Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802016872/ob6170sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536802016872/ob6170Isup2.hkl |
CCDC reference: 118976
Ferrocenecarboxaldehyde was dissolved in anhydrous ethanol and the resulting solution was added dropwise to a solution of 2,4-dichlorobenzoylhydrazine in anhydrous ethanol under stirring and reflux. A red precipitate appeared immediately and the reaction mixture was allowed to reflux for 2 h under stirring. The mixture was cooled to room temperature and the product collected on a Buchner funnel, washed twice with ethanol and diethyl ether, respectively, recrystallized from anhydrous ethanol and dried in vacuo. The product obtained was dissolved in anhydrous ethanol, then a solution of Ni(OAc)2·4H2O in anhydrous ethanol was added dropwise to it under stirring at room temperature. The mixture was stirred continuously for 20 min at room temperature and for 6–8 h under reflux. A red solid formed, was filtered off, and the filtrate collected. After four weeks, red crystals of (I) suitable for diffraction analysis had precipitated from the mother solution.
The positions of all H atoms were fixed geometrically and refined as riding on their parent atoms (C—H 0.93 Å).
Data collection: CAD-4 SDP/VAX (Enraf-Nonius, 1989); cell refinement: CAD-4 SDP/VAX; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.
[Ni(C18H13Cl2FeN2O)2] | F(000) = 868 |
Mr = 858.82 | Dx = 1.631 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 7.032 (1) Å | θ = 12.1–14.9° |
b = 22.455 (4) Å | µ = 1.70 mm−1 |
c = 11.075 (2) Å | T = 293 K |
β = 91.36 (3)° | Block, red |
V = 1748.3 (5) Å3 | 0.3 × 0.25 × 0.2 mm |
Z = 2 |
Enraf-Nonius CAD-4 diffractometer | 2869 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.056 |
Graphite monochromator | θmax = 25.0°, θmin = 1.8° |
ω/2θ scans | h = −8→8 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→26 |
Tmin = 0.599, Tmax = 0.716 | l = 0→13 |
5629 measured reflections | 5 standard reflections every 300 reflections |
3082 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.01P)2] where P = (Fo2 + 2Fc2)/3 |
3082 reflections | (Δ/σ)max = 0.001 |
223 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.76 e Å−3 |
[Ni(C18H13Cl2FeN2O)2] | V = 1748.3 (5) Å3 |
Mr = 858.82 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.032 (1) Å | µ = 1.70 mm−1 |
b = 22.455 (4) Å | T = 293 K |
c = 11.075 (2) Å | 0.3 × 0.25 × 0.2 mm |
β = 91.36 (3)° |
Enraf-Nonius CAD-4 diffractometer | 2869 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.056 |
Tmin = 0.599, Tmax = 0.716 | 5 standard reflections every 300 reflections |
5629 measured reflections | intensity decay: none |
3082 independent reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.17 e Å−3 |
3082 reflections | Δρmin = −0.76 e Å−3 |
223 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. The structure was solved by direct methods (Sheldrick, 1990) and successive difference Fourier syntheses. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 1.0000 | 0.5000 | 0.0000 | 0.04017 (14) | |
Fe1 | 0.43926 (6) | 0.588888 (18) | 0.31346 (3) | 0.04755 (14) | |
Cl1 | 0.57023 (12) | 0.32689 (4) | 0.17712 (10) | 0.0783 (3) | |
Cl2 | 1.04987 (16) | 0.20171 (4) | 0.46311 (10) | 0.0853 (3) | |
O1 | 1.0429 (3) | 0.42910 (8) | 0.08031 (17) | 0.0456 (4) | |
N1 | 0.7827 (3) | 0.50276 (9) | 0.09227 (19) | 0.0411 (5) | |
N2 | 0.7607 (3) | 0.45365 (10) | 0.1710 (2) | 0.0478 (5) | |
C1 | 0.4726 (4) | 0.54552 (12) | 0.1523 (2) | 0.0436 (6) | |
C2 | 0.3918 (4) | 0.50612 (12) | 0.2412 (3) | 0.0504 (7) | |
H2 | 0.4444 | 0.4706 | 0.2696 | 0.060* | |
C3 | 0.2196 (4) | 0.53150 (14) | 0.2765 (3) | 0.0582 (8) | |
H3 | 0.1382 | 0.5155 | 0.3329 | 0.070* | |
C4 | 0.1895 (4) | 0.58517 (15) | 0.2129 (3) | 0.0613 (8) | |
H4 | 0.0845 | 0.6100 | 0.2197 | 0.074* | |
C5 | 0.3451 (4) | 0.59492 (13) | 0.1372 (3) | 0.0530 (7) | |
H5 | 0.3618 | 0.6275 | 0.0867 | 0.064* | |
C6 | 0.6994 (5) | 0.61289 (18) | 0.3808 (4) | 0.0744 (10) | |
H6 | 0.8149 | 0.6040 | 0.3459 | 0.089* | |
C7 | 0.6053 (5) | 0.57744 (17) | 0.4664 (3) | 0.0715 (9) | |
H7 | 0.6470 | 0.5411 | 0.4975 | 0.086* | |
C8 | 0.4394 (6) | 0.60700 (19) | 0.4951 (3) | 0.0766 (11) | |
H8 | 0.3500 | 0.5937 | 0.5495 | 0.092* | |
C9 | 0.4282 (7) | 0.66016 (18) | 0.4288 (4) | 0.0860 (12) | |
H9 | 0.3305 | 0.6880 | 0.4321 | 0.103* | |
C10 | 0.5874 (6) | 0.66429 (17) | 0.3574 (3) | 0.0793 (11) | |
H10 | 0.6153 | 0.6950 | 0.3042 | 0.095* | |
C11 | 0.6500 (4) | 0.54300 (12) | 0.0885 (2) | 0.0429 (6) | |
H11 | 0.6721 | 0.5749 | 0.0373 | 0.051* | |
C12 | 0.9064 (4) | 0.41871 (11) | 0.1551 (2) | 0.0417 (6) | |
C13 | 1.1072 (4) | 0.35503 (13) | 0.2872 (3) | 0.0569 (8) | |
H13 | 1.2025 | 0.3831 | 0.2761 | 0.068* | |
C14 | 1.1472 (5) | 0.30587 (13) | 0.3578 (3) | 0.0594 (8) | |
H14 | 1.2671 | 0.3007 | 0.3937 | 0.071* | |
C15 | 1.0048 (5) | 0.26434 (13) | 0.3741 (3) | 0.0546 (7) | |
C16 | 0.8277 (5) | 0.27134 (13) | 0.3190 (3) | 0.0580 (8) | |
H16 | 0.7336 | 0.2428 | 0.3292 | 0.070* | |
C17 | 0.7919 (4) | 0.32114 (12) | 0.2484 (3) | 0.0492 (7) | |
C18 | 0.9311 (4) | 0.36445 (11) | 0.2321 (2) | 0.0434 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0513 (3) | 0.0307 (3) | 0.0387 (3) | 0.00051 (18) | 0.0050 (2) | 0.00209 (18) |
Fe1 | 0.0564 (3) | 0.0447 (3) | 0.0416 (2) | 0.00424 (16) | 0.00318 (19) | −0.00301 (17) |
Cl1 | 0.0571 (5) | 0.0640 (6) | 0.1131 (8) | −0.0117 (4) | −0.0126 (5) | 0.0252 (5) |
Cl2 | 0.1123 (8) | 0.0593 (6) | 0.0833 (7) | −0.0073 (5) | −0.0168 (5) | 0.0354 (5) |
O1 | 0.0545 (11) | 0.0347 (10) | 0.0478 (11) | 0.0015 (8) | 0.0082 (9) | 0.0054 (8) |
N1 | 0.0493 (13) | 0.0336 (11) | 0.0404 (12) | 0.0000 (9) | 0.0011 (10) | −0.0007 (9) |
N2 | 0.0584 (14) | 0.0375 (12) | 0.0477 (13) | 0.0010 (10) | 0.0043 (11) | 0.0030 (10) |
C1 | 0.0506 (15) | 0.0446 (14) | 0.0353 (13) | 0.0047 (11) | −0.0012 (11) | −0.0031 (11) |
C2 | 0.0545 (17) | 0.0424 (16) | 0.0542 (17) | −0.0029 (11) | 0.0009 (13) | −0.0010 (12) |
C3 | 0.0506 (18) | 0.067 (2) | 0.0573 (19) | −0.0056 (14) | 0.0046 (14) | 0.0010 (15) |
C4 | 0.0479 (18) | 0.071 (2) | 0.065 (2) | 0.0122 (14) | −0.0005 (15) | −0.0032 (16) |
C5 | 0.0556 (18) | 0.0581 (18) | 0.0452 (16) | 0.0112 (13) | 0.0004 (13) | 0.0019 (13) |
C6 | 0.063 (2) | 0.088 (3) | 0.073 (2) | −0.0139 (19) | −0.0044 (18) | −0.017 (2) |
C7 | 0.092 (3) | 0.068 (2) | 0.054 (2) | −0.0029 (19) | −0.0179 (18) | −0.0031 (17) |
C8 | 0.093 (3) | 0.093 (3) | 0.0440 (19) | −0.008 (2) | 0.0051 (17) | −0.0210 (18) |
C9 | 0.096 (3) | 0.073 (3) | 0.076 (3) | 0.017 (2) | 0.005 (2) | −0.027 (2) |
C10 | 0.114 (3) | 0.059 (2) | 0.065 (2) | −0.020 (2) | −0.009 (2) | −0.0026 (17) |
C11 | 0.0530 (16) | 0.0392 (14) | 0.0367 (13) | −0.0002 (11) | 0.0055 (12) | 0.0002 (11) |
C12 | 0.0537 (16) | 0.0314 (13) | 0.0399 (14) | −0.0042 (11) | 0.0006 (12) | −0.0014 (10) |
C13 | 0.0604 (19) | 0.0406 (16) | 0.069 (2) | −0.0055 (12) | −0.0089 (15) | 0.0063 (14) |
C14 | 0.069 (2) | 0.0454 (17) | 0.063 (2) | −0.0063 (14) | −0.0158 (15) | 0.0084 (14) |
C15 | 0.071 (2) | 0.0446 (16) | 0.0486 (16) | 0.0004 (14) | −0.0002 (14) | 0.0100 (13) |
C16 | 0.069 (2) | 0.0447 (16) | 0.0599 (19) | −0.0087 (14) | 0.0036 (16) | 0.0115 (14) |
C17 | 0.0588 (18) | 0.0409 (15) | 0.0478 (16) | −0.0001 (12) | 0.0016 (13) | 0.0051 (12) |
C18 | 0.0533 (16) | 0.0367 (14) | 0.0404 (15) | 0.0000 (11) | 0.0066 (12) | −0.0016 (11) |
Ni1—O1i | 1.8450 (17) | C3—H3 | 0.9300 |
Ni1—O1 | 1.8450 (17) | C4—C5 | 1.411 (4) |
Ni1—N1i | 1.859 (2) | C4—H4 | 0.9300 |
Ni1—N1 | 1.859 (2) | C5—H5 | 0.9300 |
Fe1—C6 | 2.032 (4) | C6—C7 | 1.414 (5) |
Fe1—C10 | 2.041 (4) | C6—C10 | 1.418 (6) |
Fe1—C3 | 2.045 (3) | C6—H6 | 0.9300 |
Fe1—C2 | 2.048 (3) | C7—C8 | 1.386 (5) |
Fe1—C9 | 2.050 (4) | C7—H7 | 0.9300 |
Fe1—C7 | 2.050 (4) | C8—C9 | 1.403 (6) |
Fe1—C5 | 2.051 (3) | C8—H8 | 0.9300 |
Fe1—C1 | 2.052 (3) | C9—C10 | 1.389 (5) |
Fe1—C8 | 2.052 (3) | C9—H9 | 0.9300 |
Fe1—C4 | 2.059 (3) | C10—H10 | 0.9300 |
Cl1—C17 | 1.735 (3) | C11—H11 | 0.9300 |
Cl2—C15 | 1.742 (3) | C12—C18 | 1.495 (3) |
O1—C12 | 1.304 (3) | C13—C14 | 1.378 (4) |
N1—C11 | 1.299 (3) | C13—C18 | 1.383 (4) |
N1—N2 | 1.416 (3) | C13—H13 | 0.9300 |
N2—C12 | 1.305 (3) | C14—C15 | 1.383 (4) |
C1—C5 | 1.434 (4) | C14—H14 | 0.9300 |
C1—C11 | 1.449 (4) | C15—C16 | 1.383 (4) |
C1—C2 | 1.450 (4) | C16—C17 | 1.384 (4) |
C2—C3 | 1.402 (4) | C16—H16 | 0.9300 |
C2—H2 | 0.9300 | C17—C18 | 1.395 (4) |
C3—C4 | 1.409 (4) | ||
O1i—Ni1—O1 | 180.00 (11) | C4—C3—Fe1 | 70.44 (19) |
O1i—Ni1—N1i | 83.73 (8) | C2—C3—H3 | 125.4 |
O1—Ni1—N1i | 96.27 (8) | C4—C3—H3 | 125.4 |
O1i—Ni1—N1 | 96.27 (8) | Fe1—C3—H3 | 125.7 |
O1—Ni1—N1 | 83.73 (8) | C3—C4—C5 | 108.7 (3) |
N1i—Ni1—N1 | 180.00 (12) | C3—C4—Fe1 | 69.39 (19) |
C6—Fe1—C10 | 40.74 (16) | C5—C4—Fe1 | 69.62 (18) |
C6—Fe1—C3 | 155.44 (15) | C3—C4—H4 | 125.7 |
C10—Fe1—C3 | 161.66 (16) | C5—C4—H4 | 125.7 |
C6—Fe1—C2 | 121.41 (15) | Fe1—C4—H4 | 126.9 |
C10—Fe1—C2 | 157.48 (15) | C4—C5—C1 | 107.6 (3) |
C3—Fe1—C2 | 40.06 (12) | C4—C5—Fe1 | 70.22 (19) |
C6—Fe1—C9 | 67.13 (17) | C1—C5—Fe1 | 69.57 (16) |
C10—Fe1—C9 | 39.70 (16) | C4—C5—H5 | 126.2 |
C3—Fe1—C9 | 125.23 (16) | C1—C5—H5 | 126.2 |
C2—Fe1—C9 | 160.67 (15) | Fe1—C5—H5 | 125.6 |
C6—Fe1—C7 | 40.53 (15) | C7—C6—C10 | 108.3 (4) |
C10—Fe1—C7 | 68.26 (16) | C7—C6—Fe1 | 70.5 (2) |
C3—Fe1—C7 | 119.92 (14) | C10—C6—Fe1 | 70.0 (2) |
C2—Fe1—C7 | 107.05 (14) | C7—C6—H6 | 125.8 |
C9—Fe1—C7 | 67.20 (17) | C10—C6—H6 | 125.8 |
C6—Fe1—C5 | 126.84 (14) | Fe1—C6—H6 | 125.3 |
C10—Fe1—C5 | 108.88 (14) | C8—C7—C6 | 107.1 (4) |
C3—Fe1—C5 | 68.03 (13) | C8—C7—Fe1 | 70.3 (2) |
C2—Fe1—C5 | 69.03 (12) | C6—C7—Fe1 | 69.0 (2) |
C9—Fe1—C5 | 121.68 (15) | C8—C7—H7 | 126.5 |
C7—Fe1—C5 | 163.58 (14) | C6—C7—H7 | 126.5 |
C6—Fe1—C1 | 108.97 (14) | Fe1—C7—H7 | 125.8 |
C10—Fe1—C1 | 122.21 (14) | C7—C8—C9 | 108.9 (4) |
C3—Fe1—C1 | 68.16 (12) | C7—C8—Fe1 | 70.18 (19) |
C2—Fe1—C1 | 41.43 (11) | C9—C8—Fe1 | 69.9 (2) |
C9—Fe1—C1 | 156.83 (15) | C7—C8—H8 | 125.5 |
C7—Fe1—C1 | 125.78 (14) | C9—C8—H8 | 125.5 |
C5—Fe1—C1 | 40.90 (11) | Fe1—C8—H8 | 125.9 |
C6—Fe1—C8 | 66.92 (16) | C10—C9—C8 | 108.6 (4) |
C10—Fe1—C8 | 67.27 (16) | C10—C9—Fe1 | 69.8 (2) |
C3—Fe1—C8 | 107.69 (15) | C8—C9—Fe1 | 70.1 (2) |
C2—Fe1—C8 | 123.99 (15) | C10—C9—H9 | 125.7 |
C9—Fe1—C8 | 39.99 (16) | C8—C9—H9 | 125.7 |
C7—Fe1—C8 | 39.48 (15) | Fe1—C9—H9 | 126.0 |
C5—Fe1—C8 | 155.85 (15) | C9—C10—C6 | 107.0 (4) |
C1—Fe1—C8 | 161.71 (15) | C9—C10—Fe1 | 70.5 (2) |
C6—Fe1—C4 | 163.41 (15) | C6—C10—Fe1 | 69.3 (2) |
C10—Fe1—C4 | 125.92 (16) | C9—C10—H10 | 126.5 |
C3—Fe1—C4 | 40.17 (12) | C6—C10—H10 | 126.5 |
C2—Fe1—C4 | 67.84 (13) | Fe1—C10—H10 | 125.3 |
C9—Fe1—C4 | 108.91 (16) | N1—C11—C1 | 129.6 (2) |
C7—Fe1—C4 | 154.61 (14) | N1—C11—H11 | 115.2 |
C5—Fe1—C4 | 40.17 (12) | C1—C11—H11 | 115.2 |
C1—Fe1—C4 | 67.90 (12) | O1—C12—N2 | 124.7 (2) |
C8—Fe1—C4 | 121.24 (15) | O1—C12—C18 | 115.5 (2) |
C12—O1—Ni1 | 110.27 (16) | N2—C12—C18 | 119.6 (2) |
C11—N1—N2 | 118.2 (2) | C14—C13—C18 | 122.8 (3) |
C11—N1—Ni1 | 127.21 (18) | C14—C13—H13 | 118.6 |
N2—N1—Ni1 | 114.56 (16) | C18—C13—H13 | 118.6 |
C12—N2—N1 | 106.7 (2) | C13—C14—C15 | 118.4 (3) |
C5—C1—C11 | 121.1 (2) | C13—C14—H14 | 120.8 |
C5—C1—C2 | 107.3 (2) | C15—C14—H14 | 120.8 |
C11—C1—C2 | 131.5 (3) | C16—C15—C14 | 120.9 (3) |
C5—C1—Fe1 | 69.52 (16) | C16—C15—Cl2 | 119.4 (2) |
C11—C1—Fe1 | 124.0 (2) | C14—C15—Cl2 | 119.7 (3) |
C2—C1—Fe1 | 69.13 (15) | C15—C16—C17 | 119.4 (3) |
C3—C2—C1 | 107.2 (3) | C15—C16—H16 | 120.3 |
C3—C2—Fe1 | 69.88 (17) | C17—C16—H16 | 120.3 |
C1—C2—Fe1 | 69.44 (15) | C16—C17—C18 | 121.1 (3) |
C3—C2—H2 | 126.4 | C16—C17—Cl1 | 117.8 (2) |
C1—C2—H2 | 126.4 | C18—C17—Cl1 | 121.0 (2) |
Fe1—C2—H2 | 125.9 | C13—C18—C17 | 117.4 (3) |
C2—C3—C4 | 109.2 (3) | C13—C18—C12 | 117.8 (2) |
C2—C3—Fe1 | 70.06 (17) | C17—C18—C12 | 124.7 (3) |
Symmetry code: (i) −x+2, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···N2 | 0.93 | 2.53 | 2.969 (4) | 109 |
C11—H11···O1i | 0.93 | 2.42 | 2.957 (3) | 117 |
Symmetry code: (i) −x+2, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C18H13Cl2FeN2O)2] |
Mr | 858.82 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 7.032 (1), 22.455 (4), 11.075 (2) |
β (°) | 91.36 (3) |
V (Å3) | 1748.3 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.70 |
Crystal size (mm) | 0.3 × 0.25 × 0.2 |
Data collection | |
Diffractometer | Enraf-Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.599, 0.716 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5629, 3082, 2869 |
Rint | 0.056 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.094, 1.01 |
No. of reflections | 3082 |
No. of parameters | 223 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.76 |
Computer programs: CAD-4 SDP/VAX (Enraf-Nonius, 1989), CAD-4 SDP/VAX, TEXSAN (Molecular Structure Corporation, 1989), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2000), SHELXTL.
Ni1—O1 | 1.8450 (17) | N1—C11 | 1.299 (3) |
Ni1—N1 | 1.859 (2) | N1—N2 | 1.416 (3) |
O1—C12 | 1.304 (3) | N2—C12 | 1.305 (3) |
O1—Ni1—N1 | 83.73 (8) | C12—N2—N1 | 106.7 (2) |
C12—O1—Ni1 | 110.27 (16) | O1—C12—N2 | 124.7 (2) |
C11—N1—N2 | 118.2 (2) | O1—C12—C18 | 115.5 (2) |
N2—N1—Ni1 | 114.56 (16) | N2—C12—C18 | 119.6 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···N2 | 0.93 | 2.53 | 2.969 (4) | 109 |
C11—H11···O1i | 0.93 | 2.42 | 2.957 (3) | 117 |
Symmetry code: (i) −x+2, −y+1, −z. |
Schiff bases from acylhydrazine and their complexes have strong antitumour and antivirus activities (Ali et al., 1984), while the ferrocenyl group can improve these properties (Ali et al., 1973). Some ferrocene derivatives are excellent non-linear optical materials (Long, 1995) because they can act as strong electron donors and contain electron-flow bridges. Due to the possible wide-ranging uses, the structures of these compounds are of interest. In the present work, we report a new crystal structure of an Ni complexe of a ferrocene derivative, (I).
In (I), the Ni atom is located at a center of symmetry (Fig. 1). The sum of the interior angles in the chelate ring is 540.0 (3)°, so the five atoms involved are coplanar. The sum of the three bond angles around C12 is 359.8 (2)°, which shows that atom C12 has almost sp2 hybridization. The Ni—O and Ni—N bond distances are normal (Table 1). As expected, the C12—O1 bond length [1.304 (3) Å] lies between those of a C—O single bond and a C═O double bond. The bond lengths N1—C11 [1.299 (3) Å] and N2—C12 [1.305 (3) Å] are identical and close to that of typical C═N (1.30 Å). Those data shows that the –CH═N—N═C—O fragment of the ligand remains as a conjugated system even after the loss of an H atom from its enolized carbonyl O atom. There are intramolecular non-traditional hydrogen bonds (Table 2). There are also intermolecular close contacts between the Cl and O atoms; O1···Cl2(x, 1/2 − y, −1/2 + z) 3.212 (2) Å (Fig. 2).