Download citation
Download citation
link to html
The title dinuclear platinum(III) complex, [Pt2(C11H8N)2(C5H4NS)4], forms two crystal structures, viz. the non-solvated and acetonitrile-solvated (C2H3N) forms. For both forms, two (2-pyridylphenyl)platinum units are bridged by two pyridine-2-thiol­ate (pyt) anions in a head-to-tail configuration, and the other two pyridine-2-thiol­ate anions occupy the axial position, coordinated through their S atoms. The most remarkable difference between the two forms is the orientation of the axial monodentate ligands. Those for the solvated form are located over the 2-pyridylphenyl ligands, being related by a twofold axis which lies through the centre of the Pt-Pt bond, while the axial pyt ligands for the non-solvated form are oriented irregularly, which is attributable to the dimeric arrangement in the crystal.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105004968/ob1216sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105004968/ob1216Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105004968/ob1216IIsup3.hkl
Contains datablock II

CCDC references: 269009; 269010

Comment top

We recently reported a luminescent dinuclear platinum(II) complex, [Pt2(ppy)2(pyt)2] (where Hppy is 2-phenylpyridine and Hpyt is pyridine-2-thiol; Koshiyama et al., 2004). Because of the strong ligand field of the ppy ligand, this platinum complex was found to have a short Pt···Pt distance [2.8491 (4) Å] for the divalent state of platinum and could be oxidized easily. For example, the divalent complex formed the trivalent complex [Pt2Cl2(ppy)2(pyt)2] immediately on dissolution in chloroform. We then investigated the redox properties of [Pt2(ppy)2(pyt)2] and the possibility of the formation of trivalent complexes with various axial ligands. In the course of the study, the pyt ligand itself was found to act as an axial ligand. This compound is remarkable for containing such an asymmetric ligand as both bridging and terminal ligands, although various dinuclear platinum(III) complexes with bridging ligands have been reported (Umakoshi & Sasaki, 1993; Roundhill et al., 1989; Lippard, 1982). We report here the title trivalent complex, [Pt2(ppy)2(pyt)4], which was produced either by heating the reaction solution at 343 K or in the presence of an excess of pyt ligand. Two crystal structures, a nonsolvated form, (I), and an acetonitrile solvated form, (II), were found.

Fig. 1 shows the molecular structure of (I). As in the case of the [Pt2(ppy)2(pyt)2] and [Pt2Cl2(ppy)2(pyt)2] complexes, only the anti form, with a head-to-tail configuration of the bridging pyt ligands, was produced for this dinuclear complex, because the strong trans influence of the deprotonated C atom in ppy prefers the N atom to the S atom of the pyt ligand at the trans position (Koshiyama et al., 2004).

The Pt—C bond distances of (I) are comparable with those reported for other cyclometalated platinum complexes containing ppy (1.98–2.03 Å; Chassot et al., 1984; Mdleleni et al., 1995; Yamaguchi et al., 2004). The pyt ligands at the axial sites are coordinated to the respective Pt cations by the S anions. The orientation is likely to be regulated by a dimeric interaction, as shown in Fig. 2. Two complexes related by an inversion centre form a ππ stack of pyt ligands, with an interplanar spacing of 3.52 (1) Å.

There are hydrogen bonds (Table 2) between C—H in the aromatic rings and S or N atoms in the axial pyt ligands. As a result, the pyt ligand containing atom S4 is oriented in the opposite direction to the ππ stack, whereas the pyt ligand at the other axial site is located over the ppy ligand. The large displacements for the axial pyridine rings indicate that the monodentate ligands fluctuate easily.

For compound (II), on the other hand, a completely different orientation of the axial pyt ligands was found, as shown in Fig. 3. In this case, both axial pyt ligands are located over the ppy ligands. The complex molecule in (II) has a twofold axis passing through the centre of the Pt—Pt bond. A molecule of solvated acetonitrile was found to be disordered, forming hydrogen bonds (Table 4) with the ppy ligands.

Some geometric characteristics for (II) can be seen in connection with the arrangement of the axial pyt ligands. The dihedral angle between two ppy ligands for (II) is much smaller than that for (I) [21.0 (2)° for (I), cf. 11.7 (1)° for (II)]. The interplanar spacings, defined as the average distance of the atoms in one ppy from the least-squares plane of the other, are similar [3.4 (1) Å for (I) and 3.30 (7) Å for (II)]. These values indicate that the axial pyt ligands in (II) effectively stabilize the stacking of the ppy ligands. In fact, the dihedral angle and the interplanar spacing between the ppy ligand and the adjacent axial pyt ligand in (II) are 17.3 (1)° and 3.3 (1) Å, respectively, suggesting ππ interactions through pyt–ppy–ppy–pyt ligands. The smaller Pt—S—C angle at the axial positions for (II) [103.7 (2)°] compared with those for (I) [110(s.u.)-120(s.u.Please provide s.u.s] also supports these interactions.

For (I) and (II), the Pt—Pt distances of 2.6514 (5) and 2.6650 (2) Å, respectively, are normal for a PtIII—PtIII single bond but slightly longer than those for [Pt2Cl2(pyt)4] and its analogues held by four bridging pyt ligands: Pt—Pt = 2.532 (1) Å in cis-[Pt2Cl2(pyt)4], 2.539 (1) Å in trans-[Pt2I2(4-mpyt)4] (4-mpyt is the 4-methylpyridine-2-thiolate anion), and 2.566 (2) Å in cis-[Pt2(CN)2(pyt)4] (Umakoshi & Sasaki, 1993). In addition, it is interesting to note that the Pt—Pt distances for (I) and (II) are also slightly longer than that for [Pt2Cl2(ppy)2(pyt)2] [Pt—Pt 2.615 (1) Å; Koshiyama et al., 2004]. The coordination geometries of the equatorial planes for (I) and (II) are very similar to that for [Pt2Cl2(ppy)2(pyt)2]. Thus, the difference in the Pt—Pt distances could be attributed to the trans influence of the axial ligands, with the pyt ligand stronger than Cl.

Experimental top

(Bu4N)[PtCl2(ppy)] was prepared according to the literature method of Mdleleni et al. (1995). The preparation of the dinuclear PtII complex, [Pt2(ppy)2(pyt)2], was reported in a previous paper (Koshiyama et al., 2004). The trivalent complex, [Pt2(ppy)2(pyt)4], was prepared in two different ways. The brown powder of (I) was produced by stirring an acetonitrile–ethanol solution (8:2 (v/v), 100 ml) of [Pt2(ppy)2(pyt)2] (92 mg, 0.1 mmol) and Hpyt (22 mg, 0.2 mmol) at room temperature for 2 d (yield 81 mg). The crude product contained ca. 25% of unoxidized complex, [Pt2(ppy)2(pyt)2], according to the 1H NMR spectrum. Brown needle crystals of (I) were obtained by recrystallization from an acetonitrile solution. The dark-red–purple powder of (II) was precipitated by the reaction of (Bu4N)[PtCl2(ppy)] (342 mg, 0.52 mmol) and Hpyt (58 mg, 0.52 mmol) in water (60 ml) at 343 K for 3 d (yield 77 mg, 26%). Recrystallization from acetonitrile gave dark-red prismatic crystals of (II). Both (I) and (II) exhibited essentially the same 1H NMR spectra (DMSO-d6, δ, p.p.m.): 6.33 (t, 2 H), 6.65 (t, 2 H), 6.89 (t, 2 H), 7.02 (d, 2 H), 7.11 (t, 2 H), 7.18 (d, 2 H), 7.29 (br, 4 H), 7.40 (t, 4 H), 7.61 (d, 4 H), 7.73 (t, 2 H), 7.80 (t, 2 H), 8.47 (d, 2 H), 8.50 (br, 2 H).

Refinement top

For both (I) and (II), large ratios of Ueq(max)/Ueq(min) for C and N were observed, because of the fluctuation of the axial pyt ligands. The possibility of rotational disorder of the axial pyt ligands was rejected because of the steric factor for the packing. Other assignments of the N atoms would cause steric hindrance of the C—H moiety. The acetonitrile solvent molecule in (II) was found to be disordered, with the two components related by a twofold axis. The two possible sites share the terminal C23 atom, which lies on the twofold axis. The non-H atoms of the solvent molecule were refined isotropically. The H atoms of the methyl group (C23) of the acetonitrile were positioned geometrically as two disordered sites without further refinement Occupancies? All other H atoms were treated as riding, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)]. For (I), the deepest hole of residual density (−1.52 e Å−3) was found 0.86 Å from Pt1. For (II), the peaks of 3.15 and 2.24 e Å−3 and the hole of −1.59 e Å−3 were observed 0.78, 1.23 and 0.73 Å from atoms C5, N4 and Pt1, respectively.

Computing details top

For both compounds, data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004). Program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1992) for (I); SHELXS97 (Sheldrick, 1997) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: CrystalStructure.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The dimeric arrangement of (I). Atoms labelled with a prime are at the symmetry position (1 − x, 1 − y, −z).
[Figure 3] Fig. 3. The molecular structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level, except those for the solvated acetonitrile, which are drawn as ideal spheres of arbitrary radii. H atoms are also shown as small spheres of arbitrary radii. The disordered atoms of the acetonitrile are shown as open circles. [Symmetry code: (i) −x, y, 1/2 − z.]
(I) Bis(µ-pyridine-2-thiolato)-κ4S:N;N:S-bis[(pyridine-2-thiolato- κS)(2-pyridylphenyl-κ2N,C2)platinum(III)](Pt—Pt) top
Crystal data top
[Pt2(C11H8N)2(C5H4NS)4]Z = 2
Mr = 1139.18F(000) = 1092.00
Triclinic, P1Dx = 2.036 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 11.3534 (2) ÅCell parameters from 5557 reflections
b = 12.3455 (2) Åθ = 3.1–27.5°
c = 15.3328 (4) ŵ = 7.76 mm1
α = 67.918 (9)°T = 173 K
β = 84.242 (13)°Needle, brown
γ = 69.034 (10)°0.22 × 0.04 × 0.04 mm
V = 1858.1 (2) Å3
Data collection top
Rigaku MercuryCCD
diffractometer
6772 reflections with F2 > 2σ(F2)
Detector resolution: 14.62 pixels mm-1Rint = 0.036
ω scansθmax = 27.5°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 1413
Tmin = 0.284, Tmax = 0.733k = 1616
14354 measured reflectionsl = 1918
8029 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0141P)2 + 9.3496P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max = 0.001
S = 1.17Δρmax = 0.90 e Å3
8029 reflectionsΔρmin = 1.52 e Å3
488 parameters
Crystal data top
[Pt2(C11H8N)2(C5H4NS)4]γ = 69.034 (10)°
Mr = 1139.18V = 1858.1 (2) Å3
Triclinic, P1Z = 2
a = 11.3534 (2) ÅMo Kα radiation
b = 12.3455 (2) ŵ = 7.76 mm1
c = 15.3328 (4) ÅT = 173 K
α = 67.918 (9)°0.22 × 0.04 × 0.04 mm
β = 84.242 (13)°
Data collection top
Rigaku MercuryCCD
diffractometer
8029 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
6772 reflections with F2 > 2σ(F2)
Tmin = 0.284, Tmax = 0.733Rint = 0.036
14354 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048488 parameters
wR(F2) = 0.085H-atom parameters constrained
S = 1.17Δρmax = 0.90 e Å3
8029 reflectionsΔρmin = 1.52 e Å3
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement using all reflections. The weighted R-factor (wR), goodness of fit (S) and R-factor (gt) are based on F, with F set to zero for negative F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.18638 (2)0.19317 (2)0.25034 (2)0.01592 (7)
Pt20.32693 (3)0.32639 (3)0.24599 (2)0.01711 (8)
S10.0148 (2)0.3746 (2)0.22181 (13)0.0211 (4)
S20.3968 (2)0.1905 (2)0.39734 (13)0.0239 (4)
S30.0166 (2)0.1120 (2)0.2480 (1)0.0254 (4)
S40.4406 (2)0.4655 (2)0.2406 (2)0.0269 (4)
N10.3315 (6)0.0268 (5)0.2668 (4)0.0197 (13)
N20.2806 (6)0.4466 (5)0.1078 (4)0.0183 (13)
N30.1714 (5)0.1609 (5)0.4009 (4)0.0163 (12)
N40.1679 (6)0.4326 (6)0.3077 (5)0.023 (1)
N50.1681 (7)0.1221 (6)0.2819 (5)0.036 (2)
N60.5425 (9)0.4671 (9)0.3848 (7)0.064 (3)
C10.2104 (7)0.2101 (7)0.1143 (5)0.020 (2)
C20.1468 (7)0.3105 (7)0.0351 (5)0.023 (2)
C30.1701 (7)0.3038 (8)0.0537 (6)0.029 (2)
C40.2574 (8)0.1991 (8)0.0650 (6)0.030 (2)
C50.3226 (8)0.0994 (8)0.0120 (6)0.030 (2)
C60.3005 (7)0.1037 (7)0.1031 (6)0.024 (2)
C70.3668 (6)0.0033 (7)0.1874 (6)0.021 (2)
C80.4548 (8)0.1110 (7)0.1923 (6)0.029 (2)
C90.5080 (8)0.2008 (7)0.2766 (7)0.036 (2)
C100.4727 (8)0.1755 (7)0.3582 (6)0.034 (2)
C110.3839 (7)0.0608 (7)0.3505 (6)0.023 (2)
C120.4688 (7)0.2357 (7)0.1824 (5)0.021 (2)
C130.5667 (7)0.1227 (7)0.2228 (6)0.029 (2)
C140.6599 (8)0.0746 (8)0.1682 (7)0.035 (2)
C150.6582 (8)0.1375 (9)0.0724 (7)0.038 (2)
C160.5631 (7)0.2494 (8)0.0289 (6)0.030 (2)
C170.4681 (7)0.2983 (7)0.0838 (6)0.024 (2)
C180.3644 (7)0.4173 (7)0.0437 (5)0.022 (2)
C190.3481 (8)0.4964 (8)0.0494 (6)0.032 (2)
C200.2481 (8)0.6070 (8)0.0799 (6)0.033 (2)
C210.1626 (8)0.6355 (7)0.0143 (6)0.029 (2)
C220.1809 (7)0.5545 (7)0.0777 (6)0.026 (2)
C230.2644 (7)0.1568 (7)0.4509 (5)0.020 (2)
C240.2570 (8)0.1251 (8)0.5482 (5)0.030 (2)
C250.1538 (8)0.1007 (8)0.5933 (6)0.034 (2)
C260.0548 (8)0.1116 (8)0.5402 (6)0.030 (2)
C270.0681 (7)0.1410 (7)0.4442 (5)0.025 (2)
C280.0466 (7)0.4494 (7)0.2884 (5)0.020 (2)
C290.0564 (8)0.5269 (7)0.3215 (6)0.029 (2)
C300.0337 (9)0.5857 (8)0.3747 (7)0.039 (2)
C310.0895 (9)0.5629 (8)0.3995 (6)0.035 (2)
C320.1851 (8)0.4876 (7)0.3636 (6)0.029 (2)
C330.0790 (8)0.0226 (8)0.2222 (6)0.029 (2)
C340.0315 (10)0.0278 (9)0.1447 (7)0.043 (2)
C350.0845 (12)0.1364 (10)0.1239 (8)0.063 (3)
C360.1814 (11)0.2336 (9)0.1809 (8)0.053 (3)
C370.2175 (9)0.2225 (8)0.2574 (7)0.044 (3)
C380.5521 (9)0.3987 (8)0.3309 (6)0.036 (2)
C390.6455 (9)0.2825 (9)0.3495 (8)0.049 (3)
C400.7297 (9)0.2363 (10)0.4221 (8)0.052 (3)
C410.7221 (10)0.3030 (11)0.4761 (8)0.058 (3)
C420.6369 (13)0.4194 (12)0.4516 (9)0.085 (5)
H20.08860.38220.04170.028*
H30.12630.37080.10630.034*
H40.27210.19580.12490.036*
H50.38150.02890.00410.036*
H80.47800.12680.13720.035*
H90.56680.27740.27930.044*
H100.50790.23420.41660.041*
H110.35940.04340.40490.028*
H130.56950.07890.28740.034*
H140.72440.00100.19650.042*
H150.72180.10430.03680.046*
H160.56200.29180.03580.036*
H190.40600.47450.09260.039*
H200.23840.66080.14250.039*
H210.09310.70900.03230.035*
H220.12240.57460.12110.031*
H240.32270.12060.58270.036*
H250.14990.07720.65840.041*
H260.01820.09950.56840.035*
H270.00300.14730.40830.029*
H290.13870.53800.30740.034*
H300.10070.64060.39410.046*
H310.10670.59740.43900.042*
H320.26760.47380.37920.034*
H340.03440.03960.10710.052*
H350.05440.14230.07220.075*
H360.22120.30530.16730.063*
H370.28200.29000.29630.053*
H390.65010.23670.31220.059*
H400.79280.15870.43490.062*
H410.77480.26920.52940.070*
H420.64290.47000.48190.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0173 (1)0.0153 (1)0.0151 (2)0.0071 (1)0.0007 (1)0.0041 (1)
Pt20.0188 (1)0.0188 (1)0.0148 (2)0.0097 (1)0.0014 (1)0.0046 (1)
S10.0204 (9)0.0204 (9)0.0216 (10)0.0062 (7)0.0000 (7)0.0074 (8)
S20.0237 (9)0.0297 (10)0.0171 (10)0.0141 (8)0.0014 (8)0.0023 (8)
S30.0265 (10)0.0274 (10)0.0252 (11)0.0154 (8)0.0017 (8)0.0073 (8)
S40.0298 (10)0.0307 (11)0.0270 (11)0.0194 (9)0.0050 (9)0.0105 (9)
N10.019 (3)0.020 (3)0.021 (4)0.008 (3)0.001 (3)0.006 (3)
N20.026 (3)0.024 (3)0.007 (3)0.018 (3)0.004 (3)0.001 (2)
N30.021 (3)0.016 (3)0.010 (3)0.009 (2)0.000 (2)0.001 (2)
N40.026 (3)0.024 (3)0.023 (4)0.015 (3)0.007 (3)0.009 (3)
N50.049 (5)0.022 (4)0.038 (5)0.015 (3)0.008 (4)0.005 (3)
N60.069 (7)0.058 (6)0.071 (7)0.010 (5)0.016 (5)0.037 (5)
C10.021 (4)0.023 (4)0.018 (4)0.013 (3)0.004 (3)0.007 (3)
C20.023 (4)0.018 (4)0.026 (5)0.006 (3)0.002 (3)0.006 (3)
C30.028 (4)0.038 (5)0.019 (5)0.016 (4)0.000 (3)0.004 (4)
C40.036 (5)0.042 (5)0.012 (4)0.016 (4)0.012 (4)0.011 (4)
C50.031 (4)0.038 (5)0.027 (5)0.012 (4)0.001 (4)0.018 (4)
C60.020 (4)0.019 (4)0.031 (5)0.006 (3)0.002 (3)0.006 (3)
C70.013 (3)0.023 (4)0.028 (5)0.008 (3)0.001 (3)0.008 (3)
C80.033 (4)0.025 (4)0.025 (5)0.006 (4)0.004 (4)0.010 (4)
C90.036 (5)0.019 (4)0.049 (6)0.002 (4)0.000 (4)0.015 (4)
C100.030 (4)0.021 (4)0.036 (5)0.002 (3)0.012 (4)0.001 (4)
C110.021 (4)0.024 (4)0.023 (4)0.009 (3)0.002 (3)0.004 (3)
C120.023 (4)0.025 (4)0.024 (4)0.019 (3)0.005 (3)0.009 (3)
C130.025 (4)0.029 (4)0.030 (5)0.009 (3)0.005 (4)0.010 (4)
C140.025 (4)0.035 (5)0.045 (6)0.008 (4)0.004 (4)0.019 (4)
C150.032 (5)0.048 (6)0.052 (7)0.019 (4)0.012 (4)0.033 (5)
C160.027 (4)0.049 (5)0.026 (5)0.024 (4)0.013 (4)0.018 (4)
C170.023 (4)0.027 (4)0.028 (5)0.017 (3)0.006 (3)0.010 (3)
C180.029 (4)0.030 (4)0.013 (4)0.023 (4)0.005 (3)0.004 (3)
C190.037 (5)0.050 (5)0.020 (5)0.030 (4)0.011 (4)0.011 (4)
C200.040 (5)0.034 (5)0.021 (5)0.021 (4)0.003 (4)0.000 (4)
C210.032 (4)0.022 (4)0.026 (5)0.011 (4)0.010 (4)0.004 (3)
C220.023 (4)0.027 (4)0.030 (5)0.013 (3)0.000 (3)0.008 (4)
C230.023 (4)0.021 (4)0.015 (4)0.009 (3)0.003 (3)0.003 (3)
C240.041 (5)0.040 (5)0.011 (4)0.023 (4)0.002 (4)0.003 (4)
C250.045 (5)0.037 (5)0.021 (5)0.020 (4)0.005 (4)0.008 (4)
C260.034 (5)0.034 (5)0.027 (5)0.018 (4)0.004 (4)0.012 (4)
C270.029 (4)0.022 (4)0.023 (4)0.012 (3)0.002 (3)0.006 (3)
C280.027 (4)0.023 (4)0.009 (4)0.010 (3)0.007 (3)0.005 (3)
C290.031 (4)0.028 (4)0.024 (5)0.008 (4)0.006 (4)0.010 (4)
C300.044 (5)0.036 (5)0.040 (6)0.013 (4)0.013 (4)0.021 (4)
C310.047 (5)0.038 (5)0.036 (5)0.026 (4)0.019 (4)0.025 (4)
C320.040 (5)0.028 (4)0.023 (5)0.019 (4)0.005 (4)0.009 (4)
C330.035 (5)0.031 (4)0.023 (5)0.024 (4)0.010 (4)0.004 (4)
C340.054 (6)0.035 (5)0.036 (6)0.007 (5)0.009 (5)0.014 (4)
C350.097 (10)0.048 (7)0.049 (7)0.014 (6)0.015 (7)0.031 (6)
C360.063 (7)0.037 (6)0.066 (8)0.017 (5)0.008 (6)0.028 (5)
C370.049 (6)0.024 (5)0.064 (7)0.017 (4)0.006 (5)0.014 (5)
C380.044 (5)0.032 (5)0.035 (5)0.016 (4)0.003 (4)0.013 (4)
C390.032 (5)0.045 (6)0.080 (8)0.013 (5)0.002 (5)0.033 (6)
C400.036 (5)0.057 (7)0.072 (8)0.023 (5)0.002 (5)0.025 (6)
C410.049 (7)0.063 (7)0.063 (8)0.014 (6)0.013 (6)0.025 (6)
C420.093 (10)0.068 (8)0.085 (10)0.018 (7)0.066 (8)0.045 (8)
Geometric parameters (Å, º) top
Pt1—Pt22.6514 (5)C19—C201.37 (1)
Pt1—S12.305 (2)C20—C211.38 (1)
Pt1—S32.479 (3)C21—C221.37 (1)
Pt1—N12.066 (5)C23—C241.40 (1)
Pt1—N32.189 (6)C24—C251.37 (1)
Pt1—C12.017 (8)C25—C261.39 (1)
Pt2—S22.306 (2)C26—C271.38 (1)
Pt2—S42.466 (3)C28—C291.41 (1)
Pt2—N22.066 (5)C29—C301.37 (2)
Pt2—N42.184 (6)C30—C311.39 (1)
Pt2—C122.004 (8)C31—C321.37 (1)
S1—C281.75 (1)C33—C341.38 (2)
S2—C231.746 (8)C34—C351.40 (2)
S3—C331.74 (1)C35—C361.37 (1)
S4—C381.72 (1)C36—C371.35 (2)
N1—C71.35 (1)C38—C391.39 (1)
N1—C111.349 (8)C39—C401.35 (2)
N2—C181.36 (1)C40—C411.35 (2)
N2—C221.354 (8)C41—C421.35 (2)
N3—C231.34 (1)C2—H20.9300
N3—C271.34 (1)C3—H30.9300
N4—C281.36 (1)C4—H40.9299
N4—C321.34 (1)C5—H50.9300
N5—C331.349 (9)C8—H80.9301
N5—C371.34 (1)C9—H90.9301
N6—C381.36 (2)C10—H100.9300
N6—C421.36 (2)C11—H110.9300
C1—C21.391 (9)C13—H130.9300
C1—C61.41 (1)C14—H140.9300
C2—C31.39 (1)C15—H150.9300
C3—C41.38 (1)C16—H160.9299
C4—C51.37 (1)C19—H190.9300
C5—C61.41 (1)C20—H200.9300
C6—C71.447 (9)C21—H210.9301
C7—N11.35 (1)C22—H220.9300
C7—C61.447 (9)C24—H240.9300
C7—C81.39 (1)C25—H250.9301
C8—C71.39 (1)C26—H260.9300
C8—C91.37 (1)C27—H270.9300
C9—C101.39 (1)C29—H290.9300
C10—C111.38 (1)C30—H300.9301
C12—C131.395 (9)C31—H310.9299
C12—C171.41 (1)C32—H320.9300
C13—C141.39 (1)C34—H340.9300
C14—C151.38 (1)C35—H350.9299
C15—C161.38 (1)C36—H360.9301
C16—C171.40 (1)C37—H370.9300
C17—C181.466 (9)C39—H390.9300
C18—N21.36 (1)C40—H400.9300
C18—C171.466 (9)C41—H410.9299
C18—C191.38 (1)C42—H420.9300
C19—C181.38 (1)
S1—Pt1—Pt286.69 (6)C12—C13—C14120.9 (7)
Pt1—Pt2—S287.21 (6)C12—C17—C18116.1 (7)
S3—Pt1—Pt2167.57 (4)C12—C17—C16121.3 (6)
N1—Pt1—Pt297.7 (2)C13—C14—C15120.8 (7)
Pt1—Pt2—N296.3 (2)C14—C15—C16120.6 (9)
N3—Pt1—Pt286.1 (2)C15—C16—C17118.9 (8)
Pt1—Pt2—N486.2 (2)C16—C17—C18122.6 (7)
C1—Pt1—Pt294.7 (3)C17—C18—C19126.0 (7)
Pt1—Pt2—C1293.9 (3)C18—C19—C20121.5 (8)
Pt1—Pt2—S4175.06 (4)C19—C20—C21117.7 (7)
S3—Pt1—S180.88 (7)C20—C21—C22119.5 (6)
N1—Pt1—S1174.3 (2)C23—C24—C25120.5 (9)
N3—Pt1—S188.5 (1)C24—C25—C26119.0 (8)
C1—Pt1—S195.8 (2)C25—C26—C27118.1 (8)
Pt1—S1—C28105.2 (2)C28—C29—C30119.1 (9)
N1—Pt1—S394.7 (2)C29—C30—C31119.8 (9)
N3—Pt1—S393.5 (2)C30—C31—C32117 (1)
C1—Pt1—S386.7 (3)C33—C34—C35118.9 (8)
Pt1—S3—C33109.7 (3)C34—C35—C36118 (1)
N3—Pt1—N195.5 (2)C35—C36—C37118 (1)
C1—Pt1—N180.2 (2)C38—C39—C40119 (1)
Pt1—N1—C7115.7 (4)C39—C40—C41119 (1)
Pt1—N1—C11124.6 (6)C40—C41—C42119 (1)
C1—Pt1—N3175.7 (2)N1—C11—H11118.8359
Pt1—N3—C23121.5 (5)N2—C22—H22118.6330
Pt1—N3—C27118.8 (6)N3—C27—H27118.7221
Pt1—C1—C2127.6 (6)N4—C32—H32117.6445
Pt1—C1—C6113.0 (5)N5—C37—H37117.2986
N2—Pt2—S2175.0 (2)N6—C42—H42118.2164
N4—Pt2—S287.5 (2)C1—C2—H2119.9751
C12—Pt2—S295.7 (2)H2—C2—C3119.9818
Pt2—S2—C23104.8 (2)C2—C3—H3119.5924
S4—Pt2—S294.98 (8)H3—C3—C4119.5845
N2—Pt2—S481.8 (2)C3—C4—H4119.9109
N4—Pt2—S489.5 (2)C4—C5—H5119.9227
C12—Pt2—S490.3 (3)H4—C4—C5119.9050
Pt2—S4—C38112.1 (4)H5—C5—C6119.9153
N4—Pt2—N296.3 (2)C7—C8—H8119.3695
C12—Pt2—N280.5 (2)H8—C8—C9119.3804
Pt2—N2—C18115.6 (4)C8—C9—H9120.6893
Pt2—N2—C22126.0 (5)C9—C10—H10120.7940
C12—Pt2—N4176.9 (2)H9—C9—C10120.6761
Pt2—N4—C28121.3 (6)C10—C11—H11118.8441
Pt2—N4—C32121.5 (6)H10—C10—C11120.7864
Pt2—C12—C13128.5 (6)C12—C13—H13119.5366
Pt2—C12—C17114.0 (5)H13—C13—C14119.5339
S1—C28—N4120.6 (6)C13—C14—H14119.6172
S1—C28—C29118.1 (7)H14—C14—C15119.6210
S2—C23—N3121.7 (6)C14—C15—H15119.7212
S2—C23—C24118.2 (7)C15—C16—H16120.5278
S3—C33—N5118.5 (8)H15—C15—C16119.7073
S3—C33—C34119.6 (6)H16—C16—C17120.5229
S4—C38—C39123 (1)C18—C19—H19119.2407
S4—C38—N6115.3 (6)H19—C19—C20119.2397
N1—C7—C6113.6 (6)C19—C20—H20121.1575
C11—N1—C7119.4 (6)C20—C21—H21120.2838
N1—C7—C8119.9 (6)H20—C20—C21121.1574
N1—C11—C10122.3 (8)C21—C22—H22118.6285
N2—C18—C17113.6 (6)H21—C21—C22120.2618
C22—N2—C18118.2 (6)C23—C24—H24119.7641
N2—C18—C19120.4 (6)H24—C24—C25119.7679
N2—C22—C21122.7 (7)C24—C25—H25120.5144
C27—N3—C23119.6 (7)C25—C26—H26120.9464
N3—C23—C24120.1 (7)H25—C25—C26120.5169
N3—C27—C26122.6 (8)C26—C27—H27118.7137
C32—N4—C28117.2 (7)H26—C26—C27120.9576
N4—C28—C29121.3 (9)C28—C29—H29120.4363
N4—C32—C31124.7 (9)H29—C29—C30120.4217
N5—C33—C34121.7 (9)C29—C30—H30120.0963
C37—N5—C33116.6 (9)C30—C31—H31121.1645
N5—C37—C36125.4 (8)H30—C30—C31120.0835
N6—C38—C39121 (1)C31—C32—H32117.6467
C42—N6—C38115.5 (9)H31—C31—C32121.1529
N6—C42—C41123 (1)C33—C34—H34120.5472
C6—C1—C2119.4 (8)H34—C34—C35120.5383
C1—C2—C3120.0 (7)C34—C35—H35120.6123
C1—C6—C7117.3 (8)C35—C36—H36120.8817
C1—C6—C5119.4 (6)H35—C35—C36120.6163
C2—C3—C4120.8 (6)H36—C36—C37120.9023
C3—C4—C5120.2 (8)C36—C37—H37117.2820
C4—C5—C6120.2 (8)C38—C39—H39120.2415
C5—C6—C7123.4 (7)H39—C39—C40120.2417
C6—C7—C8126.4 (8)C39—C40—H40120.0853
C7—C8—C9121.3 (9)C40—C41—H41120.4866
C8—C9—C10118.6 (7)H40—C40—C41120.0621
C9—C10—C11118.4 (7)H41—C41—C42120.4767
C17—C12—C13117.5 (7)C41—C42—H42118.2221
S1—Pt1—Pt2—S2121.33 (5)C5—C6—C7—N1179.8 (6)
Pt2—Pt1—S1—C2839.0 (3)N1—C7—C8—C90 (1)
Pt2—Pt1—S3—C33157.6 (3)C7—C8—C9—C100 (1)
Pt2—Pt1—N1—C797.6 (6)C8—C9—C10—C110 (1)
Pt2—Pt1—N3—C2330.5 (5)C9—C10—C11—N10 (1)
Pt2—Pt1—C1—C280.9 (8)Pt2—C12—C13—C14178.1 (9)
Pt1—Pt2—S2—C2337.6 (3)Pt2—C12—C17—C16178.0 (9)
S2—Pt2—S4—C3813.9 (4)C12—C13—C14—C150 (1)
Pt1—Pt2—N2—C1897.3 (7)C13—C14—C15—C160 (1)
Pt1—Pt2—N4—C2831.4 (5)C14—C15—C16—C170 (1)
Pt1—Pt2—C12—C1383.0 (9)C15—C16—C17—C120 (1)
Pt1—S1—C28—N429.0 (6)C12—C17—C18—N22 (1)
Pt2—S2—C23—N328.0 (7)C16—C17—C18—N2178.4 (9)
Pt1—S3—C33—N561.6 (8)N2—C18—C19—C200 (1)
Pt2—S4—C38—N6125.8 (7)C18—C19—C20—C211 (1)
Pt1—N1—C7—C63 (1)C19—C20—C21—C220 (1)
Pt1—N1—C11—C10173.8 (8)C20—C21—C22—N20 (1)
Pt2—N2—C18—C175 (1)S2—C23—C24—C25178.5 (7)
Pt2—N2—C22—C21173.8 (8)C23—C24—C25—C261 (1)
Pt1—N3—C23—S25.8 (8)C24—C25—C26—C273 (1)
Pt1—N3—C27—C26175.6 (6)C25—C26—C27—N30 (1)
Pt2—N4—C28—S15.8 (8)S1—C28—C29—C30179.4 (6)
Pt2—N4—C32—C31175.2 (6)C28—C29—C30—C313 (1)
C37—N5—C33—S3177.4 (7)C29—C30—C31—C324 (1)
C33—N5—C37—C363 (1)C30—C31—C32—N41 (1)
C42—N6—C38—S4174.7 (8)S3—C33—C34—C35178.9 (9)
C38—N6—C42—C4111 (1)C33—C34—C35—C360 (1)
Pt1—C1—C2—C3176.3 (8)C34—C35—C36—C373 (1)
Pt1—C1—C6—C5176.7 (8)C35—C36—C37—N51 (1)
C1—C2—C3—C40 (1)S4—C38—C39—C40179.8 (7)
C2—C3—C4—C50 (1)C38—C39—C40—C410 (1)
C3—C4—C5—C60 (1)C39—C40—C41—C425 (1)
C4—C5—C6—C10 (1)C40—C41—C42—N611 (2)
C1—C6—C7—N10 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···S4i0.932.763.60 (1)150
C26—H26···N5ii0.932.763.54 (1)142
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+1.
(II) Bis(µ-pyridine-2-thiolato)-κ4S:N;N:S-bis[(pyridine-2-thiolato- κS)(2-pyridylphenyl-κ2N,C2)platinum(III)](Pt—Pt) acetonitrile solvate top
Crystal data top
[Pt2(C11H8N)2(C5H4NS)4]·C2H3NF(000) = 2272.00
Mr = 1180.23Dx = 1.987 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -C 2ycCell parameters from 6621 reflections
a = 16.390 (1) Åθ = 3.6–27.5°
b = 15.5766 (9) ŵ = 7.31 mm1
c = 17.534 (2) ÅT = 173 K
β = 118.199 (3)°Prism, dark red
V = 3945.3 (5) Å30.40 × 0.20 × 0.18 mm
Z = 4
Data collection top
Rigaku MercuryCCD
diffractometer
3887 reflections with F2 > 2σ(F2)
Detector resolution: 7.31 pixels mm-1Rint = 0.028
ω scansθmax = 27.5°
Absorption correction: numerical
(NUMABS; Higashi 1999)
h = 2121
Tmin = 0.148, Tmax = 0.268k = 1920
15006 measured reflectionsl = 2222
4432 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0329P)2 + 33.7943P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max = 0.007
S = 1.09Δρmax = 3.15 e Å3
4432 reflectionsΔρmin = 1.59 e Å3
255 parameters
Crystal data top
[Pt2(C11H8N)2(C5H4NS)4]·C2H3NV = 3945.3 (5) Å3
Mr = 1180.23Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.390 (1) ŵ = 7.31 mm1
b = 15.5766 (9) ÅT = 173 K
c = 17.534 (2) Å0.40 × 0.20 × 0.18 mm
β = 118.199 (3)°
Data collection top
Rigaku MercuryCCD
diffractometer
4432 independent reflections
Absorption correction: numerical
(NUMABS; Higashi 1999)
3887 reflections with F2 > 2σ(F2)
Tmin = 0.148, Tmax = 0.268Rint = 0.028
15006 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0329P)2 + 33.7943P]
where P = (Fo2 + 2Fc2)/3
S = 1.09Δρmax = 3.15 e Å3
4432 reflectionsΔρmin = 1.59 e Å3
255 parameters
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement using reflections with F2 > 3.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.08730 (1)0.56183 (1)0.26401 (1)0.01693 (7)
S10.03602 (7)0.63849 (7)0.13745 (7)0.0225 (2)
S20.24222 (9)0.57122 (8)0.27053 (10)0.0334 (3)
N10.1329 (2)0.4858 (2)0.3735 (2)0.0194 (7)
N20.1045 (2)0.6836 (2)0.3313 (2)0.0206 (7)
N30.3483 (4)0.5165 (5)0.4303 (4)0.075 (2)
N40.070 (2)0.106 (2)0.316 (1)0.118 (6)*0.50
C10.0806 (3)0.4458 (3)0.2110 (3)0.0184 (8)
C20.0608 (3)0.4289 (3)0.1256 (3)0.0232 (9)
C30.0674 (3)0.3459 (3)0.1009 (3)0.0303 (10)
C40.0925 (3)0.2784 (3)0.1592 (3)0.0326 (10)
C50.1104 (4)0.2950 (3)0.2444 (4)0.0391 (13)
C60.1072 (3)0.3782 (3)0.2702 (3)0.0226 (8)
C70.1333 (3)0.4000 (3)0.3595 (3)0.0214 (8)
C80.1602 (4)0.3425 (3)0.4279 (3)0.0321 (10)
C90.1866 (4)0.3733 (4)0.5105 (3)0.0379 (12)
C100.1871 (4)0.4606 (4)0.5239 (3)0.0334 (10)
C110.1595 (3)0.5152 (3)0.4538 (3)0.0259 (9)
C120.0548 (3)0.7039 (3)0.3719 (3)0.0223 (8)
C130.0773 (3)0.7766 (3)0.4253 (3)0.0262 (9)
C140.1489 (4)0.8291 (3)0.4350 (3)0.0315 (10)
C150.1961 (3)0.8107 (3)0.3889 (3)0.0305 (10)
C160.1726 (3)0.7379 (3)0.3383 (3)0.0268 (9)
C170.3079 (4)0.4935 (4)0.3474 (4)0.0427 (13)
C180.3144 (4)0.4103 (4)0.3217 (4)0.047 (1)
C190.3608 (5)0.3492 (5)0.3817 (5)0.063 (2)
C200.4004 (5)0.3697 (7)0.4675 (6)0.077 (3)
C210.3947 (5)0.4539 (6)0.4896 (5)0.072 (3)
C220.0311 (13)0.0474 (13)0.2776 (13)0.083 (5)*0.50
C230.00000.035 (2)0.25000.160 (9)*
H20.04330.47340.08560.028*
H30.05480.33510.04420.036*
H40.09740.22290.14220.039*
H50.12440.25000.28350.047*
H80.16050.28380.41840.039*
H90.20380.33540.55650.045*
H100.20580.48240.57900.040*
H110.15920.57400.46250.031*
H130.04360.78930.45420.031*
H140.16540.87630.47190.038*
H150.24280.84680.39200.037*
H160.20460.72540.30780.032*
H180.28680.39670.26310.057*
H190.36550.29370.36460.075*
H200.43040.32820.50990.093*
H210.42410.46860.54800.087*
H23A0.03400.05910.22330.192*0.50
H23B0.06470.03320.20890.192*0.50
H23C0.00890.06940.29870.192*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01574 (9)0.01707 (10)0.01982 (10)0.00046 (5)0.00992 (7)0.00071 (5)
S10.0255 (5)0.0224 (5)0.0248 (5)0.0022 (4)0.0159 (4)0.0037 (4)
S20.0264 (6)0.0296 (6)0.0545 (8)0.0053 (4)0.0278 (6)0.0053 (5)
N10.013 (2)0.023 (2)0.021 (2)0.0027 (13)0.0067 (13)0.004 (1)
N20.022 (2)0.018 (2)0.022 (2)0.0024 (13)0.011 (1)0.002 (1)
N30.042 (3)0.116 (6)0.055 (4)0.010 (4)0.014 (3)0.038 (4)
C10.013 (2)0.021 (2)0.023 (2)0.001 (1)0.010 (2)0.002 (2)
C20.022 (2)0.027 (2)0.024 (2)0.001 (2)0.013 (2)0.002 (2)
C30.030 (2)0.034 (3)0.025 (2)0.003 (2)0.012 (2)0.006 (2)
C40.034 (3)0.023 (2)0.039 (3)0.003 (2)0.016 (2)0.008 (2)
C50.036 (3)0.019 (2)0.037 (3)0.007 (2)0.004 (2)0.013 (2)
C60.023 (2)0.016 (2)0.031 (2)0.001 (2)0.014 (2)0.001 (2)
C70.018 (2)0.022 (2)0.024 (2)0.003 (2)0.010 (2)0.001 (2)
C80.037 (3)0.027 (2)0.034 (3)0.010 (2)0.018 (2)0.009 (2)
C90.040 (3)0.043 (3)0.031 (3)0.016 (2)0.017 (2)0.014 (2)
C100.030 (3)0.045 (3)0.023 (2)0.008 (2)0.011 (2)0.000 (2)
C110.022 (2)0.030 (2)0.024 (2)0.001 (2)0.009 (2)0.003 (2)
C120.025 (2)0.020 (2)0.021 (2)0.002 (2)0.010 (2)0.001 (2)
C130.032 (2)0.022 (2)0.027 (2)0.001 (2)0.016 (2)0.001 (2)
C140.037 (3)0.023 (2)0.033 (2)0.005 (2)0.015 (2)0.008 (2)
C150.032 (2)0.023 (2)0.036 (3)0.010 (2)0.016 (2)0.004 (2)
C160.026 (2)0.028 (2)0.029 (2)0.004 (2)0.015 (2)0.000 (2)
C170.024 (2)0.057 (4)0.046 (3)0.005 (2)0.016 (2)0.012 (3)
C180.034 (3)0.050 (3)0.058 (4)0.009 (3)0.022 (3)0.013 (3)
C190.042 (4)0.066 (5)0.075 (5)0.020 (3)0.024 (4)0.008 (4)
C200.052 (4)0.111 (7)0.074 (5)0.039 (5)0.033 (4)0.022 (5)
C210.047 (4)0.120 (7)0.040 (4)0.038 (4)0.012 (3)0.008 (4)
Geometric parameters (Å, º) top
Pt1—Pt1i2.6650 (2)C14—C151.389 (9)
Pt1—S12.301 (1)C15—C161.378 (7)
Pt1—S22.492 (2)C17—C181.392 (9)
Pt1—N12.072 (4)C18—C191.36 (1)
Pt1—N22.180 (4)C19—C201.36 (1)
Pt1—C12.011 (4)C20—C211.38 (1)
S1—C12i1.746 (5)C22—C231.38 (3)
S2—C171.752 (6)C23—C22i1.38 (3)
N1—C71.358 (6)C2—H20.9300
N1—C111.343 (6)C3—H30.9301
N2—C121.349 (7)C4—H40.9299
N2—C161.358 (6)C5—H50.9300
N3—C171.330 (9)C8—H80.9301
N3—C211.37 (1)C9—H90.9301
N4—C221.13 (3)C10—H100.9299
C1—C21.398 (7)C11—H110.9299
C1—C61.396 (6)C13—H130.9302
C2—C31.385 (7)C14—H140.9300
C3—C41.386 (7)C15—H150.9299
C4—C31.386 (7)C16—H160.9300
C4—C51.403 (9)C18—H180.9300
C5—C61.383 (7)C19—H190.9301
C6—C71.454 (7)C20—H200.9301
C7—C81.393 (7)C21—H210.9300
C8—C91.386 (8)C23—H23A0.9588
C9—C101.379 (8)C23—H23Ai0.9588
C10—C111.382 (7)C23—H23B0.9604
C12—S1i1.746 (5)C23—H23Bi0.9604
C12—C131.403 (6)C23—H23C0.9606
C13—C141.372 (8)C23—H23Ci0.9606
S1—Pt1—Pt1i87.20 (3)C8—C9—C10119.6 (5)
S2—Pt1—Pt1i172.21 (4)C9—C10—C11118.8 (5)
N1—Pt1—Pt1i93.3 (1)C12—S1i—Pt1i107.5 (2)
N2—Pt1—Pt1i87.3 (1)C13—C12—S1i118.5 (4)
C1—Pt1—Pt1i95.5 (1)C12—C13—C14120.3 (6)
S2—Pt1—S185.05 (5)C13—C14—C15118.9 (5)
N1—Pt1—S1176.3 (1)C14—C15—C16118.7 (5)
N2—Pt1—S188.0 (1)C17—C18—C19120.2 (7)
C1—Pt1—S196.0 (1)C18—C19—C20119.5 (8)
Pt1—S1—C12i107.5 (2)C19—C20—C21118.1 (8)
N1—Pt1—S294.4 (1)N1—C11—H11118.9920
N2—Pt1—S293.2 (1)N2—C16—H16118.6779
C1—Pt1—S284.6 (1)N3—C21—H21118.3026
Pt1—S2—C17103.7 (2)C1—C2—H2120.0770
N2—Pt1—N195.7 (1)H2—C2—C3120.0851
C1—Pt1—N180.3 (2)C2—C3—H3119.4159
Pt1—N1—C7115.2 (3)H3—C3—C4119.4016
Pt1—N1—C11124.9 (3)C3—C4—H4120.4885
C1—Pt1—N2175.2 (1)C4—C5—H5120.0006
Pt1—N2—C12122.3 (3)H4—C4—C5120.4891
Pt1—N2—C16118.8 (4)H5—C5—C6120.0095
Pt1—C1—C2126.7 (3)C7—C8—H8120.2619
Pt1—C1—C6113.8 (3)H8—C8—C9120.2451
S1—C12i—N2i120.9 (3)C8—C9—H9120.2324
S1—C12i—C13i118.5 (4)C9—C10—H10120.6094
S2—C17—N3117.5 (6)H9—C9—C10120.2078
S2—C17—C18120.5 (5)C10—C11—H11118.9836
N1—C7—C6113.6 (4)H10—C10—C11120.6079
C11—N1—C7119.9 (4)C12—C13—H13119.8590
N1—C7—C8120.2 (4)H13—C13—C14119.8529
N1—C11—C10122.0 (5)C13—C14—H14120.5597
N2—C12—S1i120.9 (3)C14—C15—H15120.6316
C16—N2—C12118.8 (4)H14—C14—C15120.5402
N2—C12—C13120.5 (4)C15—C16—H16118.6632
N2—C16—C15122.7 (6)H15—C15—C16120.6312
N3—C17—C18122.0 (6)C17—C18—H18119.8950
C21—N3—C17116.8 (8)H18—C18—C19119.9006
N3—C21—C20123.4 (7)C18—C19—H19120.2627
N4—C22—C23164 (1)C19—C20—H20120.9564
C6—C1—C2119.1 (4)H19—C19—C20120.2752
C1—C2—C3119.8 (4)H20—C20—C21120.9509
C1—C6—C7117.0 (4)C20—C21—H21118.3073
C1—C6—C5120.7 (5)C22—C23—H23A109.4777
C2—C3—C4121.2 (5)C22—C23—H23B109.4540
C3—C4—C5119.0 (5)C22—C23—H23C109.4639
C4—C5—C6120.0 (5)H23B—C23—H23A109.5426
C5—C6—C7122.3 (4)H23C—C23—H23A109.5054
C6—C7—C8126.1 (4)H23C—C23—H23B109.3836
C7—C8—C9119.5 (5)
S1—Pt1—S2—C17164.5 (2)C4—C5—C6—C14.0 (8)
S2—Pt1—N1—C786.3 (3)C1—C6—C7—N13.5 (6)
S1—Pt1—N2—C12115.9 (3)C5—C6—C7—N1174.8 (5)
S1—Pt1—C1—C26.6 (4)N1—C7—C8—C90.0 (8)
Pt1—S2—C17—N385.1 (6)C7—C8—C9—C101.0 (9)
Pt1—N1—C7—C63.9 (5)C8—C9—C10—C111.3 (9)
Pt1—N1—C11—C10178.4 (4)C9—C10—C11—N10.6 (8)
Pt1—N2—C12—C13170.3 (3)N2—C12—C13—C141.7 (6)
Pt1—N2—C16—C15171.5 (3)C12—C13—C14—C152.2 (6)
C21—N3—C17—S2176.3 (6)C13—C14—C15—C163.2 (6)
C17—N3—C21—C200 (1)C14—C15—C16—N20.5 (6)
Pt1—C1—C2—C3173.9 (4)S2—C17—C18—C19176.1 (7)
Pt1—C1—C6—C5177.0 (4)C17—C18—C19—C200 (1)
C1—C2—C3—C40.6 (8)C18—C19—C20—C212 (1)
C2—C3—C4—C50.8 (8)C19—C20—C21—N32 (1)
C3—C4—C5—C63.1 (8)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N40.932.573.38 (3)146
C14—H14···N3ii0.932.483.36 (1)157
Symmetry code: (ii) x+1/2, y+3/2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Pt2(C11H8N)2(C5H4NS)4][Pt2(C11H8N)2(C5H4NS)4]·C2H3N
Mr1139.181180.23
Crystal system, space groupTriclinic, P1Monoclinic, C2/c
Temperature (K)173173
a, b, c (Å)11.3534 (2), 12.3455 (2), 15.3328 (4)16.390 (1), 15.5766 (9), 17.534 (2)
α, β, γ (°)67.918 (9), 84.242 (13), 69.034 (10)90, 118.199 (3), 90
V3)1858.1 (2)3945.3 (5)
Z24
Radiation typeMo KαMo Kα
µ (mm1)7.767.31
Crystal size (mm)0.22 × 0.04 × 0.040.40 × 0.20 × 0.18
Data collection
DiffractometerRigaku MercuryCCD
diffractometer
Rigaku MercuryCCD
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Numerical
(NUMABS; Higashi 1999)
Tmin, Tmax0.284, 0.7330.148, 0.268
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
14354, 8029, 6772 15006, 4432, 3887
Rint0.0360.028
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.085, 1.17 0.031, 0.074, 1.09
No. of reflections80294432
No. of parameters488255
No. of restraints??
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0141P)2 + 9.3496P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0329P)2 + 33.7943P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.90, 1.523.15, 1.59

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalClear, CrystalStructure (Rigaku/MSC, 2004), DIRDIF99 (Beurskens et al., 1992), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), CrystalStructure.

Selected geometric parameters (Å, º) for (I) top
Pt1—Pt22.6514 (5)Pt2—S22.306 (2)
Pt1—S12.305 (2)Pt2—S42.466 (3)
Pt1—S32.479 (3)Pt2—N22.066 (5)
Pt1—N12.066 (5)Pt2—N42.184 (6)
Pt1—N32.189 (6)Pt2—C122.004 (8)
Pt1—C12.017 (8)
S1—Pt1—Pt286.69 (6)Pt1—Pt2—C1293.9 (3)
Pt1—Pt2—S287.21 (6)Pt1—Pt2—S4175.06 (4)
S3—Pt1—Pt2167.57 (4)S3—Pt1—S180.88 (7)
N1—Pt1—Pt297.7 (2)N1—Pt1—S1174.3 (2)
Pt1—Pt2—N296.3 (2)N3—Pt1—S188.5 (1)
N3—Pt1—Pt286.1 (2)C1—Pt1—S195.8 (2)
Pt1—Pt2—N486.2 (2)Pt1—S3—C33109.7 (3)
C1—Pt1—Pt294.7 (3)Pt2—S4—C38112.1 (4)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C19—H19···S4i0.932.763.60 (1)150
C26—H26···N5ii0.932.763.54 (1)142
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+1.
Selected geometric parameters (Å, º) for (II) top
Pt1—Pt1i2.6650 (2)Pt1—N12.072 (4)
Pt1—S12.301 (1)Pt1—N22.180 (4)
Pt1—S22.492 (2)Pt1—C12.011 (4)
S1—Pt1—Pt1i87.20 (3)C1—Pt1—S196.0 (1)
S2—Pt1—Pt1i172.21 (4)N1—Pt1—S294.4 (1)
N1—Pt1—Pt1i93.3 (1)N2—Pt1—S293.2 (1)
N2—Pt1—Pt1i87.3 (1)C1—Pt1—S284.6 (1)
C1—Pt1—Pt1i95.5 (1)Pt1—S2—C17103.7 (2)
S2—Pt1—S185.05 (5)N2—Pt1—N195.7 (1)
N1—Pt1—S1176.3 (1)C1—Pt1—N180.3 (2)
N2—Pt1—S188.0 (1)C1—Pt1—N2175.2 (1)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N40.932.573.38 (3)146
C14—H14···N3ii0.932.483.36 (1)157
Symmetry code: (ii) x+1/2, y+3/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds