)
N2—C6—C7—C8178.0 (4)C19—N6—C20—O32.1 (7)
N3—C7—C8—C90.2 (7)C18—N6—C20—O3179.2 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H22···O3i0.86 (1)2.08 (2)2.891 (5)157 (4)
N2—H21···O3i0.86 (1)2.34 (2)3.076 (5)144 (3)
N2—H21···N30.86 (1)2.25 (4)2.685 (5)111 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Hg2Br4(C17H13N5O2)2]·2C3H7NO
Mr1505.62
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.7609 (16), 12.267 (3), 13.296 (3)
α, β, γ (°)92.27 (3), 105.82 (3), 104.07 (3)
V3)1173.7 (4)
Z1
Radiation typeMo Kα
µ (mm1)10.00
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerRigaku Saturn724
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2006)
Tmin, Tmax0.240, 0.281
No. of measured, independent and
observed [I > 2σ(I)] reflections
14249, 5337, 4364
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.067, 1.03
No. of reflections5337
No. of parameters299
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.71

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H22···O3i0.859 (10)2.08 (2)2.891 (5)157 (4)
N2—H21···O3i0.856 (10)2.34 (2)3.076 (5)144 (3)
N2—H21···N30.856 (10)2.25 (4)2.685 (5)111 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds