Download citation
Download citation
link to html
The mol­ecules in the crystal structure of the title compound, C20H15NO2, form inversion dimers connected through the C—H...N and π–π inter­actions. These dimers are further linked by C—H...π inter­actions. The meth­oxy group is nearly coplanar with the acridine ring system [dihedral angle = 4.5 (1)°], whereas the phen­oxy fragment is nearly perpendicular to it [dihedral angle = 85.0 (1)°]. The mean planes of the acridine ring systems are either parallel or inclined at angles of 14.3 (1), 65.4 (1) and 67.3 (1)° in the crystal.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810008962/ng2741sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810008962/ng2741Isup2.hkl
Contains datablock I

CCDC reference: 774271

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • R factor = 0.029
  • wR factor = 0.086
  • Data-to-parameter ratio = 13.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 4 PLAT717_ALERT_1_C D...A Unknown or Inconsistent Label .......... <I>CG</ PLAT717_ALERT_1_C D...A Unknown or Inconsistent Label .......... <I>CG</ PLAT717_ALERT_1_C D...A Unknown or Inconsistent Label .......... <I>CG</
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

9-Phenoxyacridines are convenient precursors of 9-substituted acridines owing to their excellent stability during storage at room temperature (Albert, 1966; Acheson, 1973); they effectively react with hydrochlorides of various amines to yield the respective 9-acridinamines. The compounds belonging to this group were proposed as fluorescent labels in medicinal diagnostics (Ueyama et al., 2002) and checked for anti-bacterial (Lebekhov & Samarin, 1969) and anti-inflammatory (Chen et al., 2002) activities. Here we demonstrate the structure of 9-phenoxyacridine substituted with the methoxy group at the acridine moiety; we investigated the parent molecule (i.e. 9-phenoxyacridine) earlier (Ebead et al., 2005). Such substitution may affect spectral features of 9-phenoxyacridine and facilitate its conversion to medically interesting derivatives (Demeunynck et al., 2001).

In the crystal structure, the inversely oriented molecules form dimers through ππ interactions involving acridine skeletons (Table 2, Fig. 2) and C(aromatic)–H···N interactions (Table 1, Fig. 2). These dimers are linked in the crystal lattice by C(aliphatic, aromatic)–H···π interactions (Table 1, Fig. 2). The C–H···N interactions are of the hydrogen bond type (Steiner, 1999). The C–H···π interactions (Takahashi et al., 2001), like the ππ interactions (Hunter et al., 2001) should be of an attractive nature. The crystal structure is stabilized by a network of these short-range specific interactions and by non-specific dispersive interactions between adjacent molecules.

In the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridine moiety are typical of acridine based derivatives (Ebead et al., 2005; Sikorski et al., 2007). With a respective average deviation from planarity of 0.0147 (2) Å and 0.0072 (2) Å, the acridine and benzene ring systems are oriented at 85.0 (1)°, i.e. they are nearly perpendicular to each other. On the other hand, the methoxy group is almost co-planar with the acridine skeleton (the angle between the mean plane of the acridine moiety and the plane delineated by C2, O15 and C16 is 4.5 (1)°). C9, N10 and O17 are arranged almost linearly (N10···C9–O17 angle = 174.9 (1)°). The mean planes of the adjacent acridine moieties are either parallel (they remain at an angle of 0.0 (1)° – in dimers) or inclined at angles of 14.3 (1)°, 65.4 (1)° and 67.3 (1)° in the lattice. The molecular structure of the compound investigated is similar to that of 9-phenoxyacridine (Ebead et al., 2005).

Related literature top

For general background to 9-phenoxyacridines, see: Acheson (1973); Albert (1966); Chen et al. (2002); Demeunynck et al. (2001); Lebekhov & Samarin (1969); Ueyama et al. (2002). For related structures, see: Ebead et al. (2005); Sikorski et al. (2007). For intermolecular interactions, see: Hunter et al. (2001); Mazik et al. (2000); Takahashi et al. (2001). For the synthesis, see: Acheson (1973); Chen et al. (2002); Duprè & Robinson (1945).

Experimental top

2-Methoxy-9-chloroacridine was prepared by heating 2-[(2-methoxyphenyl)amino]benzoic acid, obtained as described elsewhere (Acheson, 1973), with a sevenfold molar excess of POCl3 (400 K, 3 h). The excess POCl3 was subsequently removed under reduced pressure. The residue was dispersed in CHCl3, stirred in the presence of a mixture of ice and aqueous ammonia, separated by filtration and dried. The crude product was purified chromatographically (neutral Al2O3, CHCl3/toluene, 1/1 v/v). The obtained 2-methoxy-9-chloroacridine was added to the solution of NaOH in phenol (sevenfold molar excess) in equimolar to NaOH amount, at 373 K under continuous stirring. The reactant mixture was kept at 373 K for 1.5 h, subsequently poured into 2M aq NaOH and stored at room temperature overnight. The precipitate was separated by filtration, washed with water and dried (Duprè & Robinson, 1945; Chen et al., 2002). Light-brown crystals of 2-methoxy-9-phenoxyacridine suitable for X-Ray investigations were grown from absolute ethanol solution (m.p. 415-417 K).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl), and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) (aromatic) or Uiso(H) = 1.5Ueq(C) (methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids.
[Figure 2] Fig. 2. The arrangement of the molecules in the crystal structure. The C–H···N and C–H···π interactions are represented by dashed lines and ππ interactions by dotted lines. [Symmetry codes: (i) –x, –y, –z+1; (ii) x+1/2, –y+1/2, –z+1; (iii) x+1/2, y, –z+1/2; (iv) x–1, y, z.]
2-Methoxy-9-phenoxyacridine top
Crystal data top
C20H15NO2F(000) = 1264
Mr = 301.33Dx = 1.294 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 32561 reflections
a = 8.3042 (2) Åθ = 3.0–29.3°
b = 15.5101 (4) ŵ = 0.08 mm1
c = 24.0192 (6) ÅT = 295 K
V = 3093.65 (13) Å3Plate, light-brown
Z = 80.50 × 0.25 × 0.10 mm
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
2747 independent reflections
Radiation source: Enhance (Mo) X-ray Source2322 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.4002 pixels mm-1θmax = 25.1°, θmin = 3.0°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1818
Tmin = 0.890, Tmax = 0.994l = 2828
56825 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.048P)2 + 0.2828P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2747 reflectionsΔρmax = 0.15 e Å3
210 parametersΔρmin = 0.11 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0046 (6)
Crystal data top
C20H15NO2V = 3093.65 (13) Å3
Mr = 301.33Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.3042 (2) ŵ = 0.08 mm1
b = 15.5101 (4) ÅT = 295 K
c = 24.0192 (6) Å0.50 × 0.25 × 0.10 mm
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
2747 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
2322 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.994Rint = 0.024
56825 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.10Δρmax = 0.15 e Å3
2747 reflectionsΔρmin = 0.11 e Å3
210 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18244 (13)0.00760 (7)0.34444 (4)0.0442 (3)
H10.13620.03640.31450.053*
C20.26680 (14)0.06681 (7)0.33602 (5)0.0498 (3)
C30.33776 (16)0.11161 (8)0.38157 (5)0.0560 (3)
H30.39380.16260.37510.067*
C40.32483 (15)0.08118 (8)0.43386 (5)0.0525 (3)
H40.37310.11120.46290.063*
C50.13635 (15)0.12529 (8)0.56536 (5)0.0522 (3)
H50.18830.09460.59340.063*
C60.05228 (16)0.19741 (9)0.57843 (5)0.0591 (3)
H60.04710.21550.61530.071*
C70.02759 (15)0.24540 (8)0.53666 (5)0.0573 (3)
H70.08540.29450.54640.069*
C80.02090 (13)0.22067 (7)0.48256 (5)0.0478 (3)
H80.07370.25300.45550.057*
C90.08142 (12)0.11619 (6)0.41230 (4)0.0383 (2)
N100.23001 (11)0.02343 (6)0.49857 (4)0.0460 (2)
C110.16565 (11)0.04083 (6)0.39947 (4)0.0389 (2)
C120.23839 (12)0.00369 (7)0.44563 (4)0.0416 (3)
C130.06662 (12)0.14545 (7)0.46691 (4)0.0397 (3)
C140.14617 (12)0.09591 (7)0.50938 (4)0.0421 (3)
O150.29423 (13)0.10503 (6)0.28557 (3)0.0676 (3)
C160.2364 (2)0.06180 (10)0.23706 (5)0.0749 (4)
H16A0.26950.09290.20450.112*
H16B0.27990.00450.23580.112*
H16C0.12100.05890.23820.112*
O170.02052 (8)0.16615 (5)0.36901 (3)0.0441 (2)
C180.13908 (11)0.15439 (6)0.35297 (4)0.0352 (2)
C190.24472 (13)0.10027 (6)0.38029 (4)0.0410 (3)
H190.21230.06970.41170.049*
C200.40022 (14)0.09241 (8)0.35996 (5)0.0508 (3)
H200.47270.05610.37790.061*
C210.44883 (14)0.13772 (9)0.31347 (5)0.0572 (3)
H210.55300.13140.29980.069*
C220.34193 (15)0.19255 (9)0.28733 (5)0.0552 (3)
H220.37450.22350.25610.066*
C230.18710 (13)0.20176 (7)0.30720 (4)0.0441 (3)
H230.11580.23950.29000.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0460 (6)0.0434 (6)0.0434 (6)0.0019 (5)0.0025 (5)0.0079 (5)
C20.0564 (7)0.0440 (6)0.0489 (7)0.0009 (5)0.0051 (5)0.0015 (5)
C30.0648 (8)0.0420 (6)0.0612 (8)0.0114 (5)0.0039 (6)0.0071 (5)
C40.0579 (7)0.0453 (6)0.0544 (7)0.0097 (5)0.0032 (5)0.0141 (5)
C50.0596 (7)0.0521 (7)0.0450 (6)0.0066 (6)0.0065 (5)0.0042 (5)
C60.0686 (8)0.0579 (8)0.0508 (7)0.0073 (6)0.0007 (6)0.0078 (6)
C70.0558 (7)0.0500 (7)0.0661 (8)0.0012 (6)0.0028 (6)0.0079 (6)
C80.0427 (6)0.0436 (6)0.0570 (7)0.0004 (5)0.0019 (5)0.0039 (5)
C90.0339 (5)0.0377 (5)0.0432 (6)0.0040 (4)0.0049 (4)0.0119 (4)
N100.0487 (5)0.0440 (5)0.0452 (5)0.0003 (4)0.0051 (4)0.0099 (4)
C110.0354 (5)0.0374 (5)0.0438 (6)0.0039 (4)0.0014 (4)0.0091 (4)
C120.0405 (5)0.0401 (6)0.0442 (6)0.0017 (4)0.0021 (4)0.0095 (5)
C130.0343 (5)0.0380 (6)0.0469 (6)0.0058 (4)0.0019 (4)0.0067 (4)
C140.0414 (6)0.0407 (6)0.0443 (6)0.0071 (4)0.0030 (4)0.0068 (5)
O150.0937 (7)0.0575 (5)0.0515 (5)0.0130 (5)0.0051 (5)0.0031 (4)
C160.1016 (11)0.0740 (9)0.0492 (8)0.0065 (8)0.0016 (7)0.0043 (7)
O170.0378 (4)0.0443 (4)0.0502 (4)0.0016 (3)0.0052 (3)0.0173 (3)
C180.0366 (5)0.0341 (5)0.0349 (5)0.0029 (4)0.0004 (4)0.0010 (4)
C190.0472 (6)0.0367 (5)0.0393 (5)0.0018 (4)0.0032 (4)0.0043 (4)
C200.0470 (6)0.0497 (7)0.0556 (7)0.0106 (5)0.0013 (5)0.0020 (5)
C210.0472 (7)0.0685 (8)0.0560 (7)0.0050 (6)0.0155 (5)0.0019 (6)
C220.0540 (7)0.0698 (8)0.0418 (6)0.0042 (6)0.0099 (5)0.0111 (6)
C230.0452 (6)0.0500 (6)0.0369 (5)0.0033 (5)0.0037 (4)0.0086 (5)
Geometric parameters (Å, º) top
C1—C21.3651 (16)N10—C121.3413 (14)
C1—C111.4256 (15)N10—C141.3476 (14)
C1—H10.9300C11—C121.4391 (14)
C2—O151.3681 (14)C13—C141.4378 (14)
C2—C31.4237 (17)O15—C161.4276 (16)
C3—C41.3460 (17)C16—H16A0.9600
C3—H30.9300C16—H16B0.9600
C4—C121.4282 (16)C16—H16C0.9600
C4—H40.9300O17—C181.3922 (12)
C5—C61.3554 (19)C18—C191.3801 (14)
C5—C141.4220 (16)C18—C231.3812 (14)
C5—H50.9300C19—C201.3859 (15)
C6—C71.4144 (18)C19—H190.9300
C6—H60.9300C20—C211.3797 (17)
C7—C81.3560 (16)C20—H200.9300
C7—H70.9300C21—C221.3805 (18)
C8—C131.4250 (16)C21—H210.9300
C8—H80.9300C22—C231.3788 (16)
C9—O171.3920 (12)C22—H220.9300
C9—C131.3934 (14)C23—H230.9300
C9—C111.3965 (15)
C2—C1—C11119.54 (10)C4—C12—C11117.54 (10)
C2—C1—H1120.2C9—C13—C8124.06 (9)
C11—C1—H1120.2C9—C13—C14116.95 (9)
C1—C2—O15125.66 (10)C8—C13—C14118.99 (10)
C1—C2—C3120.75 (11)N10—C14—C5118.62 (10)
O15—C2—C3113.59 (10)N10—C14—C13123.13 (10)
C4—C3—C2120.85 (11)C5—C14—C13118.25 (10)
C4—C3—H3119.6C2—O15—C16117.61 (10)
C2—C3—H3119.6O15—C16—H16A109.5
C3—C4—C12121.32 (10)O15—C16—H16B109.5
C3—C4—H4119.3H16A—C16—H16B109.5
C12—C4—H4119.3O15—C16—H16C109.5
C6—C5—C14120.86 (11)H16A—C16—H16C109.5
C6—C5—H5119.6H16B—C16—H16C109.5
C14—C5—H5119.6C9—O17—C18118.66 (7)
C5—C6—C7120.77 (11)C19—C18—C23121.24 (9)
C5—C6—H6119.6C19—C18—O17123.59 (9)
C7—C6—H6119.6C23—C18—O17115.17 (9)
C8—C7—C6120.77 (12)C18—C19—C20118.57 (10)
C8—C7—H7119.6C18—C19—H19120.7
C6—C7—H7119.6C20—C19—H19120.7
C7—C8—C13120.35 (11)C21—C20—C19120.86 (11)
C7—C8—H8119.8C21—C20—H20119.6
C13—C8—H8119.8C19—C20—H20119.6
O17—C9—C13119.33 (9)C20—C21—C22119.58 (11)
O17—C9—C11118.88 (9)C20—C21—H21120.2
C13—C9—C11121.64 (9)C22—C21—H21120.2
C12—N10—C14118.10 (9)C23—C22—C21120.40 (10)
C9—C11—C1123.79 (9)C23—C22—H22119.8
C9—C11—C12116.22 (9)C21—C22—H22119.8
C1—C11—C12119.99 (9)C22—C23—C18119.31 (10)
N10—C12—C4118.53 (9)C22—C23—H23120.3
N10—C12—C11123.94 (10)C18—C23—H23120.3
C11—C1—C2—O15178.96 (10)C11—C9—C13—C141.82 (14)
C11—C1—C2—C30.15 (17)C7—C8—C13—C9179.10 (10)
C1—C2—C3—C40.73 (19)C7—C8—C13—C140.59 (16)
O15—C2—C3—C4178.49 (11)C12—N10—C14—C5179.97 (9)
C2—C3—C4—C120.68 (19)C12—N10—C14—C130.39 (15)
C14—C5—C6—C70.13 (19)C6—C5—C14—N10179.41 (11)
C5—C6—C7—C80.47 (19)C6—C5—C14—C130.93 (17)
C6—C7—C8—C130.22 (18)C9—C13—C14—N101.08 (14)
O17—C9—C11—C15.34 (14)C8—C13—C14—N10179.21 (9)
C13—C9—C11—C1179.14 (9)C9—C13—C14—C5178.57 (9)
O17—C9—C11—C12174.41 (8)C8—C13—C14—C51.14 (14)
C13—C9—C11—C121.11 (14)C1—C2—O15—C163.06 (18)
C2—C1—C11—C9179.81 (10)C3—C2—O15—C16176.11 (12)
C2—C1—C11—C120.45 (15)C13—C9—O17—C1888.82 (11)
C14—N10—C12—C4179.03 (10)C11—C9—O17—C1895.56 (11)
C14—N10—C12—C111.18 (15)C9—O17—C18—C194.98 (14)
C3—C4—C12—N10179.88 (11)C9—O17—C18—C23175.51 (9)
C3—C4—C12—C110.07 (17)C23—C18—C19—C201.71 (16)
C9—C11—C12—N100.46 (15)O17—C18—C19—C20178.82 (9)
C1—C11—C12—N10179.31 (10)C18—C19—C20—C210.10 (17)
C9—C11—C12—C4179.75 (9)C19—C20—C21—C220.95 (19)
C1—C11—C12—C40.49 (15)C20—C21—C22—C230.4 (2)
O17—C9—C13—C86.01 (15)C21—C22—C23—C181.14 (18)
C11—C9—C13—C8178.49 (9)C19—C18—C23—C222.23 (16)
O17—C9—C13—C14173.68 (8)O17—C18—C23—C22178.25 (10)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C1–C4/C11/C12 and C18–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C19—H19···N10i0.932.603.487 (2)160
C6—H6···Cg4ii0.932.803.459 (2)129
C16—H16B···Cg4iii0.962.943.658 (2)133
C20—H20···Cg2iv0.932.713.576 (2)156
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y, z+1/2; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC20H15NO2
Mr301.33
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)8.3042 (2), 15.5101 (4), 24.0192 (6)
V3)3093.65 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.25 × 0.10
Data collection
DiffractometerOxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.890, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
56825, 2747, 2322
Rint0.024
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.086, 1.10
No. of reflections2747
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.11

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C1–C4/C11/C12 and C18–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C19—H19···N10i0.932.603.487 (2)160
C6—H6···Cg4ii0.932.803.459 (2)129
C16—H16B···Cg4iii0.962.943.658 (2)133
C20—H20···Cg2iv0.932.713.576 (2)156
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y, z+1/2; (iv) x1, y, z.
ππ interactions (Å,°) top
Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and the perpendicular projection of CgJ on ring I.
IJCgI···CgJDihedral angleCgI_PerpCgI_Offset
11i3.984 (1)0.03.569 (1)1.770 (1)
23i3.932 (1)1.63.564 (1)1.661 (1)
32i3.932 (1)1.63.541 (1)1.707 (1)
Symmetry codes: (i) –x, –y, –z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds