Download citation
Download citation
link to html
In the title complex, [Cu(C14H13N2O2)2], the CuII ion is located on a crystallographic inversion center. The complex thus adopts a square-planar trans-[CuN2O2] coordination geometry, with the CuII ion coordinated by two 2-meth­oxy-6-(3-pyridylmethyl­imino­meth­yl)phenolate (Schiff base) ligands. The aryl and pyridyl rings in the Schiff base are almost perpendicular to each other, with a dihedral angle of 87.61 (6)° between the planes of the two six-membered rings. The pyridyl ring was refined using a disorder model with approximately 70% occupancy for the major component

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536809052349/nk2015sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536809052349/nk2015Isup2.hkl
Contains datablock I

CCDC reference: 766663

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • Disorder in main residue
  • R factor = 0.037
  • wR factor = 0.094
  • Data-to-parameter ratio = 12.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C11 PLAT366_ALERT_2_C Short? C(sp?)-C(sp?) Bond C10 - C11 ... 1.36 Ang. PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.595 35
Alert level G PLAT301_ALERT_3_G Note: Main Residue Disorder ................... 9.00 Perc. PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 3 N1 -CU1 -N1 -C1 14.00 0.00 2.666 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 6 N1 -CU1 -N1 -C9 3.00 0.00 2.666 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 39 O1 -CU1 -O1 -C3 1.00 0.00 2.666 1.555 1.555 1.555
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Recent developments in functional switching materials (Sato et al., 2003) have shown that a good way to discover candidate metal complexes is to examine compounds that show any changes between two or more states, such as structural phase transitions, isomerism, mixed valences and spin-crossover. In this respect, bis-(N-alkysalicylideneimine)copper(II) complexes have potential for induced structural phase transitions (Yamada, 1999) and the structural isomers can be isolated (Chia et al., 1997).

Herein, we reported a new crystal strucure of the title compound (I). The stucture of (I) is shown in Fig.1. It can be clearly seen that this compound possesses a slightly distorted square-planar trans-[CuN2O2] coordination geomentry with the CuII ion located on a crystallographic inversion center. In addition, the phenyl ring is almost on the same plane with the [CuN2O2] square plane with a dihedral angle of approximately 6.293° between the two planes, while the pyridyl ring is nearly vertical with the [CuN2O2] square plane with a dihedral angle of approximately 83.12°. The pyridyl ring was refined using a two-part disorder model, interchanging the positions of N2 and C13 with approximately 70% occupancy for the major component; this conformation is the most likely according to the ring geometry and the surrounding environment.

Related literature top

For recent developments in functional switching materials, see: Sato et al. (2003). Bis-(N-alkysalicylideneimine)copper(II) complexes for induced structural phase transitions, see: Yamada (1999), and the structural isomers can be isolated, see: Chia et al. (1997). For related literature, see: You & Zhu (2004).

Experimental top

The title compound was synthesized by Cu(NO3)2.3H2O and Schiff base ligand 2-methoxy-6-[(pyridin-3-ylmethylimino)-methyl]-phenol. All chemicals used (reagent grade) were commercially available. 2-Hydroxy-3-methoxy-benzaldehyde(0.108 g, 1 mmol) was dissolved in ethanol (5 mL) and ethanol solution (5 ml) containing 2-aminoethylpyri dine (0.152 g, 1 mmol) was added slowly with stirring. The resulting yellow solution was continuously stirred for about 30 min. at room temperature, and then Cu(NO3)2.3H2O (0.241 g, 1 mmol) in aqueous solution (5 ml) was added with stirring at room temperature. Brown crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature over several days.

Refinement top

H atoms were placed in geometrical positions and refined using a riding model, with C—H distances in the range 0.93–0.97Å and Uiso(H) =1.5Ueq(C) for methyl groups and Uiso(H) =1.2Ueq(C) for all others. The N2 and C13 atoms in the pyridyl ring was refined using a disorder model with approximately 70% occupancy for the major component

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.All hydrogen atoms and the minor disorder component are omitted for clarity. [Symmetry code A: -x + 1, -y + 1, -z + 1]
Bis[2-methoxy-6-(3-pyridylmethyliminomethyl)phenolato- κ2N,O]copper(II) top
Crystal data top
[Cu(C14H13N2O2)2]Z = 1
Mr = 546.07F(000) = 283
Triclinic, P1Dx = 1.491 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.175 (1) ÅCell parameters from 13380 reflections
b = 10.7291 (14) Åθ = 3.0–25.0°
c = 11.4369 (15) ŵ = 0.94 mm1
α = 99.689 (1)°T = 298 K
β = 91.361 (1)°Prism, brown
γ = 103.241 (2)°0.47 × 0.40 × 0.29 mm
V = 608.03 (16) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
2101 independent reflections
Radiation source: sealed tube1908 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 1.8°
Thin–slice ω scansh = 56
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1112
Tmin = 0.666, Tmax = 0.772l = 1313
3054 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0374P)2 + 0.3354P]
where P = (Fo2 + 2Fc2)/3
2101 reflections(Δ/σ)max < 0.001
171 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cu(C14H13N2O2)2]γ = 103.241 (2)°
Mr = 546.07V = 608.03 (16) Å3
Triclinic, P1Z = 1
a = 5.175 (1) ÅMo Kα radiation
b = 10.7291 (14) ŵ = 0.94 mm1
c = 11.4369 (15) ÅT = 298 K
α = 99.689 (1)°0.47 × 0.40 × 0.29 mm
β = 91.361 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2101 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1908 reflections with I > 2σ(I)
Tmin = 0.666, Tmax = 0.772Rint = 0.021
3054 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.09Δρmax = 0.23 e Å3
2101 reflectionsΔρmin = 0.40 e Å3
171 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.50000.50000.50000.03467 (17)
N10.5603 (4)0.3229 (2)0.44427 (19)0.0374 (5)
C10.4647 (5)0.2520 (3)0.3428 (2)0.0396 (6)
H10.52770.17750.32010.048*
C20.2735 (5)0.2746 (3)0.2613 (2)0.0386 (6)
C30.1569 (5)0.3815 (3)0.2862 (2)0.0352 (6)
C40.0381 (5)0.3930 (3)0.2004 (2)0.0405 (6)
C50.0989 (6)0.3047 (3)0.0952 (3)0.0501 (8)
H50.22330.31440.03950.060*
C60.0245 (6)0.2009 (3)0.0715 (3)0.0549 (8)
H60.01750.14230.00020.066*
C70.2054 (6)0.1856 (3)0.1523 (3)0.0503 (7)
H70.28570.11600.13620.060*
C80.3148 (6)0.5261 (4)0.1431 (3)0.0615 (9)
H8A0.21390.54220.07550.092*
H8B0.37570.60210.17510.092*
H8C0.46500.45400.11910.092*
C90.7366 (6)0.2684 (3)0.5141 (2)0.0413 (6)
H9A0.88540.33760.55120.050*
H9B0.80680.20520.46140.050*
C100.7083 (8)0.2181 (3)0.7196 (3)0.0675 (10)
H100.87600.27430.73540.081*
C110.5900 (5)0.2036 (2)0.6089 (2)0.0386 (6)
C120.3393 (7)0.1225 (4)0.5890 (3)0.0689 (10)
H120.24800.10870.51510.083*
N20.6057 (10)0.1590 (4)0.8074 (3)0.0946 (16)0.70 (4)
C130.2220 (8)0.0611 (4)0.6786 (5)0.0910 (17)0.70 (4)
H13A0.05300.00570.66580.109*0.70 (4)
N2'0.2220 (8)0.0611 (4)0.6786 (5)0.0910 (17)0.30 (4)
C13'0.6057 (10)0.1590 (4)0.8074 (3)0.0946 (16)0.30 (4)
H13B0.69240.16800.87360.113*0.30 (4)
C140.3650 (12)0.0834 (5)0.7849 (4)0.0863 (14)
H140.28560.04190.84460.104*
O10.2170 (4)0.47043 (18)0.38216 (16)0.0423 (5)
O20.1501 (4)0.4964 (2)0.23188 (18)0.0514 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0353 (3)0.0383 (3)0.0307 (3)0.00863 (19)0.00441 (18)0.00810 (19)
N10.0374 (12)0.0430 (13)0.0360 (12)0.0136 (10)0.0011 (9)0.0134 (10)
C10.0449 (16)0.0396 (15)0.0368 (15)0.0137 (12)0.0045 (12)0.0083 (12)
C20.0395 (15)0.0416 (15)0.0320 (14)0.0029 (12)0.0028 (11)0.0080 (11)
C30.0314 (14)0.0420 (15)0.0303 (14)0.0018 (11)0.0006 (10)0.0107 (11)
C40.0332 (14)0.0480 (16)0.0386 (15)0.0008 (12)0.0024 (11)0.0152 (13)
C50.0418 (17)0.068 (2)0.0350 (15)0.0004 (15)0.0078 (12)0.0134 (14)
C60.057 (2)0.065 (2)0.0332 (16)0.0014 (16)0.0042 (14)0.0019 (14)
C70.0575 (19)0.0477 (17)0.0406 (16)0.0074 (14)0.0005 (14)0.0011 (13)
C80.0455 (18)0.080 (2)0.065 (2)0.0112 (16)0.0111 (15)0.0360 (18)
C90.0396 (16)0.0445 (15)0.0444 (16)0.0183 (12)0.0024 (12)0.0100 (12)
C100.081 (3)0.063 (2)0.048 (2)0.0061 (19)0.0108 (17)0.0142 (17)
C110.0462 (16)0.0346 (14)0.0396 (15)0.0188 (12)0.0011 (12)0.0075 (11)
C120.054 (2)0.087 (3)0.067 (2)0.0038 (19)0.0113 (17)0.036 (2)
N20.138 (4)0.090 (3)0.049 (2)0.004 (3)0.003 (2)0.0261 (19)
C130.063 (3)0.084 (3)0.140 (5)0.015 (2)0.026 (3)0.058 (3)
N2'0.063 (3)0.084 (3)0.140 (5)0.015 (2)0.026 (3)0.058 (3)
C13'0.138 (4)0.090 (3)0.049 (2)0.004 (3)0.003 (2)0.0261 (19)
C140.125 (4)0.081 (3)0.080 (3)0.052 (3)0.049 (3)0.046 (3)
O10.0422 (11)0.0475 (11)0.0375 (10)0.0166 (9)0.0117 (8)0.0017 (9)
O20.0450 (12)0.0587 (13)0.0516 (12)0.0133 (10)0.0159 (9)0.0141 (10)
Geometric parameters (Å, º) top
Cu1—O11.9005 (18)C8—O21.432 (3)
Cu1—O1i1.9005 (18)C8—H8A0.9600
Cu1—N1i1.997 (2)C8—H8B0.9600
Cu1—N11.997 (2)C8—H8C0.9600
N1—C11.294 (3)C9—C111.512 (4)
N1—C91.476 (3)C9—H9A0.9700
C1—C21.432 (4)C9—H9B0.9700
C1—H10.9300C10—N21.333 (5)
C2—C31.406 (4)C10—C111.362 (4)
C2—C71.418 (4)C10—H100.9300
C3—O11.306 (3)C11—C121.377 (4)
C3—C41.431 (4)C12—C131.389 (5)
C4—O21.366 (3)C12—H120.9301
C4—C51.381 (4)N2—C141.314 (7)
C5—C61.397 (4)N2—H13B0.8506
C5—H50.9300C13—C141.364 (7)
C6—C71.356 (4)C13—H13A0.9305
C6—H60.9300C14—H140.9300
C7—H70.9300
O1—Cu1—O1i180.000 (1)O2—C8—H8B109.5
O1—Cu1—N1i88.69 (8)H8A—C8—H8B109.5
O1i—Cu1—N1i91.31 (8)O2—C8—H8C109.5
O1—Cu1—N191.31 (8)H8A—C8—H8C109.5
O1i—Cu1—N188.69 (8)H8B—C8—H8C109.5
N1i—Cu1—N1180.000 (1)N1—C9—C11111.4 (2)
C1—N1—C9115.3 (2)N1—C9—H9A109.3
C1—N1—Cu1123.32 (19)C11—C9—H9A109.3
C9—N1—Cu1121.18 (18)N1—C9—H9B109.3
N1—C1—C2127.6 (3)C11—C9—H9B109.3
N1—C1—H1116.2H9A—C9—H9B108.0
C2—C1—H1116.2N2—C10—C11125.9 (4)
C3—C2—C7120.3 (3)N2—C10—H10117.1
C3—C2—C1121.9 (2)C11—C10—H10117.0
C7—C2—C1117.8 (3)C10—C11—C12115.8 (3)
O1—C3—C2124.0 (2)C10—C11—C9120.7 (3)
O1—C3—C4118.5 (2)C12—C11—C9123.4 (3)
C2—C3—C4117.5 (2)C11—C12—C13120.2 (4)
O2—C4—C5124.9 (3)C11—C12—H12119.9
O2—C4—C3114.6 (2)C13—C12—H12119.8
C5—C4—C3120.5 (3)C14—N2—C10116.2 (4)
C4—C5—C6120.7 (3)C14—N2—H13B121.7
C4—C5—H5119.6C10—N2—H13B122.0
C6—C5—H5119.6C14—C13—C12117.6 (4)
C7—C6—C5120.1 (3)C14—C13—H13A121.5
C7—C6—H6119.9C12—C13—H13A120.9
C5—C6—H6119.9N2—C14—C13124.1 (4)
C6—C7—C2120.8 (3)N2—C14—H14118.6
C6—C7—H7119.6C13—C14—H14117.3
C2—C7—H7119.6C3—O1—Cu1129.26 (17)
O2—C8—H8A109.5C4—O2—C8117.5 (2)
O1—Cu1—N1—C115.6 (2)C3—C2—C7—C61.0 (4)
O1i—Cu1—N1—C1164.4 (2)C1—C2—C7—C6179.6 (3)
N1i—Cu1—N1—C1141 (100)C1—N1—C9—C1199.3 (3)
O1—Cu1—N1—C9169.17 (19)Cu1—N1—C9—C1185.1 (2)
O1i—Cu1—N1—C910.83 (19)N2—C10—C11—C121.6 (6)
N1i—Cu1—N1—C934 (100)N2—C10—C11—C9175.3 (4)
C9—N1—C1—C2174.5 (2)N1—C9—C11—C10139.2 (3)
Cu1—N1—C1—C29.9 (4)N1—C9—C11—C1244.1 (4)
N1—C1—C2—C31.8 (4)C10—C11—C12—C130.1 (5)
N1—C1—C2—C7177.6 (3)C9—C11—C12—C13176.7 (3)
C7—C2—C3—O1177.1 (2)C11—C10—N2—C142.3 (7)
C1—C2—C3—O12.2 (4)C11—C12—C13—C140.7 (6)
C7—C2—C3—C42.5 (4)C10—N2—C14—C131.4 (7)
C1—C2—C3—C4178.1 (2)C12—C13—C14—N20.0 (7)
O1—C3—C4—O22.5 (3)C2—C3—O1—Cu110.5 (4)
C2—C3—C4—O2177.9 (2)C4—C3—O1—Cu1169.14 (17)
O1—C3—C4—C5177.0 (2)O1i—Cu1—O1—C312 (100)
C2—C3—C4—C52.7 (4)N1i—Cu1—O1—C3163.5 (2)
O2—C4—C5—C6179.3 (3)N1—Cu1—O1—C316.5 (2)
C3—C4—C5—C61.3 (4)C5—C4—O2—C89.1 (4)
C4—C5—C6—C70.3 (4)C3—C4—O2—C8170.4 (2)
C5—C6—C7—C20.5 (5)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C14H13N2O2)2]
Mr546.07
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.175 (1), 10.7291 (14), 11.4369 (15)
α, β, γ (°)99.689 (1), 91.361 (1), 103.241 (2)
V3)608.03 (16)
Z1
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.47 × 0.40 × 0.29
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.666, 0.772
No. of measured, independent and
observed [I > 2σ(I)] reflections
3054, 2101, 1908
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.09
No. of reflections2101
No. of parameters171
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.40

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O11.9005 (18)Cu1—N1i1.997 (2)
Cu1—O1i1.9005 (18)Cu1—N11.997 (2)
O1—Cu1—N1i88.69 (8)O1—Cu1—N191.31 (8)
O1i—Cu1—N1i91.31 (8)O1i—Cu1—N188.69 (8)
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds