Download citation
Download citation
link to html
In the centrosymmetric dimeric title compound, [Cu2(C3H6NS2)4], the CuII atom is five-coordinate in a square-pyramidal environment. The basal coordination positions are occupied by four S atoms from two dimethyl­dithio­carbamate ligands and the apical coordination position is occupied by an S atom also bonded to the other Cu atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536809006230/ng2548sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536809006230/ng2548Isup2.hkl
Contains datablock I

CCDC reference: 722827

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](N-C) = 0.005 Å
  • R factor = 0.050
  • wR factor = 0.141
  • Data-to-parameter ratio = 22.8

checkCIF/PLATON results

No syntax errors found



Alert level C Value of measurement temperature given = 293.000 Value of melting point given = 0.000 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.68 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C2 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C3 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C5 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C6
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.683 Tmax scaled 0.683 Tmin scaled 0.552 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Research into transition metal complexes has been rapidly expanding because of their fascinating structural diversity, as well as their potential applications as functional materials and enzymes (Noro et al., 2000; Yaghi et al., 1998). Dialkyldithiocarbamates anions, which are typical sulfur ligands, acting as monodentate, bidentate or bridging ligands, are often chosen for the preparation of a considerable structural variety of complexes (Engelhardt et al., 1988; Fernández et al., 2000; Koh, et al., 2003). We report here the crystal structure of the title copper(II) complex, (I), contanining a dimethyldithiocarbamate ligand.

The crystal structure of (I) is built up by dimeric entities of CuII complex (Fig. 1). The coordination geometry of CuII ion is described as a distorted square-pyramid. The basal coordination positions are occupied by four S atoms from two dimethyldithiocarbamate ligands. Each briding S atom simultaneously occupies an equatorial coordination site on one CuII ion and apical site on the other CuII. The axial Cu—S bond distance is longer than the equatorial Cu—S ones (Table 1).

Related literature top

For the structural diversity and potential applications of transition metal complexes, see: Noro et al. (2000); Yaghi et al. (1998). For dialkyldithiocarbamates anions acting as monodentate, bidentate or bridging ligands, see: Engelhardt et al. (1988); Fernández et al. (2000); Koh et al. (2003);

Experimental top

A mixture of Cu(Ac)2.H2O (0.04 g, 0.2 mmol) and NaS2CNMe2.2H2O (0.04 g, 0.2 mmol) was stirred in DMF (15 ml) at 313 K. 2-PrOH was diffused into the resulting solution, yielding single crystals of (I).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). [Symmetry code: A 1 - x, y, 1/2 - z.]
Bis(µ-N,N-dimethyldithiocarbamato- κ3S,S':S)bis[(N,N- dimethyldithiocarbamato-κ2S,S')copper(II)] top
Crystal data top
[Cu2(C3H6NS2)4]F(000) = 1240
Mr = 607.91Dx = 1.727 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3071 reflections
a = 8.068 (3) Åθ = 2.5–27.5°
b = 19.446 (7) ŵ = 2.54 mm1
c = 15.108 (6) ÅT = 293 K
β = 99.354 (6)°Block, black
V = 2338.7 (15) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2685 independent reflections
Radiation source: Sealed Tube2423 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.048
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
h = 910
Tmin = 0.807, Tmax = 1.000k = 2525
9796 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0741P)2 + 4.6176P]
where P = (Fo2 + 2Fc2)/3
2685 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Cu2(C3H6NS2)4]V = 2338.7 (15) Å3
Mr = 607.91Z = 4
Monoclinic, C2/cMo Kα radiation
a = 8.068 (3) ŵ = 2.54 mm1
b = 19.446 (7) ÅT = 293 K
c = 15.108 (6) Å0.25 × 0.20 × 0.15 mm
β = 99.354 (6)°
Data collection top
Rigaku Mercury CCD
diffractometer
2685 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
2423 reflections with I > 2σ(I)
Tmin = 0.807, Tmax = 1.000Rint = 0.048
9796 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.07Δρmax = 0.44 e Å3
2685 reflectionsΔρmin = 0.58 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.58962 (6)0.37634 (2)0.36682 (3)0.04294 (19)
S10.72601 (13)0.39120 (5)0.24400 (7)0.0438 (3)
S20.66137 (15)0.49238 (5)0.37410 (7)0.0493 (3)
S30.50794 (15)0.35823 (5)0.50440 (7)0.0497 (3)
S40.56076 (14)0.25771 (5)0.37160 (7)0.0478 (3)
N10.7709 (4)0.52631 (17)0.2215 (2)0.0482 (8)
N20.4789 (4)0.22341 (17)0.5308 (2)0.0451 (7)
C10.7268 (5)0.47699 (19)0.2734 (3)0.0410 (8)
C20.8173 (7)0.5106 (3)0.1342 (3)0.0660 (13)
H2A0.82250.46160.12690.099*
H2B0.92510.53030.13070.099*
H2C0.73480.52950.08760.099*
C30.7562 (7)0.5986 (2)0.2445 (4)0.0642 (13)
H3A0.72510.60220.30300.096*
H3B0.67170.62010.20110.096*
H3C0.86200.62110.24440.096*
C40.5123 (5)0.27279 (19)0.4761 (2)0.0396 (8)
C50.4841 (6)0.1509 (2)0.5072 (3)0.0616 (12)
H5A0.50850.14660.44730.092*
H5B0.37730.13010.51030.092*
H5C0.56990.12810.54830.092*
C60.4417 (6)0.2385 (3)0.6202 (3)0.0631 (13)
H6A0.44150.28740.62910.095*
H6B0.52570.21780.66450.095*
H6C0.33330.22020.62580.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0524 (3)0.0380 (3)0.0398 (3)0.00016 (19)0.0115 (2)0.00059 (18)
S10.0478 (6)0.0412 (5)0.0442 (5)0.0025 (4)0.0125 (4)0.0010 (4)
S20.0613 (7)0.0414 (5)0.0462 (6)0.0044 (4)0.0114 (5)0.0078 (4)
S30.0667 (7)0.0447 (5)0.0397 (5)0.0014 (5)0.0144 (5)0.0027 (4)
S40.0643 (7)0.0385 (5)0.0430 (6)0.0041 (4)0.0158 (5)0.0005 (4)
N10.0478 (19)0.0466 (18)0.0489 (19)0.0053 (15)0.0041 (15)0.0071 (15)
N20.0445 (18)0.0467 (17)0.0438 (18)0.0017 (14)0.0063 (14)0.0063 (14)
C10.0365 (18)0.0425 (18)0.041 (2)0.0001 (15)0.0015 (15)0.0027 (15)
C20.069 (3)0.072 (3)0.059 (3)0.008 (2)0.018 (2)0.013 (2)
C30.076 (3)0.042 (2)0.071 (3)0.012 (2)0.002 (2)0.008 (2)
C40.0359 (18)0.0454 (19)0.0367 (18)0.0026 (15)0.0034 (14)0.0051 (15)
C50.071 (3)0.043 (2)0.070 (3)0.002 (2)0.009 (2)0.013 (2)
C60.071 (3)0.072 (3)0.050 (3)0.005 (2)0.021 (2)0.016 (2)
Geometric parameters (Å, º) top
Cu1—S32.3072 (13)N2—C51.457 (5)
Cu1—S42.3208 (13)C2—H2A0.9600
Cu1—S12.3240 (13)C2—H2B0.9600
Cu1—S22.3278 (13)C2—H2C0.9600
Cu1—S1i2.8258 (14)C3—H3A0.9600
S1—C11.726 (4)C3—H3B0.9600
S2—C11.715 (4)C3—H3C0.9600
S3—C41.717 (4)C5—H5A0.9600
S4—C41.713 (4)C5—H5B0.9600
N1—C11.324 (5)C5—H5C0.9600
N1—C21.461 (6)C6—H6A0.9600
N1—C31.457 (6)C6—H6B0.9600
N2—C41.323 (5)C6—H6C0.9600
N2—C61.460 (5)
S3—Cu1—S477.03 (4)H2A—C2—H2B109.5
S3—Cu1—S1168.48 (5)N1—C2—H2C109.5
S4—Cu1—S1102.20 (4)H2A—C2—H2C109.5
S3—Cu1—S2102.16 (4)H2B—C2—H2C109.5
S4—Cu1—S2170.94 (5)N1—C3—H3A109.5
S1—Cu1—S276.75 (4)N1—C3—H3B109.5
S3—Cu1—S1i100.81 (5)H3A—C3—H3B109.5
S4—Cu1—S1i91.99 (4)N1—C3—H3C109.5
S1—Cu1—S1i90.70 (4)H3A—C3—H3C109.5
S2—Cu1—S1i97.01 (4)H3B—C3—H3C109.5
C1—S1—Cu184.09 (14)N2—C4—S3122.2 (3)
C1—S2—Cu184.21 (13)N2—C4—S4123.5 (3)
C4—S3—Cu184.45 (13)S3—C4—S4114.3 (2)
C4—S4—Cu184.12 (13)N2—C5—H5A109.5
C1—N1—C2121.1 (4)N2—C5—H5B109.5
C1—N1—C3121.2 (4)H5A—C5—H5B109.5
C2—N1—C3117.3 (4)N2—C5—H5C109.5
C4—N2—C6121.7 (4)H5A—C5—H5C109.5
C4—N2—C5122.2 (4)H5B—C5—H5C109.5
C6—N2—C5116.1 (4)N2—C6—H6A109.5
N1—C1—S2123.4 (3)N2—C6—H6B109.5
N1—C1—S1122.5 (3)H6A—C6—H6B109.5
S2—C1—S1114.1 (2)N2—C6—H6C109.5
N1—C2—H2A109.5H6A—C6—H6C109.5
N1—C2—H2B109.5H6B—C6—H6C109.5
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C3H6NS2)4]
Mr607.91
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)8.068 (3), 19.446 (7), 15.108 (6)
β (°) 99.354 (6)
V3)2338.7 (15)
Z4
Radiation typeMo Kα
µ (mm1)2.54
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.807, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9796, 2685, 2423
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.141, 1.07
No. of reflections2685
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.58

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—S32.3072 (13)Cu1—S22.3278 (13)
Cu1—S42.3208 (13)Cu1—S1i2.8258 (14)
Cu1—S12.3240 (13)
Symmetry code: (i) x+1, y, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds