Download citation
Download citation
link to html
The crystal structure of the title salt, [Li(CH3CN)4][B(NCS)4], is composed of discrete cations and anions. Both the Li and B atoms show a tetra­hedral coordination by four equal ligands. The aceto­nitrile and iso­thio­cyanate ligands are linear. The bond angles at the B atom are close to the ideal tetra­hedral value [108.92 (18)-109.94 (16)°], but the bond angles at the Li atom show larger deviations [106.15 (17)-113.70 (17)°].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536813009082/ng5320sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536813009082/ng5320Isup2.hkl
Contains datablock I

CCDC reference: 954193

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.038
  • wR factor = 0.092
  • Data-to-parameter ratio = 16.0

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for S2 -- C2 .. 8.8 su PLAT230_ALERT_2_B Hirshfeld Test Diff for S3 -- C3 .. 11.8 su PLAT230_ALERT_2_B Hirshfeld Test Diff for S4 -- C4 .. 8.8 su PLAT230_ALERT_2_B Hirshfeld Test Diff for N3 -- C3 .. 10.1 su
Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for S1 -- C1 .. 6.2 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C61 PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 11.437 PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 2.296 PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 9 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.595 3
Alert level G PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF ? PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ ? PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still 52 Perc.
0 ALERT level A = Most likely a serious problem - resolve or explain 4 ALERT level B = A potentially serious problem, consider carefully 6 ALERT level C = Check. Ensure it is not caused by an omission or oversight 3 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Our group is interested in the synthesis of novel and improved electrolytes, namely, borates with alkinyl or catecholate ligands (Lerner et al., 2007, 2012; Röder et al., 2008). In the course of our investigations we synthesized the literature-reported borate Li[B(NCS)4] (Kleemann & Newman 1981) to compare its electrochemical properties with those of the borates which we have prepared. We were able to get crystals of this so far structurally uncharacterized borate Li(CH3CN)4[B(NCS)4]. The borate Li(CH3CN)4[B(NCS)4] was synthesized from BF3(OEt2) and Li[NCS], as shown in Figure 1.

The crystal structure of [Li(CH3CN)4]+[B(NCS)4]- is composed of discrete cations and anions (Fig. 2). Both the Li and B centre, show a tetrahedral coordination by four equal ligands. The acetonitrile and the isothiocyanate ligands are linear. Whereas the bond angles at the boron centre [108.92 (18)° - 109.94 (16)°] are very close to the ideal tetrahedral value, the bond angles around the Li centre [106.15 (17)° - 113.70 (17)°] show larger deviations from the ideal value.

Related literature top

Our group is interested in the synthesis of novel and improved electrolytes, namely borates with alkinyl or catecholate ligands, see: Lerner et al. (2007, 2012); Röder et al. (2008). For the preparation, see: Kleemann & Newman (1981).

Experimental top

Li(CH3CN)4[B(NCS)4]: The borate Li(CH3CN)4[B(NCS)4] was prepared according to a literature procedure (Kleemann & Newman 1981). X-ray quality crystals of Li(CH3CN)4[B(NCS)4] were grown from an acetonitrile solution at room temperature.

Refinement top

All H atoms were located in difference Fourier maps. Nevertheless, they were geometrically positioned and refined using a riding model with C—H = 0.98 Å and with Uiso(H) = 1.5Ueq(C). The methyl groups were allowed to rotate but not to tip.

Structure description top

Our group is interested in the synthesis of novel and improved electrolytes, namely, borates with alkinyl or catecholate ligands (Lerner et al., 2007, 2012; Röder et al., 2008). In the course of our investigations we synthesized the literature-reported borate Li[B(NCS)4] (Kleemann & Newman 1981) to compare its electrochemical properties with those of the borates which we have prepared. We were able to get crystals of this so far structurally uncharacterized borate Li(CH3CN)4[B(NCS)4]. The borate Li(CH3CN)4[B(NCS)4] was synthesized from BF3(OEt2) and Li[NCS], as shown in Figure 1.

