Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680905332X/nk2019sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S160053680905332X/nk2019Isup2.hkl |
CCDC reference: 766844
Key indicators
- Single-crystal X-ray study
- T = 90 K
- Mean (C-C) = 0.002 Å
- R factor = 0.032
- wR factor = 0.089
- Data-to-parameter ratio = 10.0
checkCIF/PLATON results
No syntax errors found
Alert level B PLAT222_ALERT_3_B Large Non-Solvent H Ueq(max)/Ueq(min) ... 4.82 Ratio
Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.37 PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.55 Ratio PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.10 PLAT355_ALERT_3_C Long O-H Bond (0.82A) O2 - H2A ... 1.01 Ang. PLAT417_ALERT_2_C Short Inter D-H..H-D H2B .. H7B .. 2.14 Ang. PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 5 PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF .... 1 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 4 H2 O PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 43
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 31.60 From the CIF: _reflns_number_total 3251 Count of symmetry unique reflns 3295 Completeness (_total/calc) 98.66% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT333_ALERT_2_G Check Large Av C6-Ring C-C Dist. C4 -C12 1.41 Ang. PLAT791_ALERT_4_G The Model has Chirality at C14 (Verify) .... S PLAT791_ALERT_4_G The Model has Chirality at C15 (Verify) .... S
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
The reaction between solutions of D-tartaric acid (7 mg, 1 mmol) in water (10 ml) and 1,10-phenanthroline (9 mg, 1 mmol) in methanol (5 ml) in a 1:1 molar ratio gave colorless rod crystals after slow evaporation of the solvent at room temperature.
Friedel opposites were merged. The absolute configuration followed from the use of D-tartaric acid as a starting material. Hydrogen atoms were located in a difference Fourier map and freely refined.
Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
C12H9N2+·C4H5O6−·3H2O | F(000) = 808 |
Mr = 384.34 | Dx = 1.476 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 9999 reflections |
a = 7.1163 (14) Å | θ = 2.8–31.5° |
b = 12.482 (3) Å | µ = 0.12 mm−1 |
c = 19.466 (4) Å | T = 90 K |
V = 1729.2 (6) Å3 | Rod, colourless |
Z = 4 | 0.42 × 0.21 × 0.13 mm |
Bruker SMART APEXII diffractometer | 3251 independent reflections |
Radiation source: fine-focus sealed tube | 3149 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 8.3 pixels mm-1 | θmax = 31.6°, θmin = 1.9° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −18→18 |
Tmin = 0.880, Tmax = 0.984 | l = −28→28 |
39094 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.089 | All H-atom parameters refined |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0669P)2 + 0.1713P] where P = (Fo2 + 2Fc2)/3 |
3251 reflections | (Δ/σ)max = 0.003 |
324 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C12H9N2+·C4H5O6−·3H2O | V = 1729.2 (6) Å3 |
Mr = 384.34 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.1163 (14) Å | µ = 0.12 mm−1 |
b = 12.482 (3) Å | T = 90 K |
c = 19.466 (4) Å | 0.42 × 0.21 × 0.13 mm |
Bruker SMART APEXII diffractometer | 3251 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3149 reflections with I > 2σ(I) |
Tmin = 0.880, Tmax = 0.984 | Rint = 0.027 |
39094 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.089 | All H-atom parameters refined |
S = 1.06 | Δρmax = 0.41 e Å−3 |
3251 reflections | Δρmin = −0.18 e Å−3 |
324 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.02434 (15) | 0.28085 (14) | 0.60625 (5) | 0.0387 (3) | |
O2 | −0.01282 (11) | 0.22520 (7) | 0.71533 (4) | 0.01530 (16) | |
H2A | −0.155 (5) | 0.227 (3) | 0.7139 (19) | 0.082 (11)* | |
O3 | 0.34399 (12) | 0.27724 (8) | 0.59021 (4) | 0.01825 (18) | |
H3A | 0.266 (3) | 0.2529 (17) | 0.5600 (11) | 0.025 (5)* | |
O4 | 0.29691 (13) | 0.43589 (7) | 0.69506 (5) | 0.01723 (17) | |
H4A | 0.202 (4) | 0.450 (2) | 0.7164 (15) | 0.052 (7)* | |
O5 | 0.65945 (13) | 0.40940 (7) | 0.69497 (5) | 0.02051 (18) | |
O6 | 0.64269 (11) | 0.23538 (7) | 0.71823 (4) | 0.01439 (15) | |
N1 | 0.56039 (18) | 0.85195 (8) | 0.60703 (5) | 0.01821 (19) | |
N2 | 0.55402 (17) | 0.64831 (8) | 0.55452 (5) | 0.01820 (19) | |
H2B | 0.558 (3) | 0.6546 (15) | 0.6011 (10) | 0.020 (4)* | |
C1 | 0.5526 (2) | 0.54779 (10) | 0.53258 (7) | 0.0244 (3) | |
H1 | 0.545 (4) | 0.494 (2) | 0.5654 (13) | 0.038 (6)* | |
C2 | 0.5479 (2) | 0.52505 (11) | 0.46232 (7) | 0.0267 (3) | |
H2 | 0.545 (4) | 0.4546 (18) | 0.4486 (12) | 0.033 (5)* | |
C3 | 0.5443 (2) | 0.60764 (12) | 0.41615 (7) | 0.0238 (2) | |
H3 | 0.533 (4) | 0.590 (2) | 0.3720 (13) | 0.042 (6)* | |
C4 | 0.54614 (19) | 0.71407 (10) | 0.43933 (6) | 0.0194 (2) | |
C5 | 0.5432 (2) | 0.80340 (13) | 0.39336 (6) | 0.0263 (3) | |
H5 | 0.533 (5) | 0.792 (3) | 0.3465 (16) | 0.071 (9)* | |
C6 | 0.5492 (2) | 0.90440 (12) | 0.41791 (6) | 0.0266 (3) | |
H6 | 0.549 (4) | 0.966 (2) | 0.3898 (14) | 0.053 (8)* | |
C7 | 0.55687 (19) | 0.92492 (10) | 0.49056 (6) | 0.0190 (2) | |
C8 | 0.5681 (2) | 1.02891 (10) | 0.51766 (7) | 0.0217 (2) | |
H8 | 0.568 (3) | 1.0922 (17) | 0.4873 (10) | 0.026 (5)* | |
C9 | 0.5760 (2) | 1.04196 (10) | 0.58747 (7) | 0.0206 (2) | |
H9 | 0.584 (3) | 1.1120 (18) | 0.6092 (10) | 0.029 (5)* | |
C10 | 0.5697 (2) | 0.95135 (10) | 0.63030 (6) | 0.0201 (2) | |
H10 | 0.577 (3) | 0.9670 (17) | 0.6820 (11) | 0.027 (5)* | |
C11 | 0.55581 (17) | 0.83917 (9) | 0.53766 (5) | 0.01526 (19) | |
C12 | 0.55133 (17) | 0.73284 (9) | 0.51062 (6) | 0.0157 (2) | |
C13 | 0.06195 (15) | 0.25433 (10) | 0.65712 (5) | 0.01487 (19) | |
C14 | 0.27564 (14) | 0.25118 (9) | 0.65602 (5) | 0.01263 (18) | |
H14 | 0.308 (3) | 0.1803 (15) | 0.6702 (9) | 0.018 (4)* | |
C15 | 0.35517 (14) | 0.33050 (8) | 0.70860 (5) | 0.01159 (17) | |
H15 | 0.316 (3) | 0.3068 (14) | 0.7552 (9) | 0.017 (4)* | |
C16 | 0.57000 (15) | 0.32740 (8) | 0.70659 (5) | 0.01187 (18) | |
O7 | 0.57458 (15) | 0.62117 (7) | 0.68894 (5) | 0.01850 (17) | |
H7A | 0.491 (3) | 0.6571 (19) | 0.7160 (11) | 0.034 (6)* | |
H7B | 0.549 (4) | 0.558 (2) | 0.6918 (12) | 0.040 (6)* | |
O8 | −0.31974 (13) | 0.30315 (9) | 0.52265 (4) | 0.02028 (18) | |
H8A | −0.422 (4) | 0.2882 (19) | 0.5431 (12) | 0.035 (6)* | |
H8B | −0.231 (4) | 0.301 (2) | 0.5572 (12) | 0.041 (6)* | |
O9 | 0.97193 (13) | 0.49415 (8) | 0.75731 (5) | 0.01928 (18) | |
H9A | 0.952 (4) | 0.563 (2) | 0.7552 (14) | 0.047 (7)* | |
H9B | 0.883 (4) | 0.4694 (19) | 0.7395 (13) | 0.038 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0136 (4) | 0.0860 (11) | 0.0166 (4) | 0.0040 (5) | −0.0014 (3) | 0.0110 (5) |
O2 | 0.0102 (3) | 0.0187 (4) | 0.0171 (3) | 0.0010 (3) | 0.0016 (3) | 0.0048 (3) |
O3 | 0.0133 (3) | 0.0298 (4) | 0.0117 (3) | −0.0028 (3) | 0.0021 (3) | −0.0019 (3) |
O4 | 0.0153 (3) | 0.0125 (3) | 0.0240 (4) | 0.0043 (3) | 0.0014 (3) | 0.0015 (3) |
O5 | 0.0138 (3) | 0.0135 (3) | 0.0343 (5) | −0.0021 (3) | −0.0009 (3) | 0.0033 (3) |
O6 | 0.0097 (3) | 0.0125 (3) | 0.0209 (4) | 0.0009 (3) | 0.0011 (3) | 0.0031 (3) |
N1 | 0.0262 (5) | 0.0151 (4) | 0.0134 (4) | 0.0032 (4) | 0.0004 (4) | −0.0002 (3) |
N2 | 0.0240 (5) | 0.0154 (4) | 0.0152 (4) | 0.0024 (4) | −0.0009 (4) | −0.0013 (3) |
C1 | 0.0332 (7) | 0.0167 (5) | 0.0234 (6) | 0.0027 (5) | −0.0030 (5) | −0.0039 (4) |
C2 | 0.0333 (7) | 0.0210 (5) | 0.0259 (6) | 0.0034 (6) | −0.0050 (5) | −0.0095 (5) |
C3 | 0.0255 (6) | 0.0276 (6) | 0.0182 (5) | 0.0008 (5) | −0.0021 (5) | −0.0092 (4) |
C4 | 0.0208 (5) | 0.0238 (5) | 0.0138 (4) | −0.0007 (5) | −0.0007 (4) | −0.0037 (4) |
C5 | 0.0347 (7) | 0.0318 (6) | 0.0124 (4) | −0.0030 (6) | −0.0003 (5) | 0.0008 (4) |
C6 | 0.0376 (7) | 0.0282 (6) | 0.0140 (5) | −0.0036 (6) | −0.0008 (5) | 0.0061 (4) |
C7 | 0.0223 (5) | 0.0198 (5) | 0.0148 (4) | −0.0010 (5) | −0.0004 (4) | 0.0041 (4) |
C8 | 0.0266 (6) | 0.0173 (5) | 0.0214 (5) | 0.0009 (5) | 0.0001 (5) | 0.0052 (4) |
C9 | 0.0262 (5) | 0.0139 (4) | 0.0217 (5) | 0.0034 (5) | 0.0011 (5) | 0.0016 (4) |
C10 | 0.0292 (6) | 0.0153 (4) | 0.0158 (4) | 0.0038 (5) | 0.0011 (4) | −0.0006 (4) |
C11 | 0.0173 (5) | 0.0148 (4) | 0.0137 (4) | 0.0013 (4) | 0.0003 (4) | 0.0006 (3) |
C12 | 0.0168 (5) | 0.0168 (5) | 0.0135 (4) | 0.0006 (4) | −0.0005 (4) | −0.0012 (4) |
C13 | 0.0097 (4) | 0.0206 (5) | 0.0143 (4) | −0.0004 (4) | 0.0003 (3) | −0.0016 (4) |
C14 | 0.0093 (4) | 0.0161 (4) | 0.0124 (4) | 0.0003 (4) | 0.0004 (3) | −0.0015 (3) |
C15 | 0.0098 (4) | 0.0116 (4) | 0.0134 (4) | 0.0011 (3) | −0.0002 (3) | −0.0001 (3) |
C16 | 0.0105 (4) | 0.0133 (4) | 0.0118 (4) | 0.0001 (4) | −0.0001 (3) | −0.0001 (3) |
O7 | 0.0251 (4) | 0.0114 (3) | 0.0190 (4) | 0.0008 (3) | 0.0038 (3) | −0.0004 (3) |
O8 | 0.0146 (4) | 0.0316 (5) | 0.0146 (3) | 0.0005 (4) | 0.0001 (3) | −0.0010 (3) |
O9 | 0.0173 (4) | 0.0166 (4) | 0.0240 (4) | 0.0006 (3) | −0.0010 (3) | −0.0015 (3) |
O1—C13 | 1.2113 (15) | C5—H5 | 0.92 (3) |
O2—C13 | 1.3036 (13) | C6—C7 | 1.4384 (17) |
O2—H2A | 1.01 (4) | C6—H6 | 0.95 (3) |
O3—C14 | 1.4082 (13) | C7—C8 | 1.4034 (18) |
O3—H3A | 0.86 (2) | C7—C11 | 1.4094 (16) |
O4—C15 | 1.4043 (13) | C8—C9 | 1.3696 (18) |
O4—H4A | 0.81 (3) | C8—H8 | 0.99 (2) |
O5—C16 | 1.2264 (14) | C9—C10 | 1.4059 (17) |
O6—C16 | 1.2800 (13) | C9—H9 | 0.97 (2) |
N1—C10 | 1.3226 (15) | C10—H10 | 1.03 (2) |
N1—C11 | 1.3602 (14) | C11—C12 | 1.4282 (16) |
N2—C1 | 1.3254 (16) | C13—C14 | 1.5214 (15) |
N2—C12 | 1.3579 (15) | C14—C15 | 1.5324 (15) |
N2—H2B | 0.912 (19) | C14—H14 | 0.955 (19) |
C1—C2 | 1.3973 (19) | C15—C16 | 1.5298 (15) |
C1—H1 | 0.93 (3) | C15—H15 | 0.994 (17) |
C2—C3 | 1.368 (2) | O7—H7A | 0.91 (2) |
C2—H2 | 0.92 (2) | O7—H7B | 0.81 (3) |
C3—C4 | 1.4030 (18) | O8—H8A | 0.85 (3) |
C3—H3 | 0.89 (3) | O8—H8B | 0.92 (3) |
C4—C12 | 1.4079 (15) | O9—H9A | 0.87 (3) |
C4—C5 | 1.4299 (19) | O9—H9B | 0.79 (3) |
C5—C6 | 1.349 (2) | ||
C13—O2—H2A | 112 (2) | C8—C9—H9 | 122.7 (12) |
C14—O3—H3A | 108.6 (14) | C10—C9—H9 | 117.8 (12) |
C15—O4—H4A | 111 (2) | N1—C10—C9 | 123.59 (11) |
C10—N1—C11 | 116.83 (10) | N1—C10—H10 | 121.1 (12) |
C1—N2—C12 | 122.19 (11) | C9—C10—H10 | 115.2 (12) |
C1—N2—H2B | 113.7 (12) | N1—C11—C7 | 123.82 (11) |
C12—N2—H2B | 124.1 (12) | N1—C11—C12 | 118.39 (10) |
N2—C1—C2 | 120.52 (12) | C7—C11—C12 | 117.79 (10) |
N2—C1—H1 | 117.8 (15) | N2—C12—C4 | 119.43 (11) |
C2—C1—H1 | 121.5 (15) | N2—C12—C11 | 119.33 (10) |
C3—C2—C1 | 119.37 (12) | C4—C12—C11 | 121.23 (10) |
C3—C2—H2 | 121.9 (14) | O1—C13—O2 | 125.45 (11) |
C1—C2—H2 | 118.7 (14) | O1—C13—C14 | 120.15 (10) |
C2—C3—C4 | 120.14 (11) | O2—C13—C14 | 114.40 (9) |
C2—C3—H3 | 116.8 (17) | O3—C14—C13 | 110.62 (9) |
C4—C3—H3 | 122.9 (17) | O3—C14—C15 | 109.32 (9) |
C3—C4—C12 | 118.35 (11) | C13—C14—C15 | 110.06 (9) |
C3—C4—C5 | 122.48 (11) | O3—C14—H14 | 113.3 (11) |
C12—C4—C5 | 119.17 (12) | C13—C14—H14 | 105.1 (13) |
C6—C5—C4 | 120.45 (11) | C15—C14—H14 | 108.4 (12) |
C6—C5—H5 | 119 (2) | O4—C15—C16 | 108.30 (9) |
C4—C5—H5 | 120 (2) | O4—C15—C14 | 111.77 (9) |
C5—C6—C7 | 121.07 (12) | C16—C15—C14 | 109.61 (9) |
C5—C6—H6 | 123.9 (16) | O4—C15—H15 | 111.5 (11) |
C7—C6—H6 | 115.1 (16) | C16—C15—H15 | 107.4 (11) |
C8—C7—C11 | 117.27 (11) | C14—C15—H15 | 108.2 (11) |
C8—C7—C6 | 122.45 (11) | O5—C16—O6 | 124.88 (10) |
C11—C7—C6 | 120.27 (12) | O5—C16—C15 | 120.16 (10) |
C9—C8—C7 | 119.03 (11) | O6—C16—C15 | 114.96 (9) |
C9—C8—H8 | 120.0 (12) | H7A—O7—H7B | 107 (2) |
C7—C8—H8 | 121.0 (12) | H8A—O8—H8B | 104 (2) |
C8—C9—C10 | 119.43 (11) | H9A—O9—H9B | 104 (3) |
C12—N2—C1—C2 | −0.1 (2) | C1—N2—C12—C11 | −179.10 (13) |
N2—C1—C2—C3 | −0.2 (3) | C3—C4—C12—N2 | −0.10 (19) |
C1—C2—C3—C4 | 0.3 (2) | C5—C4—C12—N2 | 179.96 (12) |
C2—C3—C4—C12 | −0.2 (2) | C3—C4—C12—C11 | 179.23 (12) |
C2—C3—C4—C5 | 179.78 (15) | C5—C4—C12—C11 | −0.71 (19) |
C3—C4—C5—C6 | −178.60 (15) | N1—C11—C12—N2 | −0.78 (18) |
C12—C4—C5—C6 | 1.3 (2) | C7—C11—C12—N2 | 178.68 (12) |
C4—C5—C6—C7 | −0.6 (3) | N1—C11—C12—C4 | 179.89 (12) |
C5—C6—C7—C8 | 178.30 (15) | C7—C11—C12—C4 | −0.65 (18) |
C5—C6—C7—C11 | −0.8 (2) | O1—C13—C14—O3 | −2.66 (18) |
C11—C7—C8—C9 | −0.5 (2) | O2—C13—C14—O3 | 176.32 (9) |
C6—C7—C8—C9 | −179.65 (14) | O1—C13—C14—C15 | 118.25 (14) |
C7—C8—C9—C10 | −1.0 (2) | O2—C13—C14—C15 | −62.78 (13) |
C11—N1—C10—C9 | −0.3 (2) | O3—C14—C15—O4 | 62.27 (11) |
C8—C9—C10—N1 | 1.5 (2) | C13—C14—C15—O4 | −59.41 (12) |
C10—N1—C11—C7 | −1.2 (2) | O3—C14—C15—C16 | −57.81 (11) |
C10—N1—C11—C12 | 178.18 (12) | C13—C14—C15—C16 | −179.49 (9) |
C8—C7—C11—N1 | 1.7 (2) | O4—C15—C16—O5 | 0.45 (14) |
C6—C7—C11—N1 | −179.15 (14) | C14—C15—C16—O5 | 122.63 (11) |
C8—C7—C11—C12 | −177.76 (12) | O4—C15—C16—O6 | 179.93 (9) |
C6—C7—C11—C12 | 1.42 (19) | C14—C15—C16—O6 | −57.89 (12) |
C1—N2—C12—C4 | 0.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O6i | 1.01 (4) | 1.45 (4) | 2.4554 (12) | 174 (4) |
O3—H3A···O8ii | 0.86 (2) | 1.86 (2) | 2.6817 (13) | 159 (2) |
O4—H4A···O9i | 0.81 (3) | 1.90 (3) | 2.7102 (13) | 173 (3) |
N2—H2B···O7 | 0.912 (19) | 1.763 (19) | 2.6426 (14) | 161.3 (18) |
O7—H7A···O6iii | 0.91 (2) | 1.87 (2) | 2.7727 (13) | 170 (2) |
O7—H7B···O5 | 0.81 (3) | 2.02 (3) | 2.7141 (14) | 144 (3) |
O7—H7B···O4 | 0.81 (3) | 2.36 (3) | 3.0442 (14) | 143 (3) |
O8—H8A···O3i | 0.85 (3) | 1.90 (3) | 2.7497 (13) | 171 (2) |
O8—H8B···O1 | 0.92 (3) | 1.77 (3) | 2.6730 (14) | 165 (3) |
O9—H9A···O2iii | 0.87 (3) | 2.15 (3) | 2.9472 (14) | 152 (3) |
O9—H9B···O5 | 0.79 (3) | 1.96 (3) | 2.7452 (14) | 179 (3) |
Symmetry codes: (i) x−1, y, z; (ii) x+1/2, −y+1/2, −z+1; (iii) −x+1, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C12H9N2+·C4H5O6−·3H2O |
Mr | 384.34 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 90 |
a, b, c (Å) | 7.1163 (14), 12.482 (3), 19.466 (4) |
V (Å3) | 1729.2 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.42 × 0.21 × 0.13 |
Data collection | |
Diffractometer | Bruker SMART APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.880, 0.984 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 39094, 3251, 3149 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.737 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.089, 1.06 |
No. of reflections | 3251 |
No. of parameters | 324 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.41, −0.18 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O6i | 1.01 (4) | 1.45 (4) | 2.4554 (12) | 174 (4) |
O3—H3A···O8ii | 0.86 (2) | 1.86 (2) | 2.6817 (13) | 159 (2) |
O4—H4A···O9i | 0.81 (3) | 1.90 (3) | 2.7102 (13) | 173 (3) |
N2—H2B···O7 | 0.912 (19) | 1.763 (19) | 2.6426 (14) | 161.3 (18) |
O7—H7A···O6iii | 0.91 (2) | 1.87 (2) | 2.7727 (13) | 170 (2) |
O7—H7B···O5 | 0.81 (3) | 2.02 (3) | 2.7141 (14) | 144 (3) |
O7—H7B···O4 | 0.81 (3) | 2.36 (3) | 3.0442 (14) | 143 (3) |
O8—H8A···O3i | 0.85 (3) | 1.90 (3) | 2.7497 (13) | 171 (2) |
O8—H8B···O1 | 0.92 (3) | 1.77 (3) | 2.6730 (14) | 165 (3) |
O9—H9A···O2iii | 0.87 (3) | 2.15 (3) | 2.9472 (14) | 152 (3) |
O9—H9B···O5 | 0.79 (3) | 1.96 (3) | 2.7452 (14) | 179 (3) |
Symmetry codes: (i) x−1, y, z; (ii) x+1/2, −y+1/2, −z+1; (iii) −x+1, y+1/2, −z+3/2. |
Tartaric acid is a colorless, diprotic organic acid that occurs naturally in many plants, particularly grapes, bananas, and tamarinds, and is one of the main acids found in wine. It is added to other foods to give a sour taste, and is used as an antioxidant. Many proton transfer compounds of tartaric acid and various bases have been reported, for example, (Paixão et al., 1999; Bai et al., 2005; Zhang et al., 2006; Suresh et al., 2006; Wang et al., 2008; Su et al., 2009). The title structure contains a cation of protonated 1,10-phenanthroline, an anion of mono-deprotonated D-tartaric acid, and three water molecules (Fig. 1). Thus, the crystal structure shows that one of the protons of the tartaric acid carboxylic groups has been transferred to one of the nitrogen atoms of the 1,10-phenanthroline molecule. A portion of the hydrogen bonding motif involving the anions, cations and water molecules is presented in Fig. 2; details of the O—H···O and N—H···O hydrogen bonds are given in Table 1. Fig. 2 also shows how the 1,10-phenanthrolinium rings are π-stacked such that they are perpendicular to the chain of tartrate anions that run along the a axis. The average perpendicular distance between the plane of N1/N2/C1/C2/C3/C4/C5/C6/C7/C8/C9/C10/C11/C12 and the 14 atoms at ii = 1/2 + x, 3/2 - y, 1 - z of the stacked phenanthroline ring is 3.58 (11) Å. The tartrate anions are connected head-to-tail by a short hydrogen bond between H2A, bonded to O2, and O6i of the anion at i = x - 1, y, z. The O2—H2A distance is 1.01 (4) Å, H2A—O6i is 1.45 (4) Å and O2···O6i is 2.4554 (12) Å. The O2—H2A—O6i angle is 174 (4)°. Electrostatic considerations, together with the use of resonance structures, could be used to explain the short hydrogen bond. Additionally, the existence of a number of supporting hydrogen bonds could be a factor, and these are depicted in Fig. 3. A similar head-to-tail arrangement with a short donor- acceptor distance is seen in some other hydrogen tartrate structures (Paixão et al., 1999; Zhang et al., 2006). The geometry of the hydrogen atom, H2A, that is involved in the short hydrogen bond has larger standard uncertainties than other hydrogen atoms in the structure. The larger uncertainty can be accounted for by examination of a plot of difference electron density (Fig. 4) (EDEN, Sheldrick (2008)), which shows that H2A resides in a shallow potential well that has a single minimum close to O2 but tails off towards O6i.
A previous structural determination of the isostructural L-tartrate enantiomer (II) (Wang et al., 2006) missed the proton transfer and identified the compound as 1,10-phenanthroline (2R,3R)-tartaric acid. We have examined their data and confirmed that the proton transfer did occur, and refinement of the structure using the model of the title compound results in lower R values. Interestingly, a subsequent paper on the quinoline analog by Smith et al., 2006, expressed surprise that the proton in (II) was not transferred: "···the absence of transfer in the L-tartaric acid-1,10-phenanthroline compound reported by Wang et al. (2006) when compared with the structurally similar [quinolinium] is not understood, considering that the pKa value for 1,10-phenanthroline (4.86) is very close to that of quinoline (4.81)." We note that, in the structure of (II), the details of the short hydrogen bond are not revealed because tartaric acid O—H distance restraints of 0.82 (1) Å were applied, and also because the acceptor O atom has the misplaced H atom. In the refinement of the title compound, hydrogen atoms were freely refined. In (II), data were collected at 293 (2) K, and the data/parameter ratio is 7.34. In the title compound, data were collected at 90 (2) K, and the data/parameter ratio is 10.03.