Download citation
Download citation
link to html
The synthesis, crystal structure and a Hirshfeld surface analysis of tris­{N,N-diethyl-N′-[(4-nitro­phen­yl)(oxo)meth­yl]carbamimido­thio­ato}cobalt(III) are described.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989024005449/nx2011sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989024005449/nx2011Isup2.hkl
Contains datablock I

CCDC reference: 2361104

Computing details top

Tris{N,N-diethyl-N'-[(4-nitrophenyl)(oxo)methyl]carbamimidothioato}cobalt(III) top
Crystal data top
[Co(C12H14N3O3S)3]Dx = 1.356 Mg m3
Mr = 899.89Cu Kα radiation, λ = 1.54178 Å
Trigonal, P3Cell parameters from 9548 reflections
a = 16.6906 (3) Åθ = 3.1–68.1°
c = 9.1346 (2) ŵ = 4.89 mm1
V = 2203.76 (9) Å3T = 180 K
Z = 2Shard, dark green
F(000) = 9360.12 × 0.11 × 0.04 mm
Data collection top
Bruker X8 Proteum
diffractometer
2682 independent reflections
Radiation source: fine-focus rotating anode2571 reflections with I > 2σ(I)
Detector resolution: 5.6 pixels mm-1Rint = 0.038
φ and ω scansθmax = 68.1°, θmin = 3.1°
Absorption correction: multi-scan
[SADABS (Krause et al., 2015), XABS2 (Parkin et al., 1995)]
h = 2014
Tmin = 0.580, Tmax = 0.753k = 2020
30546 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.5678P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2682 reflectionsΔρmax = 0.20 e Å3
179 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL2019/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00080 (18)
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

The crystals underwent a reversible phase transition to a triply twinned incommensurately modulated phase when cooled to 90K. Visual inspection of crystal integrity and diffraction quality vs temperature established a safe temperature for data collection of -93° C.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using PLATO (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.3333330.6666670.48360 (4)0.03514 (14)
S10.21178 (3)0.58999 (3)0.34007 (5)0.04670 (15)
O10.30064 (7)0.56544 (7)0.61574 (12)0.0381 (3)
N10.14855 (9)0.45396 (10)0.55380 (14)0.0397 (3)
N20.06185 (9)0.42651 (11)0.35035 (14)0.0446 (3)
N30.20338 (13)0.32053 (16)1.18453 (19)0.0637 (5)
O20.16284 (15)0.23576 (15)1.18709 (19)0.0855 (5)
O30.24204 (13)0.36914 (15)1.28994 (17)0.0922 (6)
C10.13955 (11)0.48454 (12)0.42182 (16)0.0385 (4)
C20.22264 (10)0.49475 (11)0.63716 (16)0.0337 (3)
C30.21352 (11)0.44836 (11)0.78216 (16)0.0355 (3)
C40.14649 (12)0.35663 (13)0.80514 (18)0.0442 (4)
H4A0.1029650.3231220.7302240.053*
C50.14277 (13)0.31379 (14)0.9367 (2)0.0506 (4)
H5A0.0986570.2503730.9519410.061*
C60.20480 (13)0.36553 (15)1.04516 (18)0.0475 (4)
C70.26939 (13)0.45713 (14)1.02840 (19)0.0501 (4)
H7A0.3094950.4914871.1065390.060*
C80.27465 (12)0.49831 (13)0.89451 (18)0.0437 (4)
H8A0.3203510.5611900.8791340.052*
C90.00988 (12)0.34040 (15)0.4202 (2)0.0567 (5)
H9A0.0714220.3258730.3830100.068*
H9B0.0090340.3502940.5271810.068*
C100.00396 (16)0.25957 (16)0.3914 (3)0.0696 (6)
H10A0.0462910.2039540.4370660.104*
H10B0.0633080.2721390.4328400.104*
H10C0.0039090.2498660.2856170.104*
C110.03874 (12)0.44629 (14)0.20525 (18)0.0477 (4)
H11A0.0025150.3875630.1509220.057*
H11B0.0964990.4853340.1500520.057*
C120.01665 (15)0.49554 (18)0.2149 (2)0.0637 (6)
H12A0.0334710.5048560.1161350.096*
H12B0.0206650.5556580.2626760.096*
H12C0.0729660.4579320.2720890.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.03772 (18)0.03772 (18)0.0300 (2)0.01886 (9)0.0000.000
S10.0477 (2)0.0531 (3)0.0353 (2)0.0221 (2)0.00973 (17)0.00513 (17)
O10.0392 (6)0.0374 (6)0.0367 (6)0.0184 (5)0.0083 (4)0.0005 (4)
N10.0343 (7)0.0538 (8)0.0258 (6)0.0180 (6)0.0017 (5)0.0002 (6)
N20.0341 (7)0.0661 (9)0.0272 (7)0.0203 (7)0.0042 (5)0.0021 (6)
N30.0647 (11)0.0996 (15)0.0439 (10)0.0539 (11)0.0078 (8)0.023 (1)
O20.1145 (15)0.1025 (14)0.0634 (10)0.0722 (12)0.018 (1)0.0327 (10)
O30.0829 (12)0.1351 (17)0.0430 (9)0.0427 (11)0.0153 (8)0.0233 (10)
C10.0334 (8)0.0541 (9)0.0284 (8)0.0220 (7)0.0003 (6)0.0029 (6)
C20.0372 (8)0.0409 (8)0.0282 (7)0.0233 (7)0.0021 (6)0.0047 (6)
C30.0381 (8)0.0475 (9)0.0274 (7)0.0262 (7)0.0014 (6)0.0024 (6)
C40.0418 (9)0.0528 (10)0.0331 (8)0.0201 (8)0.0019 (7)0.0004 (7)
C50.0493 (10)0.0576 (11)0.0435 (10)0.0256 (9)0.0060 (8)0.0114 (8)
C60.0507 (10)0.0752 (13)0.0309 (8)0.0421 (10)0.0030 (7)0.0095 (8)
C70.0539 (10)0.0723 (13)0.0316 (9)0.0372 (10)0.0099 (7)0.0056 (8)
C80.0472 (9)0.0519 (10)0.0354 (9)0.0273 (8)0.0082 (7)0.0050 (7)
C90.0336 (9)0.0778 (14)0.0365 (9)0.0112 (9)0.0016 (7)0.0002 (8)
C100.0578 (12)0.0661 (14)0.0576 (13)0.0105 (10)0.0003 (10)0.0028 (10)
C110.0418 (9)0.0761 (12)0.0287 (8)0.0321 (9)0.0069 (7)0.0065 (8)
C120.0608 (12)0.1016 (17)0.0469 (11)0.0541 (13)0.0111 (9)0.0114 (11)
Geometric parameters (Å, º) top
Co1—O1i1.9202 (11)C4—H4A0.9500
Co1—O1ii1.9202 (11)C5—C61.380 (3)
Co1—O11.9202 (11)C5—H5A0.9500
Co1—S12.2082 (5)C6—C71.369 (3)
Co1—S1i2.2082 (5)C7—C81.384 (2)
Co1—S1ii2.2082 (5)C7—H7A0.9500
S1—C11.7284 (17)C8—H8A0.9500
O1—C21.2606 (19)C9—C101.501 (3)
N1—C21.316 (2)C9—H9A0.9900
N1—C11.347 (2)C9—H9B0.9900
N2—C11.338 (2)C10—H10A0.9800
N2—C111.464 (2)C10—H10B0.9800
N2—C91.478 (2)C10—H10C0.9800
N3—O31.216 (3)C11—C121.516 (3)
N3—O21.226 (3)C11—H11A0.9900
N3—C61.472 (2)C11—H11B0.9900
C2—C31.503 (2)C12—H12A0.9800
C3—C41.388 (2)C12—H12B0.9800
C3—C81.392 (2)C12—H12C0.9800
C4—C51.384 (2)
O1i—Co1—O1ii84.68 (5)C5—C4—H4A119.9
O1i—Co1—O184.68 (5)C3—C4—H4A119.9
O1ii—Co1—O184.68 (5)C6—C5—C4118.31 (18)
O1i—Co1—S191.87 (4)C6—C5—H5A120.8
O1ii—Co1—S1176.56 (3)C4—C5—H5A120.8
O1—Co1—S195.09 (3)C7—C6—C5122.94 (16)
O1i—Co1—S1i95.09 (3)C7—C6—N3117.99 (18)
O1ii—Co1—S1i91.87 (4)C5—C6—N3119.06 (19)
O1—Co1—S1i176.56 (4)C6—C7—C8118.19 (17)
S1—Co1—S1i88.35 (2)C6—C7—H7A120.9
O1i—Co1—S1ii176.56 (3)C8—C7—H7A120.9
O1ii—Co1—S1ii95.09 (3)C7—C8—C3120.56 (17)
O1—Co1—S1ii91.87 (4)C7—C8—H8A119.7
S1—Co1—S1ii88.35 (2)C3—C8—H8A119.7
S1i—Co1—S1ii88.35 (2)N2—C9—C10112.60 (16)
C1—S1—Co1ii107.73 (5)N2—C9—H9A109.1
C1—S1—Co1107.73 (5)C10—C9—H9A109.1
C1—S1—Co1i107.73 (5)N2—C9—H9B109.1
C2—O1—Co1ii128.85 (10)C10—C9—H9B109.1
C2—O1—Co1i128.85 (10)H9A—C9—H9B107.8
C2—O1—Co1128.85 (10)C9—C10—H10A109.5
C2—N1—C1125.19 (14)C9—C10—H10B109.5
C1—N2—C11123.23 (15)H10A—C10—H10B109.5
C1—N2—C9120.92 (14)C9—C10—H10C109.5
C11—N2—C9115.69 (14)H10A—C10—H10C109.5
O3—N3—O2123.89 (19)H10B—C10—H10C109.5
O3—N3—C6118.5 (2)N2—C11—C12111.76 (15)
O2—N3—C6117.7 (2)N2—C11—H11A109.3
N2—C1—N1114.46 (15)C12—C11—H11A109.3
N2—C1—S1117.16 (12)N2—C11—H11B109.3
N1—C1—S1128.28 (12)C12—C11—H11B109.3
O1—C2—N1131.15 (14)H11A—C11—H11B107.9
O1—C2—C3114.22 (13)C11—C12—H12A109.5
N1—C2—C3114.62 (14)C11—C12—H12B109.5
C4—C3—C8119.62 (15)H12A—C12—H12B109.5
C4—C3—C2121.31 (14)C11—C12—H12C109.5
C8—C3—C2119.07 (15)H12A—C12—H12C109.5
C5—C4—C3120.29 (16)H12B—C12—H12C109.5
C11—N2—C1—N1179.82 (15)N1—C2—C3—C419.9 (2)
C9—N2—C1—N14.9 (2)O1—C2—C3—C819.8 (2)
C11—N2—C1—S13.5 (2)N1—C2—C3—C8161.13 (15)
C9—N2—C1—S1171.79 (14)C8—C3—C4—C52.7 (3)
C2—N1—C1—N2173.13 (15)C2—C3—C4—C5176.26 (15)
C2—N1—C1—S110.6 (2)C3—C4—C5—C62.5 (3)
Co1ii—S1—C1—N2178.97 (11)C4—C5—C6—C70.2 (3)
Co1—S1—C1—N2178.97 (11)C4—C5—C6—N3178.52 (16)
Co1i—S1—C1—N2178.97 (11)O3—N3—C6—C717.8 (3)
Co1ii—S1—C1—N14.85 (17)O2—N3—C6—C7162.28 (18)
Co1—S1—C1—N14.85 (17)O3—N3—C6—C5163.37 (19)
Co1i—S1—C1—N14.85 (17)O2—N3—C6—C516.5 (3)
Co1ii—O1—C2—N122.6 (2)C5—C6—C7—C82.5 (3)
Co1i—O1—C2—N122.6 (2)N3—C6—C7—C8176.20 (16)
Co1—O1—C2—N122.6 (2)C6—C7—C8—C32.2 (3)
Co1ii—O1—C2—C3158.52 (10)C4—C3—C8—C70.3 (3)
Co1i—O1—C2—C3158.52 (10)C2—C3—C8—C7178.67 (15)
Co1—O1—C2—C3158.52 (10)C1—N2—C9—C1090.7 (2)
C1—N1—C2—O13.4 (3)C11—N2—C9—C1093.7 (2)
C1—N1—C2—C3177.75 (14)C1—N2—C11—C1290.7 (2)
O1—C2—C3—C4159.17 (15)C9—N2—C11—C1284.8 (2)
Symmetry codes: (i) x+y, x+1, z; (ii) y+1, xy+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···S10.983.033.510 (2)112
C7—H7A···S1iii0.952.913.8362 (19)166
C9—H9B···O3iv0.992.533.213 (2)126
Symmetry codes: (iii) y+1, xy+1, z+1; (iv) xy, x, z+2.
Selected geometric parameters (Å, °) for I top
DistancesAngles
Co1—S1sym2.2082 (5)(S1—Co1—S1)sym88.35 (2)
Co1—O1sym1.9202 (11)(O1—Co1—O1)sym84.68 (5)
O1—Co1—S195.09 (3)
O1—Co1—S1i91.87 (4)
O1—Co1—S1ii176.56 (3)
Symmetry codes: (i) -y + 1, x - y + 1, z; (ii) -x + y, -x + 1, z; here `sym' refers to all crystallographic equivalents about the threefold axis, i.e., (i), (ii), and x, y, z.
Close contacts (Å, °) for I top
D—H···AD—HH···AD···AD—H···A
C12—H12B···S10.983.033.510 (2)111.6
C7—H7A···S1iii0.952.913.8362 (19)166.4
C9—H9B···O3iv0.992.533.213 (2)126.3
Symmetry codes: (iii) -y + 1, x - y + 1, z + 1; (iv) x - y, x, -z + 2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds