The asymmetric unit of the title compound, [Li
2(C
6H
2N
2O
4)(H
2O)
3]
n, consists of two independent Li
+ cations, one pyrazine-2,3-dicarboxylate dianion and three water molecules. One of the Li
+ cations has a distorted tetrahedral geometry, coordinated by one of the carboxylate O atoms of the pyrazine-2,3-dicarboxylate ligand and three O atoms from three water molecules, whereas the other Li
+ cation has a distorted trigonal-bipyramidal geometry, coordinated by a carboxylate O atom of a symmetry-related pyrazine-2,3-dicarboxylate ligand, two water molecules and a chelating pyrazine-2,3-dicarboxylate ligand (by utilizing both N and O atoms) of an adjacent molecule. The synthesis of a hydrated polymeric dinuclear lithium complex formed with two pyrazine-2,3-dicarboxylic acid ligands has been reported previously [Tombul
et al. (2008
a).
Acta Cryst. E
64, m491–m492]. By comparision to the complex reported here, the dinuclear complex formed with two pyrazine-2,3-dicarboxylic acid ligands differs in the coordination geometry of both Li atoms. The crystal structure further features O—H
O and O—H
N hydrogen-bonding interactions involving the water molecules and carboxylate O atoms.
Supporting information
CCDC reference: 758768
Key indicators
- Single-crystal X-ray study
- T = 298 K
- Mean (C-C) = 0.002 Å
- R factor = 0.062
- wR factor = 0.211
- Data-to-parameter ratio = 34.0
checkCIF/PLATON results
No syntax errors found
Alert level C
PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 40 Perc.
PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 1
0 ALERT level A = In general: serious problem
0 ALERT level B = Potentially serious problem
2 ALERT level C = Check and explain
0 ALERT level G = General alerts; check
0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
0 ALERT type 2 Indicator that the structure model may be wrong or deficient
2 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check
To an aqueous solution (30 ml) of pyrazine 2,3-dicarboxylic acid (1681 mg, 1 mmol), LiOH (479 mg, 2 mmol) was carefully added. The reaction mixture gave a
colourless and clear solution which was stirred at 303 K for 4 h. After
solvent removal in vacuo, the white solid product was then redissolved in
water (5 ml) and allowed to stand for 15 d at ambient temperature, after which
transparent fine crystals were harvested from the mother liquor.
H atoms associated with water molecules were located in the difference map
and freely refined during subsequent cycles of least squares. H atoms of
carbons
were repositioned geometrically. They were initially refined with soft
restraints on the bond lengths and angles to regularize their geometry (C—H =
0.93 Å) and Uĩso~(H) (in the range 1.2–1.5 times U~eq~ of the parent
atom) ,after which the positions were refined with riding constraints.
Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation,
1989); cell refinement: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation,
1989); data reduction: TEXSAN (Molecular Structure Corporation, 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2009).
Poly[µ-aqua-diaqua(µ
2-pyrazine-2,3-dicarboxylato)dilithium(I)]
top
Crystal data top
[Li2(C6H2N2O4)(H2O)3] | F(000) = 480 |
Mr = 234.02 | Dx = 1.592 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 7.487 (3) Å | θ = 3.0–7.9° |
b = 16.409 (8) Å | µ = 0.14 mm−1 |
c = 7.958 (2) Å | T = 298 K |
β = 92.92 (3)° | Prism, yellow |
V = 976.4 (7) Å3 | 0.4 × 0.2 × 0.06 mm |
Z = 4 | |
Data collection top
Rigaku diffractometer | 2427 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.120 |
Graphite monochromator | θmax = 40.0°, θmin = 2.7° |
ω–2θ scans | h = 0→13 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→29 |
Tmin = 0.948, Tmax = 0.994 | l = −14→14 |
6366 measured reflections | 3 standard reflections every 150 reflections |
6045 independent reflections | intensity decay: none |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.211 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.96 | w = 1/[σ2(Fo2) + (0.0977P)2] where P = (Fo2 + 2Fc2)/3 |
6045 reflections | (Δ/σ)max < 0.001 |
178 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.54 e Å−3 |
Crystal data top
[Li2(C6H2N2O4)(H2O)3] | V = 976.4 (7) Å3 |
Mr = 234.02 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.487 (3) Å | µ = 0.14 mm−1 |
b = 16.409 (8) Å | T = 298 K |
c = 7.958 (2) Å | 0.4 × 0.2 × 0.06 mm |
β = 92.92 (3)° | |
Data collection top
Rigaku diffractometer | 2427 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.120 |
Tmin = 0.948, Tmax = 0.994 | 3 standard reflections every 150 reflections |
6366 measured reflections | intensity decay: none |
6045 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.062 | 0 restraints |
wR(F2) = 0.211 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.96 | Δρmax = 0.49 e Å−3 |
6045 reflections | Δρmin = −0.54 e Å−3 |
178 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
O1 | −0.01123 (18) | 0.24672 (8) | 0.0505 (2) | 0.0341 (3) | |
O2 | 0.06063 (17) | 0.37715 (7) | 0.09640 (16) | 0.0236 (3) | |
O3 | 0.20616 (17) | 0.43281 (7) | 0.43623 (16) | 0.0238 (3) | |
O4 | 0.39167 (18) | 0.47554 (7) | 0.24601 (18) | 0.0277 (3) | |
O5 | 0.03262 (19) | 0.56609 (8) | 0.21735 (17) | 0.0252 (3) | |
H5A | 0.004 (4) | 0.5875 (17) | 0.129 (4) | 0.043 (8)* | |
H5B | 0.147 (5) | 0.558 (2) | 0.222 (4) | 0.069 (10)* | |
O6 | 0.17467 (17) | 0.58515 (8) | 0.56590 (16) | 0.0224 (2) | |
H6A | 0.272 (4) | 0.613 (2) | 0.581 (4) | 0.058 (9)* | |
H6B | 0.206 (4) | 0.5391 (19) | 0.519 (3) | 0.048 (8)* | |
O7 | −0.2951 (2) | 0.46974 (13) | 0.0850 (2) | 0.0479 (5) | |
H7A | −0.316 (5) | 0.501 (2) | −0.004 (5) | 0.082 (12)* | |
H7B | −0.394 (5) | 0.465 (2) | 0.139 (4) | 0.064 (10)* | |
N1 | 0.29092 (19) | 0.19673 (8) | 0.21499 (19) | 0.0228 (3) | |
N2 | 0.52735 (19) | 0.30911 (9) | 0.3651 (2) | 0.0246 (3) | |
C1 | 0.0838 (2) | 0.30153 (9) | 0.1146 (2) | 0.0195 (3) | |
C2 | 0.2524 (2) | 0.27631 (9) | 0.2158 (2) | 0.0172 (3) | |
C3 | 0.4472 (3) | 0.17365 (11) | 0.2881 (3) | 0.0296 (4) | |
H3 | 0.4761 | 0.1185 | 0.2920 | 0.036* | |
C4 | 0.5669 (2) | 0.22967 (11) | 0.3582 (3) | 0.0300 (4) | |
H4 | 0.6777 | 0.2118 | 0.4017 | 0.036* | |
C5 | 0.3672 (2) | 0.33240 (9) | 0.2984 (2) | 0.0171 (3) | |
C6 | 0.31766 (19) | 0.42055 (9) | 0.3264 (2) | 0.0168 (3) | |
Li1 | −0.0795 (5) | 0.4524 (2) | 0.2209 (4) | 0.0289 (7) | |
Li2 | −0.0490 (4) | 0.63229 (18) | 0.4210 (4) | 0.0252 (6) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O1 | 0.0312 (7) | 0.0205 (6) | 0.0488 (9) | −0.0017 (5) | −0.0159 (6) | −0.0045 (6) |
O2 | 0.0304 (6) | 0.0161 (5) | 0.0240 (6) | 0.0064 (4) | −0.0028 (5) | −0.0005 (4) |
O3 | 0.0310 (6) | 0.0158 (5) | 0.0257 (6) | 0.0022 (4) | 0.0123 (5) | 0.0002 (4) |
O4 | 0.0300 (6) | 0.0176 (5) | 0.0367 (7) | −0.0035 (4) | 0.0129 (5) | 0.0050 (5) |
O5 | 0.0298 (6) | 0.0255 (6) | 0.0201 (6) | 0.0068 (5) | 0.0016 (5) | 0.0034 (5) |
O6 | 0.0224 (5) | 0.0192 (5) | 0.0253 (6) | −0.0002 (4) | −0.0005 (4) | −0.0020 (4) |
O7 | 0.0300 (8) | 0.0775 (14) | 0.0371 (9) | 0.0162 (8) | 0.0109 (6) | 0.0208 (9) |
N1 | 0.0256 (7) | 0.0129 (5) | 0.0297 (7) | 0.0026 (5) | −0.0004 (5) | −0.0022 (5) |
N2 | 0.0191 (6) | 0.0208 (6) | 0.0334 (8) | 0.0025 (5) | −0.0024 (5) | −0.0025 (5) |
C1 | 0.0225 (7) | 0.0161 (6) | 0.0197 (7) | 0.0025 (5) | −0.0008 (5) | −0.0017 (5) |
C2 | 0.0178 (6) | 0.0133 (5) | 0.0209 (7) | 0.0012 (5) | 0.0024 (5) | −0.0005 (5) |
C3 | 0.0296 (8) | 0.0169 (7) | 0.0417 (11) | 0.0074 (6) | −0.0043 (7) | −0.0015 (7) |
C4 | 0.0229 (7) | 0.0224 (7) | 0.0438 (11) | 0.0083 (6) | −0.0060 (7) | −0.0020 (7) |
C5 | 0.0180 (6) | 0.0132 (5) | 0.0201 (7) | 0.0007 (5) | 0.0022 (5) | 0.0000 (5) |
C6 | 0.0174 (6) | 0.0120 (5) | 0.0212 (7) | −0.0002 (4) | 0.0016 (5) | 0.0002 (5) |
Li1 | 0.0367 (17) | 0.0197 (13) | 0.0312 (17) | 0.0031 (12) | 0.0100 (13) | 0.0010 (12) |
Li2 | 0.0300 (15) | 0.0163 (12) | 0.0294 (16) | 0.0004 (11) | 0.0045 (12) | 0.0027 (11) |
Geometric parameters (Å, º) top
O5—Li1 | 2.046 (4) | N2—C4 | 1.338 (2) |
O5—Li2 | 2.069 (4) | N2—C5 | 1.342 (2) |
O5—H5B | 0.87 (4) | C2—C5 | 1.400 (2) |
O5—H5A | 0.80 (3) | C2—C1 | 1.519 (2) |
O4—C6 | 1.2517 (19) | C5—C6 | 1.513 (2) |
O6—Li2 | 2.129 (4) | C4—C3 | 1.382 (3) |
O6—H6A | 0.87 (3) | C4—H4 | 0.9300 |
O6—H6B | 0.88 (3) | C3—H3 | 0.9300 |
O1—C1 | 1.241 (2) | Li2—O1ii | 1.942 (3) |
O2—C1 | 1.260 (2) | Li2—O3iii | 1.988 (3) |
O2—Li1 | 1.927 (3) | Li2—N1ii | 2.317 (4) |
O3—C6 | 1.2552 (19) | Li1—O7 | 1.918 (4) |
N1—C3 | 1.335 (2) | Li1—O6iii | 1.973 (4) |
N1—C2 | 1.337 (2) | O7—H7A | 0.88 (4) |
N1—Li2i | 2.317 (4) | O7—H7B | 0.88 (4) |
| | | |
Li1—O5—Li2 | 109.27 (14) | N1—C3—C4 | 121.58 (16) |
Li1—O5—H5B | 105 (2) | N1—C3—H3 | 119.2 |
Li2—O5—H5B | 112 (2) | C4—C3—H3 | 119.2 |
Li1—O5—H5A | 109 (2) | O1—C1—O2 | 126.41 (15) |
Li2—O5—H5A | 112 (2) | O1—C1—C2 | 117.66 (14) |
H5B—O5—H5A | 109 (3) | O2—C1—C2 | 115.79 (14) |
Li1iii—O6—Li2 | 105.71 (15) | O4—C6—O3 | 124.60 (14) |
Li1iii—O6—H6A | 112 (2) | O4—C6—C5 | 119.72 (14) |
Li2—O6—H6A | 121 (2) | O3—C6—C5 | 115.64 (13) |
Li1iii—O6—H6B | 102.5 (18) | O1ii—Li2—O3iii | 126.42 (18) |
Li2—O6—H6B | 107.5 (18) | O1ii—Li2—O5 | 121.53 (17) |
H6A—O6—H6B | 106 (3) | O3iii—Li2—O5 | 111.87 (15) |
C1—O1—Li2i | 121.88 (15) | O1ii—Li2—O6 | 96.70 (15) |
C1—O2—Li1 | 130.35 (15) | O3iii—Li2—O6 | 88.14 (13) |
C6—O3—Li2iii | 138.22 (14) | O5—Li2—O6 | 88.74 (13) |
C3—N1—C2 | 117.34 (14) | O1ii—Li2—N1ii | 77.56 (12) |
C3—N1—Li2i | 136.14 (14) | O3iii—Li2—N1ii | 92.34 (14) |
C2—N1—Li2i | 106.51 (13) | O5—Li2—N1ii | 97.38 (14) |
C4—N2—C5 | 117.17 (15) | O6—Li2—N1ii | 173.18 (17) |
N1—C2—C5 | 121.12 (14) | O7—Li1—O2 | 105.65 (18) |
N1—C2—C1 | 115.90 (13) | O7—Li1—O6iii | 101.58 (17) |
C5—C2—C1 | 122.89 (13) | O2—Li1—O6iii | 118.14 (18) |
N2—C5—C2 | 120.88 (14) | O7—Li1—O5 | 101.05 (17) |
N2—C5—C6 | 115.78 (13) | O2—Li1—O5 | 110.05 (17) |
C2—C5—C6 | 123.27 (13) | O6iii—Li1—O5 | 117.60 (17) |
N2—C4—C3 | 121.58 (16) | Li1—O7—H7A | 130 (3) |
N2—C4—H4 | 119.2 | Li1—O7—H7B | 115 (2) |
C3—C4—H4 | 119.2 | H7A—O7—H7B | 109 (3) |
| | | |
C3—N1—C2—C5 | −3.5 (2) | C5—C2—C1—O2 | 6.1 (2) |
Li2i—N1—C2—C5 | 176.03 (15) | Li2iii—O3—C6—O4 | 174.97 (19) |
C3—N1—C2—C1 | 173.33 (16) | Li2iii—O3—C6—C5 | −7.5 (3) |
Li2i—N1—C2—C1 | −7.18 (18) | N2—C5—C6—O4 | 73.8 (2) |
C4—N2—C5—C2 | −4.0 (3) | C2—C5—C6—O4 | −109.25 (19) |
C4—N2—C5—C6 | 172.98 (16) | N2—C5—C6—O3 | −103.86 (18) |
N1—C2—C5—N2 | 6.5 (3) | C2—C5—C6—O3 | 73.1 (2) |
C1—C2—C5—N2 | −170.03 (15) | Li1—O5—Li2—O1ii | −174.09 (18) |
N1—C2—C5—C6 | −170.25 (15) | Li1—O5—Li2—O3iii | 1.3 (2) |
C1—C2—C5—C6 | 13.2 (2) | Li1—O5—Li2—O6 | 88.83 (16) |
C5—N2—C4—C3 | −1.1 (3) | Li1—O5—Li2—N1ii | −94.19 (16) |
C2—N1—C3—C4 | −1.6 (3) | Li1iii—O6—Li2—O1ii | 105.93 (16) |
Li2i—N1—C3—C4 | 179.05 (19) | Li1iii—O6—Li2—O3iii | −20.53 (16) |
N2—C4—C3—N1 | 4.1 (3) | Li1iii—O6—Li2—O5 | −132.46 (14) |
Li2i—O1—C1—O2 | 176.24 (17) | C1—O2—Li1—O7 | −101.2 (2) |
Li2i—O1—C1—C2 | 0.7 (2) | C1—O2—Li1—O6iii | 11.5 (3) |
Li1—O2—C1—O1 | 87.8 (3) | C1—O2—Li1—O5 | 150.45 (16) |
Li1—O2—C1—C2 | −96.7 (2) | Li2—O5—Li1—O7 | 91.67 (18) |
N1—C2—C1—O1 | 5.3 (2) | Li2—O5—Li1—O2 | −156.99 (16) |
C5—C2—C1—O1 | −177.97 (16) | Li2—O5—Li1—O6iii | −17.8 (2) |
N1—C2—C1—O2 | −170.67 (15) | | |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) −x, −y+1, −z+1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O2iv | 0.81 (3) | 1.92 (3) | 2.723 (3) | 172.60 (3) |
O5—H5B···O4 | 0.87 (4) | 2.28 (4) | 3.068 (3) | 152 (3) |
O6—H6A···N2v | 0.86 (3) | 2.00 (3) | 2.857 (3) | 169.66 (4) |
O6—H6B···O3 | 0.88 (3) | 1.86 (3) | 2.719 (3) | 163 (3) |
O7—H7A···O4iv | 0.88 (4) | 2.02 (4) | 2.841 (3) | 154.89 (6) |
O7—H7B···O4vi | 0.88 (4) | 1.86 (4) | 2.730 (3) | 169.51 (6) |
Symmetry codes: (iv) −x, −y+1, −z; (v) −x+1, −y+1, −z+1; (vi) x−1, y, z. |
Experimental details
Crystal data |
Chemical formula | [Li2(C6H2N2O4)(H2O)3] |
Mr | 234.02 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 7.487 (3), 16.409 (8), 7.958 (2) |
β (°) | 92.92 (3) |
V (Å3) | 976.4 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.14 |
Crystal size (mm) | 0.4 × 0.2 × 0.06 |
|
Data collection |
Diffractometer | Rigaku diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.948, 0.994 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6366, 6045, 2427 |
Rint | 0.120 |
(sin θ/λ)max (Å−1) | 0.904 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.062, 0.211, 0.96 |
No. of reflections | 6045 |
No. of parameters | 178 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.49, −0.54 |
Selected bond lengths (Å) topO5—Li1 | 2.046 (4) | Li2—O1ii | 1.942 (3) |
O5—Li2 | 2.069 (4) | Li2—O3iii | 1.988 (3) |
O6—Li2 | 2.129 (4) | Li2—N1ii | 2.317 (4) |
O2—Li1 | 1.927 (3) | Li1—O7 | 1.918 (4) |
N1—Li2i | 2.317 (4) | Li1—O6iii | 1.973 (4) |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) −x, −y+1, −z+1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O2iv | 0.81 (3) | 1.92 (3) | 2.723 (3) | 172.60 (3) |
O5—H5B···O4 | 0.87 (4) | 2.28 (4) | 3.068 (3) | 152 (3) |
O6—H6A···N2v | 0.86 (3) | 2.00 (3) | 2.857 (3) | 169.66 (4) |
O6—H6B···O3 | 0.88 (3) | 1.86 (3) | 2.719 (3) | 163 (3) |
O7—H7A···O4iv | 0.88 (4) | 2.02 (4) | 2.841 (3) | 154.89 (6) |
O7—H7B···O4vi | 0.88 (4) | 1.86 (4) | 2.730 (3) | 169.51 (6) |
Symmetry codes: (iv) −x, −y+1, −z; (v) −x+1, −y+1, −z+1; (vi) x−1, y, z. |
Multidendate carboxylic acids are found to be excellent ligands for the synthesis of coordination polymers, giving structures with a diverse range of topologies and conformations, owing to the carboxylate groups being able to coordinate to a metal centre as a mono-, bi-, or multidentate ligand (Erxleben, 2003; Ye et al., 2005; Fei et al., 2006). Pyrazine-2,3-dicarboxylic acid (Takusagawa & Shimada, 1973) and its dianion (Richard et al., 1973; Nepveu et al., 1993) have been reported to be well suited for the construction of multidimentional frameworks (nD, n = 1–3), due to the presence of two adjacent carboxylate groups (O donor atoms) as substituents on the N-heterocyclic pyrazine ring (N donor atoms). In recent years, metal complexes with pyrazine-2,3-dicarboxylic acid ligand have been extensively studied because of their wide applications and growing interest in supramolecular chemistry. Examples include sodium (Tombul et al., 2006), caesium (Tombul et al., 2007), potassium (Tombul et al., 2008b), lithium (Tombul et al., 2008a) and rubidium (Tombul & Guven, 2009) complexes. As a continuation of our ongoing research on Group I dicarboxylates, we report here the synthesis and crystal structure of the hydrated polymeric dinuclear lithium complex formed with one molar equivalent of pyrazine-2,3-dicarboxylic acid.
As shown in Fig. 1, the title compound is a polymeric dinuclear complex with two kinds of Li atoms, one pyrazine-2,3-dicarboxylate ligand and three water molecules in the asymmetric unit. The geometries of the two independent Li atoms are different and the coordination modes of the pyrazine-2,3-dicarboxylate towards the cations are dissimilar. The Li1 ion has a distorted four-coordinate geometry and achieves the coordination number by bonding to one of the carboxylate O atom of pyrazine-2,3-dicarboxylate ligand, three O atoms from three water molecules, one of which is a symmetry-related bridging O atom. The Li2 ion has a distorted trigonal bipyramidal geometry, with one water molecule in bridging mode that connects the two distinct Li ions, one symmetry related carboxylate O atom of pyrazine-2,3-dicarboxylate ligand and a chelated pyrazine-2,3-dicarboxylate ligand (through the interactions of both N and O atoms) of the adjacent molecule. It should be emphasized that, depending on the starting material and stoichiometric ratio utilized, the synthesis of dinuclear lithium complexes formed with one or two pyrazine-2,3-dicarboxylic acid ligands can be accessible (Tombul et al., 2008a). The Li–O distances are in the range 1.918 (4)Å to 2.046 (4)Å (for Li1) and 1.942 (3)Å to 2.129 (4)Å (for Li2), in good agreement with the corresponding values reported for other lithium complexes (Chen et al., 2007; Kim et al., 2007). It is interesting to note that Li–N bond lengths are in accord with the normal ranges reported for the dinuclear bis-structure (Tombul et al., 2008a), however, the Li–N distances are notably longer than similar bond lengths reported in the literature (Grossie et al., 2006; Boyd et al., 2002). The dinuclear complex is linked in a three-dimensional manner by further intra- and intermolecular O—H–O and O—H–N hydrogen bonds (Figure 2 and Table 2).