The crystal structure of [Li(CH3CN)4]+[B(NCS)4]- is composed of discrete cations and anions (Fig. 2). Both the Li and B centre, show a tetrahedral coordination by four equal ligands. The acetonitrile and the isothiocyanate ligands are linear. Whereas the bond angles at the boron centre [108.92 (18)° - 109.94 (16)°] are very close to the ideal tetrahedral value, the bond angles around the Li centre [106.15 (17)° - 113.70 (17)°] show larger deviations from the ideal value.

Our group is interested in the synthesis of novel and improved electrolytes, namely borates with alkinyl or catecholate ligands, see: Lerner et al. (2007, 2012); Röder et al. (2008). For the preparation, see: Kleemann & Newman (1981).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Synthesis of Li(CH3CN)4[B(NCS)4]. (i) -3LiF; in CH3CN.
[Figure 2] Fig. 2. A perspective view of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
Tetraacetonitrilelithium tetraisothiocyanatoborate top
Crystal data top
[Li(C2H3N)4](C4BN4S4)F(000) = 1696
Mr = 414.29Dx = 1.269 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 13942 reflections
a = 21.219 (3) Åθ = 3.6–26.8°
b = 9.4756 (14) ŵ = 0.45 mm1
c = 21.596 (4) ÅT = 173 K
β = 92.845 (10)°Block, colourless
V = 4336.8 (12) Å30.35 × 0.29 × 0.15 mm
Z = 8
Data collection top
Stoe IPDS II two-circle
diffractometer
3816 independent reflections
Radiation source: Genix 3D IµS microfocus X-ray source2681 reflections with I > 2σ(I)
Genix 3D multilayer optics monochromatorRint = 0.074
ω scansθmax = 25.0°, θmin = 3.6°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 2525
Tmin = 0.858, Tmax = 0.936k = 1111
24466 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0478P)2]
where P = (Fo2 + 2Fc2)/3
3816 reflections(Δ/σ)max = 0.032
239 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Li(C2H3N)4](C4BN4S4)V = 4336.8 (12) Å3
Mr = 414.29Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.219 (3) ŵ = 0.45 mm1
b = 9.4756 (14) ÅT = 173 K
c = 21.596 (4) Å0.35 × 0.29 × 0.15 mm
β = 92.845 (10)°
Data collection top
Stoe IPDS II two-circle
diffractometer
3816 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
2681 reflections with I > 2σ(I)
Tmin = 0.858, Tmax = 0.936Rint = 0.074
24466 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 0.97Δρmax = 0.18 e Å3
3816 reflectionsΔρmin = 0.25 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.60133 (11)0.2457 (2)0.70356 (11)0.0313 (4)
N10.61748 (7)0.15384 (18)0.65017 (8)0.0385 (4)
C10.62999 (8)0.0914 (2)0.60595 (10)0.0353 (4)
S10.64743 (3)0.00457 (7)0.54619 (3)0.06209 (19)
N20.65695 (7)0.33656 (17)0.72237 (8)0.0378 (4)
C20.69788 (9)0.4127 (2)0.73635 (9)0.0384 (5)
S20.75423 (3)0.51599 (7)0.75594 (3)0.0673 (2)
N30.54597 (7)0.33778 (16)0.68497 (7)0.0355 (4)
C30.50357 (8)0.4078 (2)0.66964 (8)0.0346 (4)
S30.44491 (3)0.50352 (7)0.64826 (3)0.06058 (19)
N40.58433 (7)0.15490 (16)0.75811 (8)0.0355 (4)
C40.57138 (8)0.0892 (2)0.80105 (9)0.0349 (4)
S40.55383 (3)0.00256 (7)0.85961 (3)0.06261 (19)
Li10.34824 (15)0.4840 (3)0.44482 (16)0.0416 (8)
N50.42234 (8)0.6002 (2)0.47394 (8)0.0461 (4)
C510.46315 (9)0.6718 (2)0.48727 (9)0.0389 (5)
C520.51502 (11)0.7646 (3)0.50381 (13)0.0613 (7)
H52A0.54800.75360.47400.092*
H52B0.53230.74090.54550.092*
H52C0.50010.86250.50330.092*
N60.27497 (8)0.61203 (19)0.42481 (8)0.0464 (4)
C610.23575 (9)0.6908 (2)0.41537 (9)0.0386 (5)
C620.18563 (11)0.7913 (3)0.40324 (13)0.0620 (7)
H62A0.18190.85240.43950.093*
H62B0.14580.74100.39480.093*
H62C0.19520.84900.36720.093*
N70.32273 (8)0.36138 (19)0.51545 (9)0.0461 (4)
C710.30814 (8)0.3053 (2)0.55915 (10)0.0364 (4)
C720.28959 (12)0.2348 (3)0.61477 (11)0.0542 (6)
H72A0.31920.25940.64940.081*
H72B0.29010.13240.60830.081*
H72C0.24690.26470.62430.081*
N80.37312 (8)0.36597 (19)0.37288 (9)0.0444 (4)
C810.38851 (9)0.3023 (2)0.33200 (11)0.0398 (5)
C820.40806 (13)0.2207 (3)0.27914 (13)0.0646 (7)
H82A0.37160.17040.26030.097*
H82B0.44050.15250.29300.097*
H82C0.42530.28440.24850.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0281 (9)0.0337 (10)0.0321 (11)0.0005 (8)0.0013 (8)0.0031 (9)
N10.0373 (8)0.0408 (9)0.0376 (10)0.0027 (7)0.0043 (7)0.0003 (8)
C10.0313 (9)0.0317 (10)0.0429 (12)0.0012 (7)0.0029 (8)0.0024 (9)
S10.0764 (4)0.0521 (4)0.0592 (4)0.0026 (3)0.0184 (3)0.0211 (3)
N20.0326 (8)0.0397 (9)0.0408 (10)0.0015 (7)0.0002 (7)0.0026 (7)
C20.0355 (10)0.0433 (11)0.0362 (11)0.0007 (9)0.0006 (8)0.0079 (9)
S20.0574 (4)0.0733 (4)0.0692 (4)0.0323 (3)0.0161 (3)0.0098 (3)
N30.0304 (8)0.0381 (9)0.0379 (9)0.0059 (7)0.0014 (7)0.0063 (7)
C30.0363 (10)0.0379 (10)0.0299 (10)0.0035 (8)0.0042 (8)0.0033 (8)
S30.0462 (3)0.0712 (4)0.0640 (4)0.0258 (3)0.0017 (3)0.0165 (3)
N40.0356 (8)0.0364 (8)0.0345 (9)0.0019 (7)0.0018 (7)0.0053 (8)
C40.0346 (9)0.0342 (10)0.0358 (11)0.0057 (8)0.0012 (8)0.0002 (9)
S40.0843 (4)0.0581 (4)0.0470 (4)0.0039 (3)0.0194 (3)0.0217 (3)
Li10.0411 (16)0.0402 (18)0.0440 (19)0.0036 (15)0.0058 (14)0.0016 (16)
N50.0415 (9)0.0511 (11)0.0457 (11)0.0003 (8)0.0024 (8)0.0040 (8)
C510.0370 (10)0.0427 (11)0.0369 (11)0.0075 (9)0.0026 (8)0.0065 (9)
C520.0456 (14)0.0583 (15)0.0791 (19)0.0065 (10)0.0060 (13)0.0049 (13)
N60.0430 (9)0.0462 (10)0.0503 (11)0.0022 (8)0.0063 (8)0.0010 (8)
C610.0400 (10)0.0378 (11)0.0382 (11)0.0022 (9)0.0047 (8)0.0038 (9)
C620.0579 (14)0.0531 (14)0.0741 (18)0.0181 (11)0.0067 (13)0.0046 (13)
N70.0463 (9)0.0457 (10)0.0464 (11)0.0019 (8)0.0051 (8)0.0002 (9)
C710.0320 (9)0.0353 (10)0.0415 (12)0.0019 (8)0.0015 (8)0.0067 (9)
C720.0594 (14)0.0597 (15)0.0436 (13)0.0108 (11)0.0026 (11)0.0079 (11)
N80.0460 (9)0.0428 (10)0.0445 (11)0.0013 (8)0.0043 (8)0.0028 (9)
C810.0384 (10)0.0357 (11)0.0454 (13)0.0015 (8)0.0028 (9)0.0067 (10)
C820.0736 (17)0.0627 (16)0.0587 (16)0.0072 (13)0.0154 (13)0.0113 (13)
Geometric parameters (Å, º) top
B1—N11.498 (3)C52—H52A0.9800
B1—N21.501 (3)C52—H52B0.9800
B1—N31.502 (2)C52—H52C0.9800
B1—N41.516 (3)N6—C611.129 (2)
N1—C11.165 (3)C61—C621.442 (3)
C1—S11.589 (2)C62—H62A0.9800
N2—C21.158 (2)C62—H62B0.9800
C2—S21.586 (2)C62—H62C0.9800
N3—C31.153 (2)N7—C711.139 (3)
C3—S31.5900 (19)C71—C721.446 (3)
N4—C41.161 (2)C72—H72A0.9800
C4—S41.594 (2)C72—H72B0.9800
Li1—N51.995 (4)C72—H72C0.9800
Li1—N62.002 (4)N8—C811.131 (3)
Li1—N82.006 (4)C81—C821.456 (4)
Li1—N72.013 (4)C82—H82A0.9800
N5—C511.126 (2)C82—H82B0.9800
C51—C521.440 (3)C82—H82C0.9800
N1—B1—N2109.56 (18)H52A—C52—H52C109.5
N1—B1—N3109.73 (15)H52B—C52—H52C109.5
N2—B1—N3109.44 (15)C61—N6—Li1175.7 (2)
N1—B1—N4109.94 (16)N6—C61—C62179.9 (3)
N2—B1—N4109.24 (16)C61—C62—H62A109.5
N3—B1—N4108.92 (18)C61—C62—H62B109.5
C1—N1—B1174.95 (19)H62A—C62—H62B109.5
N1—C1—S1179.26 (19)C61—C62—H62C109.5
C2—N2—B1176.46 (18)H62A—C62—H62C109.5
N2—C2—S2179.5 (2)H62B—C62—H62C109.5
C3—N3—B1178.8 (2)C71—N7—Li1172.5 (2)
N3—C3—S3179.6 (2)N7—C71—C72179.7 (3)
C4—N4—B1177.82 (19)C71—C72—H72A109.5
N4—C4—S4179.3 (2)C71—C72—H72B109.5
N5—Li1—N6108.97 (17)H72A—C72—H72B109.5
N5—Li1—N8108.54 (17)C71—C72—H72C109.5
N6—Li1—N8113.70 (17)H72A—C72—H72C109.5
N5—Li1—N7108.48 (17)H72B—C72—H72C109.5
N6—Li1—N7106.15 (17)C81—N8—Li1178.0 (2)
N8—Li1—N7110.86 (17)N8—C81—C82179.7 (3)
C51—N5—Li1175.4 (2)C81—C82—H82A109.5
N5—C51—C52179.3 (2)C81—C82—H82B109.5
C51—C52—H52A109.5H82A—C82—H82B109.5
C51—C52—H52B109.5C81—C82—H82C109.5
H52A—C52—H52B109.5H82A—C82—H82C109.5
C51—C52—H52C109.5H82B—C82—H82C109.5

Experimental details

Crystal data
Chemical formula[Li(C2H3N)4](C4BN4S4)
Mr414.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)21.219 (3), 9.4756 (14), 21.596 (4)
β (°) 92.845 (10)
V3)4336.8 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.35 × 0.29 × 0.15
Data collection
DiffractometerStoe IPDS II two-circle
Absorption correctionMulti-scan
(X-AREA; Stoe & Cie, 2001)
Tmin, Tmax0.858, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
24466, 3816, 2681
Rint0.074
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.092, 0.97
No. of reflections3816
No. of parameters239
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.25

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds