Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808010076/om2227sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536808010076/om2227Isup2.hkl |
CCDC reference: 688831
Key indicators
- Single-crystal X-ray study
- T = 295 K
- Mean (C-C) = 0.003 Å
- R factor = 0.024
- wR factor = 0.065
- Data-to-parameter ratio = 13.3
checkCIF/PLATON results
No syntax errors found
Alert level C PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
Pyridine-3-sulfonic acid (0.159 g, 1 mmol), Na2CO3 (0.053 g, 0.5 mmol), NiCl2.6H2O (0.238 g, 1 mmol) were dissolved in a mixture solution of water (8 ml) and ethanol (2 ml). The solution was placed in a 15 ml Teflon-lined stainless steel autoclave under autogenous pressure at 398 K for 75 h and filtered after cooling to room temperature. The blue single crystals of the title compound were obtained from the filtrate after 3 months.
Water H atoms were located in a difference Fourier map and refined as riding in as-found relative positions with Uiso(H) = 1.5Ueq(O). Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
[Ni(C5H4NO3S)2(H2O)4] | F(000) = 460 |
Mr = 447.08 | Dx = 1.782 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 5256 reflections |
a = 7.5399 (8) Å | θ = 2.8–24.0° |
b = 12.6939 (15) Å | µ = 1.47 mm−1 |
c = 8.7810 (8) Å | T = 295 K |
β = 97.419 (12)° | Prism, blue |
V = 833.40 (15) Å3 | 0.32 × 0.22 × 0.20 mm |
Z = 2 |
Rigaku R-AXIS RAPID IP diffractometer | 1524 independent reflections |
Radiation source: fine-focus sealed tube | 1449 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
Detector resolution: 10.0 pixels mm-1 | θmax = 25.4°, θmin = 2.8° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −15→15 |
Tmin = 0.660, Tmax = 0.745 | l = −9→10 |
8877 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0323P)2 + 0.5265P] where P = (Fo2 + 2Fc2)/3 |
1524 reflections | (Δ/σ)max < 0.001 |
115 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
[Ni(C5H4NO3S)2(H2O)4] | V = 833.40 (15) Å3 |
Mr = 447.08 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.5399 (8) Å | µ = 1.47 mm−1 |
b = 12.6939 (15) Å | T = 295 K |
c = 8.7810 (8) Å | 0.32 × 0.22 × 0.20 mm |
β = 97.419 (12)° |
Rigaku R-AXIS RAPID IP diffractometer | 1524 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1449 reflections with I > 2σ(I) |
Tmin = 0.660, Tmax = 0.745 | Rint = 0.019 |
8877 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 0 restraints |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.29 e Å−3 |
1524 reflections | Δρmin = −0.37 e Å−3 |
115 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni | 0.5000 | 0.5000 | 0.5000 | 0.02883 (13) | |
S | 0.45204 (7) | 0.75905 (4) | −0.03581 (6) | 0.03407 (15) | |
N1 | 0.5850 (2) | 0.54221 (13) | 0.28948 (18) | 0.0307 (3) | |
O1 | 0.76142 (19) | 0.48676 (11) | 0.60868 (18) | 0.0388 (3) | |
H1B | 0.8326 | 0.5397 | 0.5900 | 0.058* | |
H1A | 0.8182 | 0.4333 | 0.5998 | 0.058* | |
O2 | 0.50231 (19) | 0.34035 (11) | 0.45010 (17) | 0.0411 (3) | |
H2A | 0.5076 | 0.3156 | 0.3615 | 0.062* | |
H2B | 0.4194 | 0.3021 | 0.4815 | 0.062* | |
O3 | 0.5370 (3) | 0.76975 (16) | −0.1732 (2) | 0.0687 (6) | |
O4 | 0.4828 (2) | 0.85025 (12) | 0.0624 (2) | 0.0554 (5) | |
O5 | 0.2658 (2) | 0.73019 (12) | −0.06337 (19) | 0.0481 (4) | |
C1 | 0.7217 (3) | 0.49242 (15) | 0.2368 (3) | 0.0370 (5) | |
H1 | 0.7768 | 0.4372 | 0.2943 | 0.044* | |
C2 | 0.7839 (3) | 0.51907 (18) | 0.1020 (3) | 0.0452 (5) | |
H2 | 0.8783 | 0.4819 | 0.0693 | 0.054* | |
C3 | 0.7053 (3) | 0.60162 (17) | 0.0150 (3) | 0.0405 (5) | |
H3 | 0.7461 | 0.6218 | −0.0762 | 0.049* | |
C4 | 0.5641 (2) | 0.65298 (14) | 0.0684 (2) | 0.0298 (4) | |
C5 | 0.5074 (3) | 0.62143 (15) | 0.2044 (2) | 0.0320 (4) | |
H5 | 0.4116 | 0.6565 | 0.2384 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni | 0.0309 (2) | 0.0273 (2) | 0.0284 (2) | 0.00105 (13) | 0.00426 (14) | 0.00418 (13) |
S | 0.0419 (3) | 0.0278 (3) | 0.0317 (3) | 0.0027 (2) | 0.0018 (2) | 0.00399 (19) |
N1 | 0.0329 (8) | 0.0290 (8) | 0.0302 (8) | 0.0016 (7) | 0.0037 (6) | 0.0034 (7) |
O1 | 0.0336 (7) | 0.0355 (8) | 0.0467 (9) | 0.0018 (6) | 0.0031 (6) | 0.0056 (6) |
O2 | 0.0512 (9) | 0.0328 (8) | 0.0409 (8) | −0.0017 (6) | 0.0122 (7) | −0.0002 (6) |
O3 | 0.0861 (14) | 0.0758 (13) | 0.0491 (11) | 0.0261 (11) | 0.0269 (10) | 0.0305 (9) |
O4 | 0.0591 (10) | 0.0297 (8) | 0.0707 (11) | 0.0048 (7) | −0.0174 (8) | −0.0095 (8) |
O5 | 0.0441 (9) | 0.0358 (8) | 0.0600 (10) | 0.0039 (7) | −0.0103 (7) | −0.0022 (7) |
C1 | 0.0360 (11) | 0.0328 (11) | 0.0417 (12) | 0.0064 (8) | 0.0034 (9) | 0.0061 (8) |
C2 | 0.0417 (12) | 0.0431 (12) | 0.0542 (14) | 0.0126 (10) | 0.0188 (10) | 0.0065 (10) |
C3 | 0.0455 (12) | 0.0393 (11) | 0.0395 (12) | 0.0036 (9) | 0.0154 (9) | 0.0055 (9) |
C4 | 0.0337 (9) | 0.0255 (9) | 0.0295 (10) | −0.0002 (7) | 0.0016 (8) | 0.0005 (7) |
C5 | 0.0333 (9) | 0.0314 (10) | 0.0313 (10) | 0.0041 (8) | 0.0047 (8) | 0.0004 (8) |
Ni—O1i | 2.0828 (14) | O1—H1B | 0.8886 |
Ni—O1 | 2.0828 (14) | O1—H1A | 0.8115 |
Ni—O2i | 2.0739 (14) | O2—H2A | 0.8450 |
Ni—O2 | 2.0739 (14) | O2—H2B | 0.8642 |
Ni—N1i | 2.1026 (16) | C1—C2 | 1.370 (3) |
Ni—N1 | 2.1026 (16) | C1—H1 | 0.9300 |
S—O5 | 1.4412 (16) | C2—C3 | 1.384 (3) |
S—O3 | 1.4438 (18) | C2—H2 | 0.9300 |
S—O4 | 1.4445 (16) | C3—C4 | 1.381 (3) |
S—C4 | 1.7788 (19) | C3—H3 | 0.9300 |
N1—C1 | 1.341 (3) | C4—C5 | 1.379 (3) |
N1—C5 | 1.341 (2) | C5—H5 | 0.9300 |
O2i—Ni—O2 | 180.0 | C5—N1—Ni | 121.36 (13) |
O2i—Ni—O1i | 89.12 (6) | Ni—O1—H1B | 114.4 |
O2—Ni—O1i | 90.88 (6) | Ni—O1—H1A | 120.2 |
O2i—Ni—O1 | 90.88 (6) | H1B—O1—H1A | 106.0 |
O2—Ni—O1 | 89.12 (6) | Ni—O2—H2A | 124.1 |
O1i—Ni—O1 | 180.0 | Ni—O2—H2B | 117.1 |
O2i—Ni—N1i | 92.95 (6) | H2A—O2—H2B | 101.9 |
O2—Ni—N1i | 87.05 (6) | N1—C1—C2 | 123.07 (19) |
O1i—Ni—N1i | 92.61 (6) | N1—C1—H1 | 118.5 |
O1—Ni—N1i | 87.39 (6) | C2—C1—H1 | 118.5 |
O2i—Ni—N1 | 87.05 (6) | C1—C2—C3 | 119.6 (2) |
O2—Ni—N1 | 92.95 (6) | C1—C2—H2 | 120.2 |
O1i—Ni—N1 | 87.39 (6) | C3—C2—H2 | 120.2 |
O1—Ni—N1 | 92.61 (6) | C4—C3—C2 | 117.6 (2) |
N1i—Ni—N1 | 180.0 | C4—C3—H3 | 121.2 |
O5—S—O3 | 114.30 (12) | C2—C3—H3 | 121.2 |
O5—S—O4 | 112.45 (10) | C5—C4—C3 | 119.71 (18) |
O3—S—O4 | 111.67 (12) | C5—C4—S | 119.06 (14) |
O5—S—C4 | 106.36 (9) | C3—C4—S | 121.23 (15) |
O3—S—C4 | 105.58 (10) | N1—C5—C4 | 122.60 (18) |
O4—S—C4 | 105.69 (9) | N1—C5—H5 | 118.7 |
C1—N1—C5 | 117.40 (17) | C4—C5—H5 | 118.7 |
C1—N1—Ni | 121.22 (13) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O3ii | 0.81 | 2.39 | 3.162 (3) | 158 |
O1—H1A···O4ii | 0.81 | 2.44 | 3.119 (2) | 142 |
O1—H1B···O4iii | 0.89 | 1.83 | 2.722 (2) | 177 |
O2—H2A···O3iv | 0.84 | 1.97 | 2.787 (2) | 163 |
O2—H2B···O5v | 0.86 | 1.89 | 2.748 (2) | 174 |
C1—H1···O4ii | 0.93 | 2.34 | 3.212 (3) | 155 |
Symmetry codes: (ii) −x+3/2, y−1/2, −z+1/2; (iii) x+1/2, −y+3/2, z+1/2; (iv) −x+1, −y+1, −z; (v) −x+1/2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C5H4NO3S)2(H2O)4] |
Mr | 447.08 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 295 |
a, b, c (Å) | 7.5399 (8), 12.6939 (15), 8.7810 (8) |
β (°) | 97.419 (12) |
V (Å3) | 833.40 (15) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.47 |
Crystal size (mm) | 0.32 × 0.22 × 0.20 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID IP diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.660, 0.745 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8877, 1524, 1449 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.603 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.065, 1.06 |
No. of reflections | 1524 |
No. of parameters | 115 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.37 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O3i | 0.81 | 2.39 | 3.162 (3) | 158 |
O1—H1A···O4i | 0.81 | 2.44 | 3.119 (2) | 142 |
O1—H1B···O4ii | 0.89 | 1.83 | 2.722 (2) | 177 |
O2—H2A···O3iii | 0.84 | 1.97 | 2.787 (2) | 163 |
O2—H2B···O5iv | 0.86 | 1.89 | 2.748 (2) | 174 |
C1—H1···O4i | 0.93 | 2.34 | 3.212 (3) | 155 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x+1/2, −y+3/2, z+1/2; (iii) −x+1, −y+1, −z; (iv) −x+1/2, y−1/2, −z+1/2. |
As π-π stacking between aromatic rings plays an important role in electron transfer process in some biological system (Deisenhofer & Michel, 1989), π-π stacking has attracted our much attention in past years (Su & Xu, 2004; Liu et al., 2004; Li et al., 2005). In order to investigate the influence of substituents on aromatic stacking, the title pyridine-sulfate complex has recently prepared and its crystal structure is reported here.
The molecular structure of the title compound is shown in Fig. 1. The NiII cation is located in an inversion center and coordinated by four water molecules and two pyridine-3-sulfonate anions with a NiN2O4 distorted octahedral geometry (Table 1), similar to the analogue of ZnII (Walsh & Hathaway, 1980). Partially overlapped arrangement is observed between parallel pyridine rings (Fig. 2). The face-to-face separation of 3.561 (5) Å between parallel pyridine rings is shorter than the van der Waals thickness of an aromatic ring (3.70 Å; Cotton & Wilkinson, 1972), and indicates the existence of weak π–π stacking between the pyridine rings.
The intermolecular O—H···O hydrogen bonding and weak C—H···O hydrogen bonding (Table 2) help to stabilize the crystal structure.