In the crystal structure of the title compound, C
23H
20NO
2+·CF
3SO
3−, the cations form inversion dimers through π–π interactions between the acridine ring systems. These dimers are further linked by C—H

π interactions. The cations and anions are connected by C—H

O and C—F

π interactions. The acridine and benzene ring systems are oriented at a dihedral angle of 20.8 (1)°. The carboxyl group is twisted at an angle of 66.2 (1)° relative to the acridine skeleton. The mean planes of adjacent acridine units are parallel in the lattice.
Supporting information
CCDC reference: 774270
Key indicators
- Single-crystal X-ray study
- T = 295 K
- Mean
(C-C) = 0.003 Å
- R factor = 0.039
- wR factor = 0.116
- Data-to-parameter ratio = 12.7
checkCIF/PLATON results
No syntax errors found
Alert level C
PLAT412_ALERT_2_C Short Intra XH3 .. XHn H5 .. H26A .. 1.85 Ang.
PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 6
PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 40 Ang.
PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of S27
PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of C31
Alert level G
FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the
_chemical_formula_sum and _chemical_formula_moiety. This is
usually due to the moiety formula being in the wrong format.
Atom count from _chemical_formula_sum: C24 H20 F3 N1 O5 S1
Atom count from _chemical_formula_moiety:C24 H20 F3 N1 O5
PLAT154_ALERT_1_G The su's on the Cell Angles are Equal (x 10000) 300 Deg.
0 ALERT level A = In general: serious problem
0 ALERT level B = Potentially serious problem
5 ALERT level C = Check and explain
2 ALERT level G = General alerts; check
3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
1 ALERT type 2 Indicator that the structure model may be wrong or deficient
1 ALERT type 3 Indicator that the structure quality may be low
2 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check
The compound was synthesized in three steps
(Niziołek et al., 2008). First, 9-(chlorocarbonyl)-acridine
was
produced by treating acridine-9-carboxylic acid with a tenfold molar excess
of thionyl chloride. Then, esterification with 2-ethylphenol was carried
out in anhydrous dichloromethane in the presence of
N,N-diethylethanamine and a catalytic amount of
N,N-dimethyl-4-pyridinamine (room temperature, 15h)
(Sato, 1996). The crude product was purified chromatographically
(SiO2, cyclohexane/ethyl acetate, 3/2 v/v). The 2-ethylphenyl
acridine-9-carboxylate thus obtained was quaternarized with a five-fold
molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous
dichloromethane. The crude 9-(2-ethylphenoxycarbonyl)-10-methylacridinium
trifluoromethanesulfonate was dissolved in a small amount
of ethanol, filtered and precipitated with a 25 v/v excess of diethyl
ether. Yellow crystals suitable suitable for X-Ray investigations were
grown from absolute ethanol solution (m.p. 470-471 K).
H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for
the aromatic and alkyl H atoms, respectively, and constrained to ride on
their parrent atoms with Uiso(H) = xUeq(C), where x =
1.2 for the aromatic and x = 1.5 for the alkyl H atoms.
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
9-(2-Ethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate
top
Crystal data top
C23H20NO2+·CF3O3S− | Z = 2 |
Mr = 491.47 | F(000) = 508 |
Triclinic, P1 | Dx = 1.484 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.8519 (4) Å | Cell parameters from 10425 reflections |
b = 10.9533 (4) Å | θ = 3.1–29.2° |
c = 11.7805 (4) Å | µ = 0.21 mm−1 |
α = 104.379 (3)° | T = 295 K |
β = 101.475 (3)° | Block, yellow |
γ = 109.983 (3)° | 0.40 × 0.35 × 0.20 mm |
V = 1099.61 (7) Å3 | |
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 2956 reflections with I > 2σ(I) |
Radiation source: Enhanced (Mo) X-ray Source | Rint = 0.039 |
Graphite monochromator | θmax = 25.1°, θmin = 3.1° |
Detector resolution: 10.4002 pixels mm-1 | h = −11→11 |
ω scans | k = −13→13 |
21109 measured reflections | l = −14→14 |
3914 independent reflections | |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0737P)2] where P = (Fo2 + 2Fc2)/3 |
3914 reflections | (Δ/σ)max < 0.001 |
309 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
Crystal data top
C23H20NO2+·CF3O3S− | γ = 109.983 (3)° |
Mr = 491.47 | V = 1099.61 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.8519 (4) Å | Mo Kα radiation |
b = 10.9533 (4) Å | µ = 0.21 mm−1 |
c = 11.7805 (4) Å | T = 295 K |
α = 104.379 (3)° | 0.40 × 0.35 × 0.20 mm |
β = 101.475 (3)° | |
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 2956 reflections with I > 2σ(I) |
21109 measured reflections | Rint = 0.039 |
3914 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.20 e Å−3 |
3914 reflections | Δρmin = −0.30 e Å−3 |
309 parameters | |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C8 | 0.4629 (2) | 0.70220 (17) | 0.44477 (16) | 0.0468 (4) | |
H8 | 0.3781 | 0.7136 | 0.4600 | 0.056* | |
C7 | 0.4857 (2) | 0.69994 (19) | 0.33477 (18) | 0.0561 (5) | |
H7 | 0.4164 | 0.7087 | 0.2745 | 0.067* | |
C6 | 0.6146 (3) | 0.68432 (19) | 0.31214 (18) | 0.0573 (5) | |
H6 | 0.6298 | 0.6842 | 0.2367 | 0.069* | |
C5 | 0.7175 (2) | 0.66940 (17) | 0.39617 (17) | 0.0508 (5) | |
H5 | 0.8014 | 0.6591 | 0.3780 | 0.061* | |
C4 | 0.8753 (2) | 0.62222 (19) | 0.79550 (18) | 0.0535 (5) | |
H4 | 0.9549 | 0.6038 | 0.7759 | 0.064* | |
C3 | 0.8550 (2) | 0.6234 (2) | 0.90569 (19) | 0.0583 (5) | |
H3 | 0.9214 | 0.6064 | 0.9612 | 0.070* | |
C2 | 0.7358 (2) | 0.64984 (19) | 0.93822 (18) | 0.0559 (5) | |
H2 | 0.7247 | 0.6518 | 1.0151 | 0.067* | |
C1 | 0.6372 (2) | 0.67241 (18) | 0.85755 (16) | 0.0499 (5) | |
H1 | 0.5573 | 0.6881 | 0.8792 | 0.060* | |
C9 | 0.55076 (18) | 0.69321 (15) | 0.65368 (15) | 0.0374 (4) | |
N10 | 0.79811 (15) | 0.65304 (13) | 0.59893 (13) | 0.0419 (3) | |
C13 | 0.56732 (19) | 0.68738 (15) | 0.53759 (15) | 0.0381 (4) | |
C14 | 0.69716 (19) | 0.66950 (15) | 0.51165 (15) | 0.0403 (4) | |
C11 | 0.65277 (19) | 0.67276 (16) | 0.74035 (15) | 0.0394 (4) | |
C12 | 0.77656 (19) | 0.64875 (15) | 0.70957 (15) | 0.0404 (4) | |
C15 | 0.4184 (2) | 0.71774 (16) | 0.68401 (15) | 0.0389 (4) | |
O16 | 0.46656 (13) | 0.83893 (11) | 0.77566 (10) | 0.0435 (3) | |
O17 | 0.28868 (14) | 0.63985 (12) | 0.63199 (12) | 0.0554 (4) | |
C18 | 0.3528 (2) | 0.88341 (16) | 0.80457 (16) | 0.0439 (4) | |
C19 | 0.3118 (2) | 0.86926 (16) | 0.90748 (17) | 0.0478 (4) | |
C20 | 0.2093 (2) | 0.92574 (19) | 0.9350 (2) | 0.0615 (6) | |
H20 | 0.1775 | 0.9189 | 1.0032 | 0.074* | |
C21 | 0.1550 (3) | 0.9905 (2) | 0.8641 (2) | 0.0690 (6) | |
H21 | 0.0875 | 1.0273 | 0.8851 | 0.083* | |
C22 | 0.1986 (3) | 1.0024 (2) | 0.7621 (2) | 0.0671 (6) | |
H22 | 0.1602 | 1.0460 | 0.7140 | 0.080* | |
C23 | 0.3001 (2) | 0.94881 (18) | 0.73174 (19) | 0.0552 (5) | |
H23 | 0.3321 | 0.9567 | 0.6637 | 0.066* | |
C24 | 0.3714 (2) | 0.79938 (18) | 0.98693 (17) | 0.0554 (5) | |
H24A | 0.3664 | 0.8357 | 1.0692 | 0.067* | |
H24B | 0.4774 | 0.8221 | 0.9933 | 0.067* | |
C25 | 0.2850 (3) | 0.6427 (2) | 0.9388 (2) | 0.0644 (5) | |
H25A | 0.3346 | 0.6040 | 0.9891 | 0.097* | |
H25B | 0.2832 | 0.6063 | 0.8552 | 0.097* | |
H25C | 0.1828 | 0.6189 | 0.9416 | 0.097* | |
C26 | 0.9362 (2) | 0.6389 (2) | 0.5764 (2) | 0.0623 (5) | |
H26A | 0.9481 | 0.6594 | 0.5034 | 0.093* | |
H26B | 0.9257 | 0.5459 | 0.5655 | 0.093* | |
H26C | 1.0239 | 0.7022 | 0.6456 | 0.093* | |
S27 | 0.07676 (5) | 0.73990 (4) | 0.26699 (4) | 0.04742 (17) | |
O28 | −0.07260 (15) | 0.73377 (15) | 0.22221 (13) | 0.0649 (4) | |
O29 | 0.09669 (19) | 0.68219 (15) | 0.36225 (14) | 0.0740 (4) | |
O30 | 0.14440 (18) | 0.70502 (16) | 0.17469 (13) | 0.0743 (4) | |
C31 | 0.1906 (3) | 0.9229 (2) | 0.3455 (2) | 0.0740 (6) | |
F32 | 0.1421 (2) | 0.97409 (17) | 0.43606 (15) | 0.1282 (7) | |
F33 | 0.1861 (2) | 0.99425 (14) | 0.27126 (17) | 0.1192 (6) | |
F34 | 0.33510 (19) | 0.95023 (16) | 0.39672 (18) | 0.1263 (7) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C8 | 0.0487 (11) | 0.0493 (10) | 0.0471 (10) | 0.0242 (9) | 0.0164 (9) | 0.0174 (8) |
C7 | 0.0650 (14) | 0.0608 (11) | 0.0476 (11) | 0.0298 (10) | 0.0164 (10) | 0.0226 (9) |
C6 | 0.0724 (14) | 0.0590 (11) | 0.0465 (11) | 0.0259 (10) | 0.0281 (10) | 0.0219 (9) |
C5 | 0.0521 (12) | 0.0501 (10) | 0.0548 (11) | 0.0202 (9) | 0.0292 (10) | 0.0168 (8) |
C4 | 0.0414 (11) | 0.0578 (11) | 0.0627 (12) | 0.0277 (9) | 0.0110 (9) | 0.0169 (9) |
C3 | 0.0565 (13) | 0.0641 (12) | 0.0565 (12) | 0.0317 (10) | 0.0074 (10) | 0.0226 (9) |
C2 | 0.0645 (13) | 0.0650 (12) | 0.0485 (11) | 0.0358 (11) | 0.0167 (10) | 0.0240 (9) |
C1 | 0.0541 (12) | 0.0592 (11) | 0.0501 (10) | 0.0328 (9) | 0.0219 (9) | 0.0233 (9) |
C9 | 0.0346 (9) | 0.0342 (8) | 0.0447 (9) | 0.0151 (7) | 0.0147 (7) | 0.0123 (7) |
N10 | 0.0325 (8) | 0.0425 (7) | 0.0491 (8) | 0.0162 (6) | 0.0158 (7) | 0.0096 (6) |
C13 | 0.0388 (9) | 0.0344 (8) | 0.0409 (9) | 0.0157 (7) | 0.0134 (7) | 0.0109 (7) |
C14 | 0.0402 (10) | 0.0351 (8) | 0.0429 (9) | 0.0134 (7) | 0.0168 (8) | 0.0090 (7) |
C11 | 0.0379 (10) | 0.0372 (8) | 0.0438 (9) | 0.0171 (7) | 0.0133 (8) | 0.0125 (7) |
C12 | 0.0354 (9) | 0.0366 (8) | 0.0447 (10) | 0.0145 (7) | 0.0107 (8) | 0.0086 (7) |
C15 | 0.0401 (11) | 0.0419 (9) | 0.0410 (9) | 0.0212 (8) | 0.0151 (8) | 0.0166 (7) |
O16 | 0.0375 (7) | 0.0442 (6) | 0.0504 (7) | 0.0205 (5) | 0.0174 (6) | 0.0106 (5) |
O17 | 0.0375 (8) | 0.0531 (7) | 0.0640 (8) | 0.0168 (6) | 0.0143 (6) | 0.0053 (6) |
C18 | 0.0367 (10) | 0.0373 (8) | 0.0559 (11) | 0.0181 (7) | 0.0156 (8) | 0.0079 (8) |
C19 | 0.0435 (10) | 0.0404 (9) | 0.0545 (11) | 0.0151 (8) | 0.0194 (9) | 0.0082 (8) |
C20 | 0.0549 (13) | 0.0570 (11) | 0.0730 (13) | 0.0250 (10) | 0.0312 (11) | 0.0116 (10) |
C21 | 0.0579 (14) | 0.0588 (12) | 0.0956 (17) | 0.0356 (11) | 0.0316 (13) | 0.0131 (12) |
C22 | 0.0613 (14) | 0.0552 (11) | 0.0932 (16) | 0.0354 (11) | 0.0211 (12) | 0.0257 (11) |
C23 | 0.0530 (12) | 0.0502 (10) | 0.0668 (12) | 0.0251 (9) | 0.0205 (10) | 0.0203 (9) |
C24 | 0.0553 (12) | 0.0599 (11) | 0.0536 (11) | 0.0243 (10) | 0.0252 (10) | 0.0163 (9) |
C25 | 0.0621 (14) | 0.0642 (12) | 0.0767 (14) | 0.0260 (10) | 0.0307 (11) | 0.0335 (11) |
C26 | 0.0382 (11) | 0.0780 (13) | 0.0666 (13) | 0.0265 (10) | 0.0203 (10) | 0.0117 (11) |
S27 | 0.0507 (3) | 0.0533 (3) | 0.0460 (3) | 0.0255 (2) | 0.0210 (2) | 0.0191 (2) |
O28 | 0.0476 (9) | 0.0797 (9) | 0.0687 (9) | 0.0282 (7) | 0.0186 (7) | 0.0245 (7) |
O29 | 0.0943 (12) | 0.0861 (10) | 0.0733 (10) | 0.0504 (9) | 0.0386 (9) | 0.0506 (8) |
O30 | 0.0806 (11) | 0.1006 (11) | 0.0617 (9) | 0.0510 (9) | 0.0407 (8) | 0.0266 (8) |
C31 | 0.0712 (17) | 0.0610 (13) | 0.0783 (15) | 0.0277 (12) | 0.0042 (13) | 0.0196 (12) |
F32 | 0.1628 (18) | 0.1019 (12) | 0.0962 (11) | 0.0735 (12) | 0.0201 (12) | −0.0158 (9) |
F33 | 0.1130 (13) | 0.0720 (9) | 0.1535 (15) | 0.0184 (9) | 0.0082 (11) | 0.0619 (10) |
F34 | 0.0701 (11) | 0.0882 (10) | 0.1607 (16) | 0.0141 (9) | −0.0251 (11) | 0.0193 (10) |
Geometric parameters (Å, º) top
C8—C7 | 1.354 (3) | O16—C18 | 1.432 (2) |
C8—C13 | 1.427 (2) | C18—C23 | 1.379 (2) |
C8—H8 | 0.9300 | C18—C19 | 1.380 (3) |
C7—C6 | 1.405 (3) | C19—C20 | 1.401 (3) |
C7—H7 | 0.9300 | C19—C24 | 1.500 (3) |
C6—C5 | 1.352 (3) | C20—C21 | 1.365 (3) |
C6—H6 | 0.9300 | C20—H20 | 0.9300 |
C5—C14 | 1.414 (2) | C21—C22 | 1.375 (3) |
C5—H5 | 0.9300 | C21—H21 | 0.9300 |
C4—C3 | 1.350 (3) | C22—C23 | 1.382 (3) |
C4—C12 | 1.416 (3) | C22—H22 | 0.9300 |
C4—H4 | 0.9300 | C23—H23 | 0.9300 |
C3—C2 | 1.402 (3) | C24—C25 | 1.523 (3) |
C3—H3 | 0.9300 | C24—H24A | 0.9700 |
C2—C1 | 1.349 (3) | C24—H24B | 0.9700 |
C2—H2 | 0.9300 | C25—H25A | 0.9600 |
C1—C11 | 1.420 (2) | C25—H25B | 0.9600 |
C1—H1 | 0.9300 | C25—H25C | 0.9600 |
C9—C13 | 1.398 (2) | C26—H26A | 0.9600 |
C9—C11 | 1.401 (2) | C26—H26B | 0.9600 |
C9—C15 | 1.509 (2) | C26—H26C | 0.9600 |
N10—C12 | 1.371 (2) | S27—O30 | 1.4242 (14) |
N10—C14 | 1.374 (2) | S27—O29 | 1.4307 (14) |
N10—C26 | 1.488 (2) | S27—O28 | 1.4331 (15) |
C13—C14 | 1.437 (2) | S27—C31 | 1.806 (2) |
C11—C12 | 1.427 (2) | C31—F33 | 1.314 (3) |
C15—O17 | 1.192 (2) | C31—F34 | 1.326 (3) |
C15—O16 | 1.3442 (19) | C31—F32 | 1.330 (3) |
| | | |
C7—C8—C13 | 120.82 (17) | C23—C18—O16 | 116.69 (16) |
C7—C8—H8 | 119.6 | C19—C18—O16 | 119.15 (16) |
C13—C8—H8 | 119.6 | C18—C19—C20 | 115.51 (18) |
C8—C7—C6 | 119.67 (19) | C18—C19—C24 | 123.48 (16) |
C8—C7—H7 | 120.2 | C20—C19—C24 | 121.01 (18) |
C6—C7—H7 | 120.2 | C21—C20—C19 | 121.7 (2) |
C5—C6—C7 | 122.33 (18) | C21—C20—H20 | 119.1 |
C5—C6—H6 | 118.8 | C19—C20—H20 | 119.1 |
C7—C6—H6 | 118.8 | C20—C21—C22 | 120.97 (19) |
C6—C5—C14 | 119.89 (18) | C20—C21—H21 | 119.5 |
C6—C5—H5 | 120.1 | C22—C21—H21 | 119.5 |
C14—C5—H5 | 120.1 | C21—C22—C23 | 119.4 (2) |
C3—C4—C12 | 120.51 (18) | C21—C22—H22 | 120.3 |
C3—C4—H4 | 119.7 | C23—C22—H22 | 120.3 |
C12—C4—H4 | 119.7 | C18—C23—C22 | 118.5 (2) |
C4—C3—C2 | 121.39 (18) | C18—C23—H23 | 120.8 |
C4—C3—H3 | 119.3 | C22—C23—H23 | 120.8 |
C2—C3—H3 | 119.3 | C19—C24—C25 | 113.77 (17) |
C1—C2—C3 | 119.77 (19) | C19—C24—H24A | 108.8 |
C1—C2—H2 | 120.1 | C25—C24—H24A | 108.8 |
C3—C2—H2 | 120.1 | C19—C24—H24B | 108.8 |
C2—C1—C11 | 121.50 (18) | C25—C24—H24B | 108.8 |
C2—C1—H1 | 119.2 | H24A—C24—H24B | 107.7 |
C11—C1—H1 | 119.2 | C24—C25—H25A | 109.5 |
C13—C9—C11 | 120.83 (15) | C24—C25—H25B | 109.5 |
C13—C9—C15 | 119.28 (15) | H25A—C25—H25B | 109.5 |
C11—C9—C15 | 119.87 (15) | C24—C25—H25C | 109.5 |
C12—N10—C14 | 121.94 (14) | H25A—C25—H25C | 109.5 |
C12—N10—C26 | 117.26 (16) | H25B—C25—H25C | 109.5 |
C14—N10—C26 | 120.80 (15) | N10—C26—H26A | 109.5 |
C9—C13—C8 | 122.77 (15) | N10—C26—H26B | 109.5 |
C9—C13—C14 | 118.70 (16) | H26A—C26—H26B | 109.5 |
C8—C13—C14 | 118.51 (15) | N10—C26—H26C | 109.5 |
N10—C14—C5 | 121.66 (16) | H26A—C26—H26C | 109.5 |
N10—C14—C13 | 119.56 (15) | H26B—C26—H26C | 109.5 |
C5—C14—C13 | 118.77 (17) | O30—S27—O29 | 114.62 (9) |
C9—C11—C1 | 122.87 (16) | O30—S27—O28 | 115.38 (9) |
C9—C11—C12 | 119.01 (15) | O29—S27—O28 | 115.01 (9) |
C1—C11—C12 | 118.12 (16) | O30—S27—C31 | 103.15 (11) |
N10—C12—C4 | 121.62 (16) | O29—S27—C31 | 103.45 (10) |
N10—C12—C11 | 119.71 (15) | O28—S27—C31 | 102.78 (10) |
C4—C12—C11 | 118.67 (16) | F33—C31—F34 | 107.8 (2) |
O17—C15—O16 | 125.00 (15) | F33—C31—F32 | 106.5 (2) |
O17—C15—C9 | 123.94 (15) | F34—C31—F32 | 106.5 (2) |
O16—C15—C9 | 111.05 (14) | F33—C31—S27 | 112.23 (16) |
C15—O16—C18 | 117.14 (13) | F34—C31—S27 | 112.05 (16) |
C23—C18—C19 | 123.94 (16) | F32—C31—S27 | 111.42 (18) |
| | | |
C13—C8—C7—C6 | −0.7 (3) | C9—C11—C12—N10 | 3.3 (2) |
C8—C7—C6—C5 | 0.9 (3) | C1—C11—C12—N10 | −177.78 (14) |
C7—C6—C5—C14 | −0.1 (3) | C9—C11—C12—C4 | −177.29 (15) |
C12—C4—C3—C2 | 0.4 (3) | C1—C11—C12—C4 | 1.6 (2) |
C4—C3—C2—C1 | 1.1 (3) | C13—C9—C15—O17 | 63.9 (2) |
C3—C2—C1—C11 | −1.2 (3) | C11—C9—C15—O17 | −114.36 (19) |
C11—C9—C13—C8 | 177.50 (15) | C13—C9—C15—O16 | −115.39 (16) |
C15—C9—C13—C8 | −0.7 (2) | C11—C9—C15—O16 | 66.40 (18) |
C11—C9—C13—C14 | −4.3 (2) | O17—C15—O16—C18 | −6.3 (2) |
C15—C9—C13—C14 | 177.54 (13) | C9—C15—O16—C18 | 172.96 (13) |
C7—C8—C13—C9 | 178.04 (16) | C15—O16—C18—C23 | −82.25 (18) |
C7—C8—C13—C14 | −0.2 (2) | C15—O16—C18—C19 | 102.93 (18) |
C12—N10—C14—C5 | −177.94 (14) | C23—C18—C19—C20 | 0.5 (3) |
C26—N10—C14—C5 | 2.0 (2) | O16—C18—C19—C20 | 174.87 (14) |
C12—N10—C14—C13 | 2.1 (2) | C23—C18—C19—C24 | −179.24 (17) |
C26—N10—C14—C13 | −178.01 (14) | O16—C18—C19—C24 | −4.8 (2) |
C6—C5—C14—N10 | 179.25 (16) | C18—C19—C20—C21 | −0.2 (3) |
C6—C5—C14—C13 | −0.8 (2) | C24—C19—C20—C21 | 179.50 (18) |
C9—C13—C14—N10 | 2.6 (2) | C19—C20—C21—C22 | 0.3 (3) |
C8—C13—C14—N10 | −179.08 (14) | C20—C21—C22—C23 | −0.6 (3) |
C9—C13—C14—C5 | −177.38 (14) | C19—C18—C23—C22 | −0.8 (3) |
C8—C13—C14—C5 | 0.9 (2) | O16—C18—C23—C22 | −175.31 (16) |
C13—C9—C11—C1 | −177.50 (15) | C21—C22—C23—C18 | 0.8 (3) |
C15—C9—C11—C1 | 0.7 (2) | C18—C19—C24—C25 | −83.8 (2) |
C13—C9—C11—C12 | 1.4 (2) | C20—C19—C24—C25 | 96.5 (2) |
C15—C9—C11—C12 | 179.56 (13) | O30—S27—C31—F33 | 60.3 (2) |
C2—C1—C11—C9 | 178.74 (17) | O29—S27—C31—F33 | −179.97 (18) |
C2—C1—C11—C12 | −0.1 (3) | O28—S27—C31—F33 | −60.0 (2) |
C14—N10—C12—C4 | 175.56 (15) | O30—S27—C31—F34 | −61.1 (2) |
C26—N10—C12—C4 | −4.4 (2) | O29—S27—C31—F34 | 58.6 (2) |
C14—N10—C12—C11 | −5.0 (2) | O28—S27—C31—F34 | 178.62 (18) |
C26—N10—C12—C11 | 175.04 (14) | O30—S27—C31—F32 | 179.70 (16) |
C3—C4—C12—N10 | 177.62 (16) | O29—S27—C31—F32 | −60.58 (18) |
C3—C4—C12—C11 | −1.8 (3) | O28—S27—C31—F32 | 59.41 (18) |
Hydrogen-bond geometry (Å, º) topCg4 is the centroid of the C18–C23 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O28i | 0.93 | 2.55 | 3.221 (2) | 130 |
C5—H5···O28ii | 0.93 | 2.56 | 3.222 (3) | 129 |
C24—H24B···Cg4iii | 0.96 | 2.92 | 3.603 (2) | 129 |
C26—H26A···O29ii | 0.96 | 2.43 | 3.280 (3) | 148 |
C26—H26C···Cg4ii | 0.96 | 2.80 | 3.741 (2) | 165 |
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) −x+1, −y+2, −z+2. |
Experimental details
Crystal data |
Chemical formula | C23H20NO2+·CF3O3S− |
Mr | 491.47 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 295 |
a, b, c (Å) | 9.8519 (4), 10.9533 (4), 11.7805 (4) |
α, β, γ (°) | 104.379 (3), 101.475 (3), 109.983 (3) |
V (Å3) | 1099.61 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.21 |
Crystal size (mm) | 0.40 × 0.35 × 0.20 |
|
Data collection |
Diffractometer | Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21109, 3914, 2956 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.597 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.116, 1.10 |
No. of reflections | 3914 |
No. of parameters | 309 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.30 |
Hydrogen-bond geometry (Å, º) topCg4 is the centroid of the C18–C23 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O28i | 0.93 | 2.55 | 3.221 (2) | 130 |
C5—H5···O28ii | 0.93 | 2.56 | 3.222 (3) | 129 |
C24—H24B···Cg4iii | 0.96 | 2.92 | 3.603 (2) | 129 |
C26—H26A···O29ii | 0.96 | 2.43 | 3.280 (3) | 148 |
C26—H26C···Cg4ii | 0.96 | 2.80 | 3.741 (2) | 165 |
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) −x+1, −y+2, −z+2. |
C—F···π interactions (Å,°) topCg1 and Cg3 are
the centroids of the C9/N10/C11–C14
and C5–C8/C13/C14 rings, respectively. |
X—I···J | I···J | X···J | X—I···J |
C31—F32···Cg3iv | 3.474 (2) | 4.003 (2) | 103.67 (14) |
C31—F33···Cg1iv | 3.241 (2) | 4.087 (2) | 121.73 (14) |
C31—F34···Cg3iv | 3.762 (2) | 4.003 (2) | 90.62 (13) |
Symmetry code: (iv) -x + 1, -y+ 2, -z + 1. |
π–π interactions (Å,°) topCg1, Cg2 and Cg3 are the centroids of the
C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively.
CgI···CgJ is the distance between ring centroids.
The dihedral angle is that between the planes of the rings I
and J.
CgI_Perp is the perpendicular distance
of CgI from ring J.
CgI_Offset is the distance between CgI and perpendicular
projection of CgJ on ring I. |
I | J | CgI···CgJ | Dihedral angle | CgI_Perp | CgI_Offset |
1 | 1v | 4.022 (2) | 0.00 | 3.571 (2) | 1.850 (2) |
1 | 3v | 3.702 (2) | 1.80 | 3.532 (2) | 1.109 (2) |
2 | 3v | 3.965 (2) | 4.29 | 3.451 (2) | 1.960 (2) |
3 | 1v | 3.702 (2) | 1.80 | 3.544 (2) | 1.070 (2) |
3 | 2v | 3.965 (2) | 4.29 | 3.566 (2) | 1.733 (2) |
Symmetry code: (v) -x + 1, -y + 1, -z + 1. |
9-(Phenoxycarbonyl)-10-alkylacridinium salts have long been known as chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels (Zomer & Jacquemijns, 2001). These compounds are commonly applied in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Roda et al., 2003; Brown et al., 2009). The reaction of the cations of these salts with hydrogen peroxide in alkaline media produces light. Our own investigations (Rak et al., 1999) and those of others (Zomer et al., 2001) have revealed that oxidation of acridinium chemiluminogens is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining molecules to electronically excited, light-emitting 10-alkyl-9-acridinones. It has been found that the efficiency of chemiluminescence – crucial for analytical applications – is affected by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). In the search for efficient chemiluminogens we undertook investigations on 9-(phenoxycarbonyl)-10-methylacridinium derivatives substituted in the phenyl fragment. Here we present the structure of one such derivative.
In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2005a,b). With respective average deviations from planarity of 0.022 (3) Å and 0.002 (3) Å, the acridine and benzene ring systems are oriented at 20.8 (1)°. The carboxyl group is twisted at an angle of 66.2 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle of 0.0 (1)°) in the lattice. The mutual arrangement of the carboxyl group relative to the acridine skeleton is similar in the compound investigated and its precursor – 2-ethylphenyl acridine-9-carboxylate (Sikorski et al., 2005a). On the other hand, the acridine and benzene ring systems are oriented quite differently in the compound investigated and its precursor.
In the crystal structure, the inversely oriented cations form dimers through multidirectional π–π interactions involving acridine moieties (Table 3, Fig. 2). These dimers are linked by C–H···O (Table 1, Fig. 2) and C–F···π (Table 2, Fig. 2) interactions to adjacent anions, and by C–H···π (Table 1, Fig. 2) interactions to neighboring cations. The C–H···O interactions are of the hydrogen bond type (Steiner, 1999; Bianchi et al. 2004). The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the C–F···π (Dorn et al., 2005) and the π–π (Hunter et al., 2001) interactions. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.