Download citation
Download citation
link to html
In the crystal structure of the title compound, C23H20NO2+·CF3SO3, the cations form inversion dimers through π–π inter­actions between the acridine ring systems. These dimers are further linked by C—H...π inter­actions. The cations and anions are connected by C—H...O and C—F...π inter­actions. The acridine and benzene ring systems are oriented at a dihedral angle of 20.8 (1)°. The carboxyl group is twisted at an angle of 66.2 (1)° relative to the acridine skeleton. The mean planes of adjacent acridine units are parallel in the lattice.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810008950/ng2739sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810008950/ng2739Isup2.hkl
Contains datablock I

CCDC reference: 774270

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.039
  • wR factor = 0.116
  • Data-to-parameter ratio = 12.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT412_ALERT_2_C Short Intra XH3 .. XHn H5 .. H26A .. 1.85 Ang. PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 6 PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 40 Ang. PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of S27 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of C31
Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C24 H20 F3 N1 O5 S1 Atom count from _chemical_formula_moiety:C24 H20 F3 N1 O5 PLAT154_ALERT_1_G The su's on the Cell Angles are Equal (x 10000) 300 Deg.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

9-(Phenoxycarbonyl)-10-alkylacridinium salts have long been known as chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels (Zomer & Jacquemijns, 2001). These compounds are commonly applied in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Roda et al., 2003; Brown et al., 2009). The reaction of the cations of these salts with hydrogen peroxide in alkaline media produces light. Our own investigations (Rak et al., 1999) and those of others (Zomer et al., 2001) have revealed that oxidation of acridinium chemiluminogens is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining molecules to electronically excited, light-emitting 10-alkyl-9-acridinones. It has been found that the efficiency of chemiluminescence – crucial for analytical applications – is affected by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). In the search for efficient chemiluminogens we undertook investigations on 9-(phenoxycarbonyl)-10-methylacridinium derivatives substituted in the phenyl fragment. Here we present the structure of one such derivative.

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2005a,b). With respective average deviations from planarity of 0.022 (3) Å and 0.002 (3) Å, the acridine and benzene ring systems are oriented at 20.8 (1)°. The carboxyl group is twisted at an angle of 66.2 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle of 0.0 (1)°) in the lattice. The mutual arrangement of the carboxyl group relative to the acridine skeleton is similar in the compound investigated and its precursor – 2-ethylphenyl acridine-9-carboxylate (Sikorski et al., 2005a). On the other hand, the acridine and benzene ring systems are oriented quite differently in the compound investigated and its precursor.

In the crystal structure, the inversely oriented cations form dimers through multidirectional ππ interactions involving acridine moieties (Table 3, Fig. 2). These dimers are linked by C–H···O (Table 1, Fig. 2) and C–F···π (Table 2, Fig. 2) interactions to adjacent anions, and by C–H···π (Table 1, Fig. 2) interactions to neighboring cations. The C–H···O interactions are of the hydrogen bond type (Steiner, 1999; Bianchi et al. 2004). The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the C–F···π (Dorn et al., 2005) and the ππ (Hunter et al., 2001) interactions. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

Related literature top

For general background to 9-(phenoxycarbonyl)-10-alkylacridinium salts, see: Brown et al. (2009); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2005a,b). For intermolecular interactions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Steiner (1999); Takahashi et al. (2001). For the synthesis, see: Niziołek et al. (2008); Sato (1996).

Experimental top

The compound was synthesized in three steps (Niziołek et al., 2008). First, 9-(chlorocarbonyl)-acridine was produced by treating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride. Then, esterification with 2-ethylphenol was carried out in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15h) (Sato, 1996). The crude product was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 3/2 v/v). The 2-ethylphenyl acridine-9-carboxylate thus obtained was quaternarized with a five-fold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane. The crude 9-(2-ethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with a 25 v/v excess of diethyl ether. Yellow crystals suitable suitable for X-Ray investigations were grown from absolute ethanol solution (m.p. 470-471 K).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and alkyl H atoms, respectively, and constrained to ride on their parrent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the alkyl H atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids.
[Figure 2] Fig. 2. The arrangement of the ions in the crystal structure. The C–H···O interactions are represented by dashed lines, the C–H···π, C–F···π and ππ contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) x + 1, y, z + 1; (ii) x + 1, y, z; (iii) –x + 1, –y + 2, –z + 2; (iv) –x + 1, –y + 2, –z + 1; (v) –x + 1, –y + 1, –z + 1.]
9-(2-Ethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate top
Crystal data top
C23H20NO2+·CF3O3SZ = 2
Mr = 491.47F(000) = 508
Triclinic, P1Dx = 1.484 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8519 (4) ÅCell parameters from 10425 reflections
b = 10.9533 (4) Åθ = 3.1–29.2°
c = 11.7805 (4) ŵ = 0.21 mm1
α = 104.379 (3)°T = 295 K
β = 101.475 (3)°Block, yellow
γ = 109.983 (3)°0.40 × 0.35 × 0.20 mm
V = 1099.61 (7) Å3
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
2956 reflections with I > 2σ(I)
Radiation source: Enhanced (Mo) X-ray SourceRint = 0.039
Graphite monochromatorθmax = 25.1°, θmin = 3.1°
Detector resolution: 10.4002 pixels mm-1h = 1111
ω scansk = 1313
21109 measured reflectionsl = 1414
3914 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0737P)2]
where P = (Fo2 + 2Fc2)/3
3914 reflections(Δ/σ)max < 0.001
309 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C23H20NO2+·CF3O3Sγ = 109.983 (3)°
Mr = 491.47V = 1099.61 (7) Å3
Triclinic, P1Z = 2
a = 9.8519 (4) ÅMo Kα radiation
b = 10.9533 (4) ŵ = 0.21 mm1
c = 11.7805 (4) ÅT = 295 K
α = 104.379 (3)°0.40 × 0.35 × 0.20 mm
β = 101.475 (3)°
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
2956 reflections with I > 2σ(I)
21109 measured reflectionsRint = 0.039
3914 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.10Δρmax = 0.20 e Å3
3914 reflectionsΔρmin = 0.30 e Å3
309 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C80.4629 (2)0.70220 (17)0.44477 (16)0.0468 (4)
H80.37810.71360.46000.056*
C70.4857 (2)0.69994 (19)0.33477 (18)0.0561 (5)
H70.41640.70870.27450.067*
C60.6146 (3)0.68432 (19)0.31214 (18)0.0573 (5)
H60.62980.68420.23670.069*
C50.7175 (2)0.66940 (17)0.39617 (17)0.0508 (5)
H50.80140.65910.37800.061*
C40.8753 (2)0.62222 (19)0.79550 (18)0.0535 (5)
H40.95490.60380.77590.064*
C30.8550 (2)0.6234 (2)0.90569 (19)0.0583 (5)
H30.92140.60640.96120.070*
C20.7358 (2)0.64984 (19)0.93822 (18)0.0559 (5)
H20.72470.65181.01510.067*
C10.6372 (2)0.67241 (18)0.85755 (16)0.0499 (5)
H10.55730.68810.87920.060*
C90.55076 (18)0.69321 (15)0.65368 (15)0.0374 (4)
N100.79811 (15)0.65304 (13)0.59893 (13)0.0419 (3)
C130.56732 (19)0.68738 (15)0.53759 (15)0.0381 (4)
C140.69716 (19)0.66950 (15)0.51165 (15)0.0403 (4)
C110.65277 (19)0.67276 (16)0.74035 (15)0.0394 (4)
C120.77656 (19)0.64875 (15)0.70957 (15)0.0404 (4)
C150.4184 (2)0.71774 (16)0.68401 (15)0.0389 (4)
O160.46656 (13)0.83893 (11)0.77566 (10)0.0435 (3)
O170.28868 (14)0.63985 (12)0.63199 (12)0.0554 (4)
C180.3528 (2)0.88341 (16)0.80457 (16)0.0439 (4)
C190.3118 (2)0.86926 (16)0.90748 (17)0.0478 (4)
C200.2093 (2)0.92574 (19)0.9350 (2)0.0615 (6)
H200.17750.91891.00320.074*
C210.1550 (3)0.9905 (2)0.8641 (2)0.0690 (6)
H210.08751.02730.88510.083*
C220.1986 (3)1.0024 (2)0.7621 (2)0.0671 (6)
H220.16021.04600.71400.080*
C230.3001 (2)0.94881 (18)0.73174 (19)0.0552 (5)
H230.33210.95670.66370.066*
C240.3714 (2)0.79938 (18)0.98693 (17)0.0554 (5)
H24A0.36640.83571.06920.067*
H24B0.47740.82210.99330.067*
C250.2850 (3)0.6427 (2)0.9388 (2)0.0644 (5)
H25A0.33460.60400.98910.097*
H25B0.28320.60630.85520.097*
H25C0.18280.61890.94160.097*
C260.9362 (2)0.6389 (2)0.5764 (2)0.0623 (5)
H26A0.94810.65940.50340.093*
H26B0.92570.54590.56550.093*
H26C1.02390.70220.64560.093*
S270.07676 (5)0.73990 (4)0.26699 (4)0.04742 (17)
O280.07260 (15)0.73377 (15)0.22221 (13)0.0649 (4)
O290.09669 (19)0.68219 (15)0.36225 (14)0.0740 (4)
O300.14440 (18)0.70502 (16)0.17469 (13)0.0743 (4)
C310.1906 (3)0.9229 (2)0.3455 (2)0.0740 (6)
F320.1421 (2)0.97409 (17)0.43606 (15)0.1282 (7)
F330.1861 (2)0.99425 (14)0.27126 (17)0.1192 (6)
F340.33510 (19)0.95023 (16)0.39672 (18)0.1263 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C80.0487 (11)0.0493 (10)0.0471 (10)0.0242 (9)0.0164 (9)0.0174 (8)
C70.0650 (14)0.0608 (11)0.0476 (11)0.0298 (10)0.0164 (10)0.0226 (9)
C60.0724 (14)0.0590 (11)0.0465 (11)0.0259 (10)0.0281 (10)0.0219 (9)
C50.0521 (12)0.0501 (10)0.0548 (11)0.0202 (9)0.0292 (10)0.0168 (8)
C40.0414 (11)0.0578 (11)0.0627 (12)0.0277 (9)0.0110 (9)0.0169 (9)
C30.0565 (13)0.0641 (12)0.0565 (12)0.0317 (10)0.0074 (10)0.0226 (9)
C20.0645 (13)0.0650 (12)0.0485 (11)0.0358 (11)0.0167 (10)0.0240 (9)
C10.0541 (12)0.0592 (11)0.0501 (10)0.0328 (9)0.0219 (9)0.0233 (9)
C90.0346 (9)0.0342 (8)0.0447 (9)0.0151 (7)0.0147 (7)0.0123 (7)
N100.0325 (8)0.0425 (7)0.0491 (8)0.0162 (6)0.0158 (7)0.0096 (6)
C130.0388 (9)0.0344 (8)0.0409 (9)0.0157 (7)0.0134 (7)0.0109 (7)
C140.0402 (10)0.0351 (8)0.0429 (9)0.0134 (7)0.0168 (8)0.0090 (7)
C110.0379 (10)0.0372 (8)0.0438 (9)0.0171 (7)0.0133 (8)0.0125 (7)
C120.0354 (9)0.0366 (8)0.0447 (10)0.0145 (7)0.0107 (8)0.0086 (7)
C150.0401 (11)0.0419 (9)0.0410 (9)0.0212 (8)0.0151 (8)0.0166 (7)
O160.0375 (7)0.0442 (6)0.0504 (7)0.0205 (5)0.0174 (6)0.0106 (5)
O170.0375 (8)0.0531 (7)0.0640 (8)0.0168 (6)0.0143 (6)0.0053 (6)
C180.0367 (10)0.0373 (8)0.0559 (11)0.0181 (7)0.0156 (8)0.0079 (8)
C190.0435 (10)0.0404 (9)0.0545 (11)0.0151 (8)0.0194 (9)0.0082 (8)
C200.0549 (13)0.0570 (11)0.0730 (13)0.0250 (10)0.0312 (11)0.0116 (10)
C210.0579 (14)0.0588 (12)0.0956 (17)0.0356 (11)0.0316 (13)0.0131 (12)
C220.0613 (14)0.0552 (11)0.0932 (16)0.0354 (11)0.0211 (12)0.0257 (11)
C230.0530 (12)0.0502 (10)0.0668 (12)0.0251 (9)0.0205 (10)0.0203 (9)
C240.0553 (12)0.0599 (11)0.0536 (11)0.0243 (10)0.0252 (10)0.0163 (9)
C250.0621 (14)0.0642 (12)0.0767 (14)0.0260 (10)0.0307 (11)0.0335 (11)
C260.0382 (11)0.0780 (13)0.0666 (13)0.0265 (10)0.0203 (10)0.0117 (11)
S270.0507 (3)0.0533 (3)0.0460 (3)0.0255 (2)0.0210 (2)0.0191 (2)
O280.0476 (9)0.0797 (9)0.0687 (9)0.0282 (7)0.0186 (7)0.0245 (7)
O290.0943 (12)0.0861 (10)0.0733 (10)0.0504 (9)0.0386 (9)0.0506 (8)
O300.0806 (11)0.1006 (11)0.0617 (9)0.0510 (9)0.0407 (8)0.0266 (8)
C310.0712 (17)0.0610 (13)0.0783 (15)0.0277 (12)0.0042 (13)0.0196 (12)
F320.1628 (18)0.1019 (12)0.0962 (11)0.0735 (12)0.0201 (12)0.0158 (9)
F330.1130 (13)0.0720 (9)0.1535 (15)0.0184 (9)0.0082 (11)0.0619 (10)
F340.0701 (11)0.0882 (10)0.1607 (16)0.0141 (9)0.0251 (11)0.0193 (10)
Geometric parameters (Å, º) top
C8—C71.354 (3)O16—C181.432 (2)
C8—C131.427 (2)C18—C231.379 (2)
C8—H80.9300C18—C191.380 (3)
C7—C61.405 (3)C19—C201.401 (3)
C7—H70.9300C19—C241.500 (3)
C6—C51.352 (3)C20—C211.365 (3)
C6—H60.9300C20—H200.9300
C5—C141.414 (2)C21—C221.375 (3)
C5—H50.9300C21—H210.9300
C4—C31.350 (3)C22—C231.382 (3)
C4—C121.416 (3)C22—H220.9300
C4—H40.9300C23—H230.9300
C3—C21.402 (3)C24—C251.523 (3)
C3—H30.9300C24—H24A0.9700
C2—C11.349 (3)C24—H24B0.9700
C2—H20.9300C25—H25A0.9600
C1—C111.420 (2)C25—H25B0.9600
C1—H10.9300C25—H25C0.9600
C9—C131.398 (2)C26—H26A0.9600
C9—C111.401 (2)C26—H26B0.9600
C9—C151.509 (2)C26—H26C0.9600
N10—C121.371 (2)S27—O301.4242 (14)
N10—C141.374 (2)S27—O291.4307 (14)
N10—C261.488 (2)S27—O281.4331 (15)
C13—C141.437 (2)S27—C311.806 (2)
C11—C121.427 (2)C31—F331.314 (3)
C15—O171.192 (2)C31—F341.326 (3)
C15—O161.3442 (19)C31—F321.330 (3)
C7—C8—C13120.82 (17)C23—C18—O16116.69 (16)
C7—C8—H8119.6C19—C18—O16119.15 (16)
C13—C8—H8119.6C18—C19—C20115.51 (18)
C8—C7—C6119.67 (19)C18—C19—C24123.48 (16)
C8—C7—H7120.2C20—C19—C24121.01 (18)
C6—C7—H7120.2C21—C20—C19121.7 (2)
C5—C6—C7122.33 (18)C21—C20—H20119.1
C5—C6—H6118.8C19—C20—H20119.1
C7—C6—H6118.8C20—C21—C22120.97 (19)
C6—C5—C14119.89 (18)C20—C21—H21119.5
C6—C5—H5120.1C22—C21—H21119.5
C14—C5—H5120.1C21—C22—C23119.4 (2)
C3—C4—C12120.51 (18)C21—C22—H22120.3
C3—C4—H4119.7C23—C22—H22120.3
C12—C4—H4119.7C18—C23—C22118.5 (2)
C4—C3—C2121.39 (18)C18—C23—H23120.8
C4—C3—H3119.3C22—C23—H23120.8
C2—C3—H3119.3C19—C24—C25113.77 (17)
C1—C2—C3119.77 (19)C19—C24—H24A108.8
C1—C2—H2120.1C25—C24—H24A108.8
C3—C2—H2120.1C19—C24—H24B108.8
C2—C1—C11121.50 (18)C25—C24—H24B108.8
C2—C1—H1119.2H24A—C24—H24B107.7
C11—C1—H1119.2C24—C25—H25A109.5
C13—C9—C11120.83 (15)C24—C25—H25B109.5
C13—C9—C15119.28 (15)H25A—C25—H25B109.5
C11—C9—C15119.87 (15)C24—C25—H25C109.5
C12—N10—C14121.94 (14)H25A—C25—H25C109.5
C12—N10—C26117.26 (16)H25B—C25—H25C109.5
C14—N10—C26120.80 (15)N10—C26—H26A109.5
C9—C13—C8122.77 (15)N10—C26—H26B109.5
C9—C13—C14118.70 (16)H26A—C26—H26B109.5
C8—C13—C14118.51 (15)N10—C26—H26C109.5
N10—C14—C5121.66 (16)H26A—C26—H26C109.5
N10—C14—C13119.56 (15)H26B—C26—H26C109.5
C5—C14—C13118.77 (17)O30—S27—O29114.62 (9)
C9—C11—C1122.87 (16)O30—S27—O28115.38 (9)
C9—C11—C12119.01 (15)O29—S27—O28115.01 (9)
C1—C11—C12118.12 (16)O30—S27—C31103.15 (11)
N10—C12—C4121.62 (16)O29—S27—C31103.45 (10)
N10—C12—C11119.71 (15)O28—S27—C31102.78 (10)
C4—C12—C11118.67 (16)F33—C31—F34107.8 (2)
O17—C15—O16125.00 (15)F33—C31—F32106.5 (2)
O17—C15—C9123.94 (15)F34—C31—F32106.5 (2)
O16—C15—C9111.05 (14)F33—C31—S27112.23 (16)
C15—O16—C18117.14 (13)F34—C31—S27112.05 (16)
C23—C18—C19123.94 (16)F32—C31—S27111.42 (18)
C13—C8—C7—C60.7 (3)C9—C11—C12—N103.3 (2)
C8—C7—C6—C50.9 (3)C1—C11—C12—N10177.78 (14)
C7—C6—C5—C140.1 (3)C9—C11—C12—C4177.29 (15)
C12—C4—C3—C20.4 (3)C1—C11—C12—C41.6 (2)
C4—C3—C2—C11.1 (3)C13—C9—C15—O1763.9 (2)
C3—C2—C1—C111.2 (3)C11—C9—C15—O17114.36 (19)
C11—C9—C13—C8177.50 (15)C13—C9—C15—O16115.39 (16)
C15—C9—C13—C80.7 (2)C11—C9—C15—O1666.40 (18)
C11—C9—C13—C144.3 (2)O17—C15—O16—C186.3 (2)
C15—C9—C13—C14177.54 (13)C9—C15—O16—C18172.96 (13)
C7—C8—C13—C9178.04 (16)C15—O16—C18—C2382.25 (18)
C7—C8—C13—C140.2 (2)C15—O16—C18—C19102.93 (18)
C12—N10—C14—C5177.94 (14)C23—C18—C19—C200.5 (3)
C26—N10—C14—C52.0 (2)O16—C18—C19—C20174.87 (14)
C12—N10—C14—C132.1 (2)C23—C18—C19—C24179.24 (17)
C26—N10—C14—C13178.01 (14)O16—C18—C19—C244.8 (2)
C6—C5—C14—N10179.25 (16)C18—C19—C20—C210.2 (3)
C6—C5—C14—C130.8 (2)C24—C19—C20—C21179.50 (18)
C9—C13—C14—N102.6 (2)C19—C20—C21—C220.3 (3)
C8—C13—C14—N10179.08 (14)C20—C21—C22—C230.6 (3)
C9—C13—C14—C5177.38 (14)C19—C18—C23—C220.8 (3)
C8—C13—C14—C50.9 (2)O16—C18—C23—C22175.31 (16)
C13—C9—C11—C1177.50 (15)C21—C22—C23—C180.8 (3)
C15—C9—C11—C10.7 (2)C18—C19—C24—C2583.8 (2)
C13—C9—C11—C121.4 (2)C20—C19—C24—C2596.5 (2)
C15—C9—C11—C12179.56 (13)O30—S27—C31—F3360.3 (2)
C2—C1—C11—C9178.74 (17)O29—S27—C31—F33179.97 (18)
C2—C1—C11—C120.1 (3)O28—S27—C31—F3360.0 (2)
C14—N10—C12—C4175.56 (15)O30—S27—C31—F3461.1 (2)
C26—N10—C12—C44.4 (2)O29—S27—C31—F3458.6 (2)
C14—N10—C12—C115.0 (2)O28—S27—C31—F34178.62 (18)
C26—N10—C12—C11175.04 (14)O30—S27—C31—F32179.70 (16)
C3—C4—C12—N10177.62 (16)O29—S27—C31—F3260.58 (18)
C3—C4—C12—C111.8 (3)O28—S27—C31—F3259.41 (18)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O28i0.932.553.221 (2)130
C5—H5···O28ii0.932.563.222 (3)129
C24—H24B···Cg4iii0.962.923.603 (2)129
C26—H26A···O29ii0.962.433.280 (3)148
C26—H26C···Cg4ii0.962.803.741 (2)165
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC23H20NO2+·CF3O3S
Mr491.47
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.8519 (4), 10.9533 (4), 11.7805 (4)
α, β, γ (°)104.379 (3), 101.475 (3), 109.983 (3)
V3)1099.61 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.40 × 0.35 × 0.20
Data collection
DiffractometerOxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21109, 3914, 2956
Rint0.039
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.116, 1.10
No. of reflections3914
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.30

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O28i0.932.553.221 (2)130
C5—H5···O28ii0.932.563.222 (3)129
C24—H24B···Cg4iii0.962.923.603 (2)129
C26—H26A···O29ii0.962.433.280 (3)148
C26—H26C···Cg4ii0.962.803.741 (2)165
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x+1, y+2, z+2.
C—F···π interactions (Å,°) top
Cg1 and Cg3 are the centroids of the C9/N10/C11–C14 and C5–C8/C13/C14 rings, respectively.
XI···JI···JX···JXI···J
C31—F32···Cg3iv3.474 (2)4.003 (2)103.67 (14)
C31—F33···Cg1iv3.241 (2)4.087 (2)121.73 (14)
C31—F34···Cg3iv3.762 (2)4.003 (2)90.62 (13)
Symmetry code: (iv) -x + 1, -y+ 2, -z + 1.
ππ interactions (Å,°) top
Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.
IJCgI···CgJDihedral angleCgI_PerpCgI_Offset
11v4.022 (2)0.003.571 (2)1.850 (2)
13v3.702 (2)1.803.532 (2)1.109 (2)
23v3.965 (2)4.293.451 (2)1.960 (2)
31v3.702 (2)1.803.544 (2)1.070 (2)
32v3.965 (2)4.293.566 (2)1.733 (2)
Symmetry code: (v) -x + 1, -y + 1, -z + 1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds