Download citation
Download citation
link to html
The title compound, [Fe(C5H5)(C13H10NO2)], has been synthesized by the Claisen condensation reaction of acetyl­ferrocene and ethyl picolinate in the presence of sodium ethoxide. The enone structure is stabilized by a strong [OH...O=C] intra­molecular hydrogen bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805030102/ng6204sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805030102/ng6204Isup2.hkl
Contains datablock I

CCDC reference: 287671

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.039
  • wR factor = 0.130
  • Data-to-parameter ratio = 12.9

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT027_ALERT_3_B _diffrn_reflns_theta_full (too) Low ............ 24.98 Deg.
Alert level C PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C2 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Fe PLAT341_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 7
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Enaminones are important ligands in coordination chemistry (Doherty et al., 1999; Kim et al., 2001; Li et al., 2004). In continuation of our investigation of the chemistry of ferrocenyl enaminones, we have prepared the title compound, (I), as an intermediate, via the Claisen condensation of acetylferrocene and ethyl picolinate (Shi et al., 2004, 2005).

Ccompound (I) has been shown by 1H NMR spectroscopy to exist in solution in the enol and not the keto form. IR spectroscopy shows only the enol form in the solid state; this has been further confirmed in the present study of its crystal structure (Fig. 1).

As also noted in the related compound 1-ferrocenyl-3-hydroxylbut-2-en-1-one, (II) (Bell et al., 1992), the OC—CC—O fragment of the molecule of (I) is planar. The bond lengths indicate electron delocalization (Gilli et al., 2000). The OC—CC—O plane is twisted with respect to the pyridyl and cyclopentadienyl rings by 3.3 (2) and 9.4 (2)°, respectively. The two cyclopentadienyl rings in the ferrocenyl group are parallel [dihedral angle 1.5 (3)°] and adopt a staggered conformation. The C13—C14 bond, which is typical of a single bond (Csp2—Csp2), suggests that the pyridyl ring is not involved in the conjugation of the OC—CC—O moiety.

Unlike (II), as well as the intramolecular hydrogen bond [O—H···OC], intermolecular hydrogen bonds [C—H···OC] are also present in the crystal structure of (I) (Fig. 2, Table 2).

Experimental top

The title compound was synthesized by refluxing a tetrahydrofuran solution of acetylferrocene and ethyl picolinate in the presence of sodium ethoxide (1:1:1) for 4 h, as described previously (Reference?). Red crystals of (I) were obtained by slow evaporation from a CH2Cl2–petroleum ether (Ratio?) solution (m.p. 417.6–418.4 K). Spectroscopic analysis: IR (KBr, ν, cm−1): 3438.84 (m, OH), 3101.12 (s, CH), 1593.7 (vs, OC), 1546.10 (vs, CC); 1H NMR (600 MHz, CDCl3, δ, p.p.m.): 16.254 (1H, s, OH), 8.731, 8.149, 7.881, 7.440 (4H, 4m, pyridyl), 7.098 (1H, s, CH), 4.993, 4.599 (2H, 2H, 2m, C5H4), 4.246 (5H, s, C5H5).

Refinement top

All H atoms were placed in geometrically idealized positions and were treated as riding atoms, with C—H distances in the range 0.93–0.98 Å and O—H = 0.82 Å. Uiso(H) values were set at 1.2Ueq(C) and 1.5Ueq(Cmethyl, O).

Computing details top

Data collection: CAD-4 Software(Enraf–Nonius,1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). Dashed lines indicate hydrogen bonds.
(Z)-1-Ferrocenyl-3-hydroxyl-3-[(2-pyridyl)]prop-2-en-1-one top
Crystal data top
[Fe(C5H5)(C13H10NO2)]F(000) = 688
Mr = 333.16Dx = 1.509 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.547 (2) ÅCell parameters from 25 reflections
b = 12.804 (3) Åθ = 10–13°
c = 11.195 (2) ŵ = 1.03 mm1
β = 104.08 (3)°T = 295 K
V = 1466.4 (5) Å3Block, red
Z = 40.4 × 0.2 × 0.1 mm
Data collection top
Enraf–Nonius CAD4
diffractometer
1949 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω/2θ scansh = 012
Absorption correction: empirical (using intensity measurements)
via ψ scan (North et al., 1968)
k = 015
Tmin = 0.773, Tmax = 0.901l = 1312
2721 measured reflections3 standard reflections every 200 reflections
2577 independent reflections intensity decay: 0.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0533P)2 + 1.5624P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2577 reflectionsΔρmax = 0.44 e Å3
200 parametersΔρmin = 0.32 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0118 (16)
Crystal data top
[Fe(C5H5)(C13H10NO2)]V = 1466.4 (5) Å3
Mr = 333.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.547 (2) ŵ = 1.03 mm1
b = 12.804 (3) ÅT = 295 K
c = 11.195 (2) Å0.4 × 0.2 × 0.1 mm
β = 104.08 (3)°
Data collection top
Enraf–Nonius CAD4
diffractometer
1949 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ scan (North et al., 1968)
Rint = 0.045
Tmin = 0.773, Tmax = 0.9013 standard reflections every 200 reflections
2721 measured reflections intensity decay: 0.1%
2577 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0396 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.10Δρmax = 0.44 e Å3
2577 reflectionsΔρmin = 0.32 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.13150 (5)0.36429 (4)0.22403 (5)0.0429 (2)
O10.1953 (3)0.5468 (2)0.4846 (3)0.0687 (9)
O20.2936 (3)0.5039 (2)0.7051 (3)0.0685 (9)
H2O0.24390.53170.64580.103*
N0.5505 (3)0.3205 (3)0.7292 (3)0.0497 (8)
C10.0629 (5)0.2159 (4)0.1862 (6)0.0794 (16)
H10.10390.16030.14860.095*
C20.0854 (6)0.2382 (5)0.3135 (6)0.094 (2)
H20.14440.20020.38060.113*
C30.0055 (6)0.3236 (5)0.3263 (5)0.0831 (18)
H30.00070.35590.40410.100*
C40.0658 (4)0.3515 (4)0.2096 (5)0.0675 (13)
H40.12930.40870.19060.081*
C50.0297 (4)0.2876 (4)0.1246 (5)0.0685 (14)
H50.06370.29170.03510.082*
C60.1893 (5)0.4713 (4)0.1117 (4)0.0658 (13)
H60.14000.49070.02870.079*
C70.1765 (4)0.5182 (4)0.2228 (4)0.0593 (12)
H70.11880.57660.23010.071*
C80.2640 (4)0.4653 (3)0.3225 (4)0.0470 (10)
C90.3282 (4)0.3865 (4)0.2704 (4)0.0516 (10)
H90.39310.33730.31650.062*
C100.2820 (4)0.3902 (4)0.1407 (4)0.0641 (13)
H100.30860.34380.08160.077*
C110.2752 (4)0.4821 (3)0.4527 (4)0.0474 (9)
C120.3672 (4)0.4277 (3)0.5448 (4)0.0453 (9)
H120.42520.38180.52160.054*
C130.3725 (4)0.4412 (3)0.6665 (4)0.0477 (10)
C140.4659 (4)0.3844 (3)0.7660 (4)0.0430 (9)
C150.4637 (4)0.3953 (3)0.8882 (4)0.0555 (11)
H150.40390.44020.91030.067*
C160.5502 (5)0.3395 (4)0.9772 (4)0.0599 (12)
H160.55040.34641.05990.072*
C170.6362 (4)0.2733 (4)0.9410 (4)0.0577 (11)
H170.69460.23310.99840.069*
C180.6339 (4)0.2680 (4)0.8169 (4)0.0590 (11)
H180.69450.22490.79340.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.0391 (3)0.0488 (4)0.0411 (3)0.0027 (2)0.0105 (2)0.0049 (3)
O10.076 (2)0.0532 (19)0.072 (2)0.0291 (16)0.0094 (17)0.0068 (16)
O20.083 (2)0.061 (2)0.063 (2)0.0251 (17)0.0201 (17)0.0087 (16)
N0.0475 (19)0.0514 (19)0.051 (2)0.0008 (16)0.0138 (16)0.0006 (16)
C10.073 (3)0.052 (3)0.114 (5)0.013 (3)0.024 (3)0.011 (3)
C20.081 (4)0.088 (4)0.100 (4)0.028 (3)0.005 (3)0.046 (3)
C30.088 (4)0.107 (5)0.064 (3)0.043 (4)0.037 (3)0.009 (3)
C40.049 (3)0.088 (4)0.074 (3)0.010 (2)0.031 (2)0.006 (3)
C50.048 (3)0.087 (4)0.068 (3)0.011 (3)0.010 (2)0.026 (3)
C60.067 (3)0.081 (3)0.048 (3)0.012 (3)0.011 (2)0.021 (2)
C70.055 (2)0.046 (2)0.076 (3)0.003 (2)0.015 (2)0.023 (2)
C80.041 (2)0.042 (2)0.056 (2)0.0081 (17)0.0070 (18)0.0024 (18)
C90.038 (2)0.066 (3)0.052 (2)0.0005 (19)0.0130 (18)0.004 (2)
C100.053 (3)0.093 (4)0.051 (3)0.007 (3)0.023 (2)0.006 (2)
C110.048 (2)0.0346 (19)0.058 (3)0.0023 (17)0.0099 (19)0.0016 (18)
C120.045 (2)0.042 (2)0.047 (2)0.0026 (17)0.0071 (17)0.0024 (17)
C130.049 (2)0.035 (2)0.061 (3)0.0008 (17)0.0156 (19)0.0059 (18)
C140.045 (2)0.036 (2)0.047 (2)0.0074 (16)0.0103 (17)0.0043 (16)
C150.065 (3)0.049 (2)0.055 (3)0.005 (2)0.018 (2)0.006 (2)
C160.070 (3)0.062 (3)0.046 (2)0.008 (2)0.011 (2)0.002 (2)
C170.048 (2)0.059 (3)0.062 (3)0.007 (2)0.004 (2)0.008 (2)
C180.046 (2)0.059 (3)0.067 (3)0.002 (2)0.006 (2)0.001 (2)
Geometric parameters (Å, º) top
Fe—C22.021 (5)C5—H50.9800
Fe—C32.022 (5)C6—C101.409 (7)
Fe—C82.022 (4)C6—C71.417 (7)
Fe—C72.027 (4)C6—H60.9800
Fe—C92.032 (4)C7—C81.434 (6)
Fe—C12.040 (5)C7—H70.9800
Fe—C52.043 (4)C8—C91.417 (6)
Fe—C62.050 (4)C8—C111.450 (6)
Fe—C102.055 (4)C9—C101.416 (6)
Fe—C42.055 (4)C9—H90.9800
O1—C111.293 (5)C10—H100.9800
O2—C131.303 (5)C11—C121.415 (5)
O2—H2O0.8200C12—C131.361 (6)
N—C181.330 (5)C12—H120.9300
N—C141.347 (5)C13—C141.484 (6)
C1—C51.394 (7)C14—C151.382 (6)
C1—C21.416 (9)C15—C161.376 (6)
C1—H10.9800C15—H150.9300
C2—C31.408 (9)C16—C171.372 (6)
C2—H20.9800C16—H160.9300
C3—C41.387 (8)C17—C181.385 (6)
C3—H30.9800C17—H170.9300
C4—C51.378 (7)C18—H180.9300
C4—H40.9800
C2—Fe—C340.8 (3)C5—C4—Fe69.9 (3)
C2—Fe—C8117.3 (2)C3—C4—Fe68.9 (3)
C3—Fe—C8108.5 (2)C5—C4—H4125.7
C2—Fe—C7149.8 (3)C3—C4—H4125.7
C3—Fe—C7116.2 (2)Fe—C4—H4125.7
C8—Fe—C741.46 (17)C4—C5—C1109.2 (5)
C2—Fe—C9109.8 (2)C4—C5—Fe70.8 (3)
C3—Fe—C9131.4 (2)C1—C5—Fe69.9 (3)
C8—Fe—C940.92 (17)C4—C5—H5125.4
C7—Fe—C968.89 (18)C1—C5—H5125.4
C2—Fe—C140.8 (3)Fe—C5—H5125.4
C3—Fe—C168.2 (2)C10—C6—C7108.6 (4)
C8—Fe—C1150.6 (2)C10—C6—Fe70.1 (3)
C7—Fe—C1167.2 (2)C7—C6—Fe68.8 (2)
C9—Fe—C1118.1 (2)C10—C6—H6125.7
C2—Fe—C567.5 (2)C7—C6—H6125.7
C3—Fe—C567.1 (2)Fe—C6—H6125.7
C8—Fe—C5167.82 (19)C6—C7—C8107.6 (4)
C7—Fe—C5129.0 (2)C6—C7—Fe70.5 (3)
C9—Fe—C5150.33 (19)C8—C7—Fe69.1 (2)
C1—Fe—C539.9 (2)C6—C7—H7126.2
C2—Fe—C6168.9 (3)C8—C7—H7126.2
C3—Fe—C6148.7 (3)Fe—C7—H7126.2
C8—Fe—C668.79 (18)C9—C8—C7107.3 (4)
C7—Fe—C640.7 (2)C9—C8—C11126.1 (4)
C9—Fe—C668.04 (18)C7—C8—C11126.3 (4)
C1—Fe—C6129.7 (2)C9—C8—Fe69.9 (2)
C5—Fe—C6108.6 (2)C7—C8—Fe69.5 (2)
C2—Fe—C10131.3 (3)C11—C8—Fe121.3 (3)
C3—Fe—C10170.2 (2)C10—C9—C8108.6 (4)
C8—Fe—C1068.69 (19)C10—C9—Fe70.6 (2)
C7—Fe—C1068.4 (2)C8—C9—Fe69.2 (2)
C9—Fe—C1040.54 (17)C10—C9—H9125.7
C1—Fe—C10109.3 (2)C8—C9—H9125.7
C5—Fe—C10117.6 (2)Fe—C9—H9125.7
C6—Fe—C1040.1 (2)C6—C10—C9107.9 (4)
C2—Fe—C467.3 (2)C6—C10—Fe69.8 (3)
C3—Fe—C439.8 (2)C9—C10—Fe68.9 (2)
C8—Fe—C4130.24 (19)C6—C10—H10126.0
C7—Fe—C4108.1 (2)C9—C10—H10126.0
C9—Fe—C4169.37 (18)Fe—C10—H10126.0
C1—Fe—C467.0 (2)O1—C11—C8118.3 (4)
C5—Fe—C439.30 (19)O1—C11—C12119.5 (4)
C6—Fe—C4116.8 (2)C8—C11—C12122.2 (4)
C10—Fe—C4149.0 (2)C11—C12—C13121.4 (4)
C13—O2—H2O109.5C13—C12—H12119.3
C18—N—C14116.7 (4)C11—C12—H12119.3
C5—C1—C2106.9 (5)O2—C13—C12122.4 (4)
C5—C1—Fe70.2 (3)O2—C13—C14114.5 (4)
C2—C1—Fe68.9 (3)C12—C13—C14123.2 (4)
C5—C1—H1126.5N—C14—C15122.5 (4)
C2—C1—H1126.5N—C14—C13115.9 (3)
Fe—C1—H1126.5C15—C14—C13121.7 (4)
C3—C2—C1107.5 (5)C16—C15—C14119.7 (4)
C3—C2—Fe69.7 (3)C16—C15—H15120.1
C1—C2—Fe70.3 (3)C14—C15—H15120.1
C3—C2—H2126.2C17—C16—C15118.5 (4)
C1—C2—H2126.2C17—C16—H16120.8
Fe—C2—H2126.2C15—C16—H16120.8
C4—C3—C2107.8 (5)C16—C17—C18118.3 (4)
C4—C3—Fe71.4 (3)C16—C17—H17120.8
C2—C3—Fe69.6 (3)C18—C17—H17120.8
C4—C3—H3126.1N—C18—C17124.3 (4)
C2—C3—H3126.1N—C18—H18117.9
Fe—C3—H3126.1C17—C18—H18117.9
C5—C4—C3108.6 (5)
C2—Fe—C1—C5118.1 (5)C10—C6—C7—Fe59.0 (3)
C3—Fe—C1—C579.8 (4)C2—Fe—C7—C6173.8 (4)
C8—Fe—C1—C5169.2 (3)C3—Fe—C7—C6152.6 (3)
C7—Fe—C1—C533.0 (11)C8—Fe—C7—C6118.6 (4)
C9—Fe—C1—C5153.7 (3)C9—Fe—C7—C680.5 (3)
C6—Fe—C1—C569.9 (4)C1—Fe—C7—C645.2 (10)
C10—Fe—C1—C5110.2 (3)C5—Fe—C7—C671.9 (4)
C4—Fe—C1—C536.7 (3)C10—Fe—C7—C636.8 (3)
C3—Fe—C1—C238.3 (4)C4—Fe—C7—C6110.4 (3)
C8—Fe—C1—C251.1 (6)C2—Fe—C7—C855.2 (5)
C7—Fe—C1—C2151.1 (9)C3—Fe—C7—C888.8 (3)
C9—Fe—C1—C288.2 (4)C9—Fe—C7—C838.2 (2)
C5—Fe—C1—C2118.1 (5)C1—Fe—C7—C8163.8 (9)
C6—Fe—C1—C2172.0 (4)C5—Fe—C7—C8169.5 (3)
C10—Fe—C1—C2131.7 (4)C6—Fe—C7—C8118.6 (4)
C4—Fe—C1—C281.4 (4)C10—Fe—C7—C881.8 (3)
C5—C1—C2—C30.2 (6)C4—Fe—C7—C8131.0 (3)
Fe—C1—C2—C360.0 (4)C6—C7—C8—C90.3 (5)
C5—C1—C2—Fe60.1 (4)Fe—C7—C8—C959.9 (3)
C8—Fe—C2—C387.1 (4)C6—C7—C8—C11174.7 (4)
C7—Fe—C2—C349.4 (6)Fe—C7—C8—C11114.4 (4)
C9—Fe—C2—C3131.3 (3)C6—C7—C8—Fe60.3 (3)
C1—Fe—C2—C3118.3 (5)C2—Fe—C8—C989.3 (4)
C5—Fe—C2—C380.5 (4)C3—Fe—C8—C9132.7 (3)
C6—Fe—C2—C3152.0 (10)C7—Fe—C8—C9118.4 (4)
C10—Fe—C2—C3171.9 (3)C1—Fe—C8—C954.4 (5)
C4—Fe—C2—C337.8 (3)C5—Fe—C8—C9160.5 (9)
C3—Fe—C2—C1118.3 (5)C6—Fe—C8—C980.5 (3)
C8—Fe—C2—C1154.6 (3)C10—Fe—C8—C937.3 (3)
C7—Fe—C2—C1167.7 (4)C4—Fe—C8—C9171.7 (3)
C9—Fe—C2—C1110.5 (3)C2—Fe—C8—C7152.3 (3)
C5—Fe—C2—C137.8 (3)C3—Fe—C8—C7108.9 (3)
C6—Fe—C2—C133.7 (13)C9—Fe—C8—C7118.4 (4)
C10—Fe—C2—C169.8 (4)C1—Fe—C8—C7172.8 (4)
C4—Fe—C2—C180.5 (4)C5—Fe—C8—C742.1 (10)
C1—C2—C3—C41.1 (6)C6—Fe—C8—C737.8 (3)
Fe—C2—C3—C461.5 (4)C10—Fe—C8—C781.1 (3)
C1—C2—C3—Fe60.4 (4)C4—Fe—C8—C770.0 (4)
C2—Fe—C3—C4118.0 (5)C2—Fe—C8—C1131.5 (4)
C8—Fe—C3—C4131.4 (3)C3—Fe—C8—C1111.9 (4)
C7—Fe—C3—C487.2 (4)C7—Fe—C8—C11120.8 (4)
C9—Fe—C3—C4171.4 (3)C9—Fe—C8—C11120.8 (4)
C1—Fe—C3—C479.7 (4)C1—Fe—C8—C1166.4 (6)
C5—Fe—C3—C436.4 (3)C5—Fe—C8—C1178.7 (10)
C6—Fe—C3—C452.0 (6)C6—Fe—C8—C11158.7 (4)
C8—Fe—C3—C2110.5 (4)C10—Fe—C8—C11158.1 (4)
C7—Fe—C3—C2154.8 (3)C4—Fe—C8—C1150.8 (4)
C9—Fe—C3—C270.6 (4)C7—C8—C9—C100.1 (5)
C1—Fe—C3—C238.3 (3)C11—C8—C9—C10174.5 (4)
C5—Fe—C3—C281.6 (4)Fe—C8—C9—C1059.8 (3)
C6—Fe—C3—C2170.0 (4)C7—C8—C9—Fe59.7 (3)
C4—Fe—C3—C2118.0 (5)C11—C8—C9—Fe114.7 (4)
C2—C3—C4—C51.6 (6)C2—Fe—C9—C10131.2 (4)
Fe—C3—C4—C558.7 (4)C8—Fe—C9—C10119.7 (4)
C2—C3—C4—Fe60.3 (4)C7—Fe—C9—C1081.0 (3)
C2—Fe—C4—C581.7 (4)C1—Fe—C9—C1087.2 (4)
C3—Fe—C4—C5120.4 (5)C5—Fe—C9—C1052.1 (5)
C8—Fe—C4—C5171.0 (3)C6—Fe—C9—C1037.2 (3)
C7—Fe—C4—C5130.2 (3)C4—Fe—C9—C10156.6 (10)
C9—Fe—C4—C5158.0 (10)C2—Fe—C9—C8109.1 (3)
C1—Fe—C4—C537.2 (3)C3—Fe—C9—C868.2 (4)
C6—Fe—C4—C587.0 (4)C7—Fe—C9—C838.6 (3)
C10—Fe—C4—C552.1 (6)C1—Fe—C9—C8153.1 (3)
C2—Fe—C4—C338.7 (4)C5—Fe—C9—C8171.8 (4)
C8—Fe—C4—C368.6 (4)C6—Fe—C9—C882.5 (3)
C7—Fe—C4—C3109.5 (4)C10—Fe—C9—C8119.7 (4)
C9—Fe—C4—C337.6 (12)C4—Fe—C9—C836.9 (12)
C1—Fe—C4—C383.1 (4)C7—C6—C10—C90.3 (5)
C5—Fe—C4—C3120.4 (5)Fe—C6—C10—C958.5 (3)
C6—Fe—C4—C3152.7 (4)C7—C6—C10—Fe58.2 (3)
C10—Fe—C4—C3172.5 (4)C8—C9—C10—C60.1 (5)
C3—C4—C5—C11.5 (6)Fe—C9—C10—C659.0 (3)
Fe—C4—C5—C159.6 (3)C8—C9—C10—Fe58.9 (3)
C3—C4—C5—Fe58.1 (4)C2—Fe—C10—C6169.9 (3)
C2—C1—C5—C40.8 (6)C8—Fe—C10—C682.0 (3)
Fe—C1—C5—C460.2 (4)C7—Fe—C10—C637.2 (3)
C2—C1—C5—Fe59.3 (4)C9—Fe—C10—C6119.6 (4)
C2—Fe—C5—C481.2 (4)C1—Fe—C10—C6129.3 (3)
C3—Fe—C5—C436.8 (4)C5—Fe—C10—C686.6 (4)
C8—Fe—C5—C434.3 (11)C4—Fe—C10—C652.2 (5)
C7—Fe—C5—C469.1 (4)C2—Fe—C10—C970.5 (4)
C9—Fe—C5—C4172.0 (4)C8—Fe—C10—C937.6 (3)
C1—Fe—C5—C4119.8 (5)C7—Fe—C10—C982.4 (3)
C6—Fe—C5—C4109.9 (4)C1—Fe—C10—C9111.1 (3)
C10—Fe—C5—C4152.7 (3)C5—Fe—C10—C9153.8 (3)
C2—Fe—C5—C138.6 (4)C6—Fe—C10—C9119.6 (4)
C3—Fe—C5—C183.0 (4)C4—Fe—C10—C9171.8 (4)
C8—Fe—C5—C1154.1 (8)C9—C8—C11—O1169.6 (4)
C7—Fe—C5—C1171.1 (3)C7—C8—C11—O13.8 (6)
C9—Fe—C5—C152.2 (6)Fe—C8—C11—O182.6 (4)
C6—Fe—C5—C1130.3 (4)C9—C8—C11—C128.3 (6)
C10—Fe—C5—C187.5 (4)C7—C8—C11—C12178.4 (4)
C4—Fe—C5—C1119.8 (5)Fe—C8—C11—C1295.2 (4)
C2—Fe—C6—C1043.4 (12)O1—C11—C12—C130.7 (6)
C8—Fe—C6—C1081.7 (3)C8—C11—C12—C13177.1 (4)
C7—Fe—C6—C10120.3 (4)C11—C12—C13—O20.4 (6)
C9—Fe—C6—C1037.5 (3)C11—C12—C13—C14179.0 (4)
C1—Fe—C6—C1071.5 (4)C18—N—C14—C150.4 (6)
C5—Fe—C6—C10111.0 (3)C18—N—C14—C13179.2 (3)
C4—Fe—C6—C10152.8 (3)O2—C13—C14—N178.7 (3)
C2—Fe—C6—C7163.7 (10)C12—C13—C14—N2.6 (6)
C3—Fe—C6—C752.5 (5)O2—C13—C14—C152.5 (5)
C8—Fe—C6—C738.6 (3)C12—C13—C14—C15176.2 (4)
C9—Fe—C6—C782.7 (3)N—C14—C15—C160.1 (6)
C1—Fe—C6—C7168.2 (3)C13—C14—C15—C16178.6 (4)
C5—Fe—C6—C7128.8 (3)C14—C15—C16—C170.5 (7)
C10—Fe—C6—C7120.3 (4)C15—C16—C17—C181.6 (7)
C4—Fe—C6—C786.9 (3)C14—N—C18—C171.6 (6)
C10—C6—C7—C80.4 (5)C16—C17—C18—N2.3 (7)
Fe—C6—C7—C859.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O10.821.762.495 (5)148
C4—H4···O2i0.982.573.351 (6)137
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C13H10NO2)]
Mr333.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.547 (2), 12.804 (3), 11.195 (2)
β (°) 104.08 (3)
V3)1466.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.4 × 0.2 × 0.1
Data collection
DiffractometerEnraf–Nonius CAD4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
via ψ scan (North et al., 1968)
Tmin, Tmax0.773, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
2721, 2577, 1949
Rint0.045
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.130, 1.10
No. of reflections2577
No. of parameters200
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.32

Computer programs: CAD-4 Software(Enraf–Nonius,1989), CAD-4 Software, XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), PLATON.

Selected geometric parameters (Å, º) top
O1—C111.293 (5)C11—C121.415 (5)
O2—C131.303 (5)C12—C131.361 (6)
C8—C111.450 (6)C13—C141.484 (6)
O1—C11—C8118.3 (4)O2—C13—C12122.4 (4)
O1—C11—C12119.5 (4)O2—C13—C14114.5 (4)
C8—C11—C12122.2 (4)C12—C13—C14123.2 (4)
C11—C12—C13121.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O10.821.762.495 (5)148
C4—H4···O2i0.982.573.351 (6)137
Symmetry code: (i) x, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds