Download citation
Download citation
link to html
The mol­ecular structure of the title compound, C14H11Cl3O4S, displays a biphenyl dihedral angle of 4.9 (2)° between the benzene rings, which is significantly smaller than the calculated dihedral angle of 41.2° of biphenyl derivatives without ortho substituents. The CAr-O bond length of 1.432 (4) Å is comparable with other sulfuric acid biphenyl-4-yl ester 2,2,2-trichloro­ether ester derivatives without electronegative substituents in the sulfated phenyl ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810012845/om2330sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810012845/om2330Isup2.hkl
Contains datablock I

CCDC reference: 777976

Key indicators

  • Single-crystal X-ray study
  • T = 90 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.054
  • wR factor = 0.137
  • Data-to-parameter ratio = 15.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang .. 6 PLAT431_ALERT_2_C Short Inter HL..A Contact Cl2 .. O3 .. 3.04 Ang. PLAT431_ALERT_2_C Short Inter HL..A Contact Cl3 .. O3 .. 3.05 Ang. PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 1 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 12 PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF .... 1 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 3
Alert level G PLAT128_ALERT_4_G Non-standard setting of Space-group P21/c .... P21/n
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Exposure to biphenyl and structurally related chlorinated biphenyls has been associated with a range of adverse human health effects, including cancer and arteriosclerosis (Robertson & Hansen, 2001; Umeda et al., 2005, 2002; Letcher et al., 2000). Biphenyl and many lower chlorinated biphenyls are metabolized via hydroxylated biphenyl metabolites to sulfuric acid esters (Liu et al., 2006, 2009; Ohnishi et al., 2000, 2001; Sacco & James, 2005) and glucuronide conjugates (Cravedi et al., 1999; Tampal et al., 2002). While currently little is known about the toxicity of sulfate conjugates of chlorinated biphenyls, it is well established that sulfuric acid biphenyl-4-yl ester is involved in the formation of urinary calculi and, thus, plays a role in the induction of urinary bladder cancer (Ohnishi et al., 2000, 2001). Unfortunately, crystal structures of (chlorinated) sulfuric acid biphenyl-4-yl esters have not been reported, partly because of their chemical instability (Li et al., 2010). Here we report the crystal structure of a structurally related sulfuric acid biphenyl-4-yl ester 2,2,2-trichloro-ether ester.

In particular the CAr—O bond length of sulfuric acid mono- and diesters may be predictive of the stability of the corresponding sulfuric acid conjugates (Brandao et al., 2005; Li et al., 2010). The CAr—O (i.e. C4—O1) bond length of the title compound is 1.432 (4) Å, which is comparable to other, chlorinated sulfuric acid biphenyl-4-yl ester 2,2,2-trichloro-ether esters with no chlorine substituents in the sulfated benzene moiety (1.426 to 1.435 Å) (Li et al., 2010, 2008). In contrast, the CAr—O bond of sulfuric acid 2',3,5,5'-tetrachloro-biphenyl-4-yl ester 2,2,2-trichloro-ethyl ester, an analogous sulfuric acid diester with two chlorine substituents in the sulfated benzene moiety, is slightly shorter (1.405 (4) Å) due to the presence of the electronegative chlorine substituents (Li et al., 2010). Therefore, the sulfuric acid biphenyl-4-yl ester corresponding to the title compound is expected to be relatively stable under physiological conditions, especially compared to aromatic sulfuric acid esters with electronegative substituents in the sulfated benzene ring.

The dihedral angle of biphenyl derivatives is associated with their affinity for cellular target molecules and, therefore, can correlate with their toxicity. The title compound adopts an almost planar conformation, with a solid state dihedral angle of the biphenyl moiety of 4.9 (2)°. Similarly, the parent compound, biphenyl, adopts a planar confirmation in the solid state with a dihedral angle of 0° (Trotter, 1961). These solid state dihedral angles are significantly smaller compared to the calculated dihedral angle of 41.2° of biphenyl derivatives without ortho substituents (Shaikh et al., 2008). These deviations from the energetically most favorable conformation are most likely due to crystal packing effects, which allow the title compound to adopt an energetically less favorable conformation in the solid state by maximizing the lattice energy.

Related literature top

For similar structures of chlorinated sulfuric acid biphenyl-4-yl ester 2,2,2-trichloro-ethyl esters, see: Li et al. (2008, 2010). For a review of structures of sulfuric acid aryl mono esters, see: Brandao et al. (2005). For additional background information, see: Cravedi et al. (1999); Letcher et al. (2000); Liu et al. (2006, 2009); Ohnishi et al. (2000, 2001); Sacco & James (2005); Tampal et al. (2002); Robertson & Hansen (2001); Trotter (1961); Umeda et al. (2002, 2005). For further discussion of dihedral angles in chlorinated biphenyls, see: Shaikh et al. (2008).

Experimental top

The title compound was synthesized from biphenyl-4-ol and 2,2,2-trichloroethyl sulfonyl chloride using 4-dimethylaminopyridine as catalyst (Li et al., 2008). Crystals of the title compound suitable for crystal structure analysis were obtained by slow evaporation of a solution of the title compound in methanol.

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained C—H distances of 0.99 Å (CH2) and 0.95 Å (CArH) with Uiso(H) values set to 1.2Ueq of the attached C atom.

Structure description top

Exposure to biphenyl and structurally related chlorinated biphenyls has been associated with a range of adverse human health effects, including cancer and arteriosclerosis (Robertson & Hansen, 2001; Umeda et al., 2005, 2002; Letcher et al., 2000). Biphenyl and many lower chlorinated biphenyls are metabolized via hydroxylated biphenyl metabolites to sulfuric acid esters (Liu et al., 2006, 2009; Ohnishi et al., 2000, 2001; Sacco & James, 2005) and glucuronide conjugates (Cravedi et al., 1999; Tampal et al., 2002). While currently little is known about the toxicity of sulfate conjugates of chlorinated biphenyls, it is well established that sulfuric acid biphenyl-4-yl ester is involved in the formation of urinary calculi and, thus, plays a role in the induction of urinary bladder cancer (Ohnishi et al., 2000, 2001). Unfortunately, crystal structures of (chlorinated) sulfuric acid biphenyl-4-yl esters have not been reported, partly because of their chemical instability (Li et al., 2010). Here we report the crystal structure of a structurally related sulfuric acid biphenyl-4-yl ester 2,2,2-trichloro-ether ester.

In particular the CAr—O bond length of sulfuric acid mono- and diesters may be predictive of the stability of the corresponding sulfuric acid conjugates (Brandao et al., 2005; Li et al., 2010). The CAr—O (i.e. C4—O1) bond length of the title compound is 1.432 (4) Å, which is comparable to other, chlorinated sulfuric acid biphenyl-4-yl ester 2,2,2-trichloro-ether esters with no chlorine substituents in the sulfated benzene moiety (1.426 to 1.435 Å) (Li et al., 2010, 2008). In contrast, the CAr—O bond of sulfuric acid 2',3,5,5'-tetrachloro-biphenyl-4-yl ester 2,2,2-trichloro-ethyl ester, an analogous sulfuric acid diester with two chlorine substituents in the sulfated benzene moiety, is slightly shorter (1.405 (4) Å) due to the presence of the electronegative chlorine substituents (Li et al., 2010). Therefore, the sulfuric acid biphenyl-4-yl ester corresponding to the title compound is expected to be relatively stable under physiological conditions, especially compared to aromatic sulfuric acid esters with electronegative substituents in the sulfated benzene ring.

The dihedral angle of biphenyl derivatives is associated with their affinity for cellular target molecules and, therefore, can correlate with their toxicity. The title compound adopts an almost planar conformation, with a solid state dihedral angle of the biphenyl moiety of 4.9 (2)°. Similarly, the parent compound, biphenyl, adopts a planar confirmation in the solid state with a dihedral angle of 0° (Trotter, 1961). These solid state dihedral angles are significantly smaller compared to the calculated dihedral angle of 41.2° of biphenyl derivatives without ortho substituents (Shaikh et al., 2008). These deviations from the energetically most favorable conformation are most likely due to crystal packing effects, which allow the title compound to adopt an energetically less favorable conformation in the solid state by maximizing the lattice energy.

For similar structures of chlorinated sulfuric acid biphenyl-4-yl ester 2,2,2-trichloro-ethyl esters, see: Li et al. (2008, 2010). For a review of structures of sulfuric acid aryl mono esters, see: Brandao et al. (2005). For additional background information, see: Cravedi et al. (1999); Letcher et al. (2000); Liu et al. (2006, 2009); Ohnishi et al. (2000, 2001); Sacco & James (2005); Tampal et al. (2002); Robertson & Hansen (2001); Trotter (1961); Umeda et al. (2002, 2005). For further discussion of dihedral angles in chlorinated biphenyls, see: Shaikh et al. (2008).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELX97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Biphenyl-4-yl 2,2,2-trichloroethyl sulfate top
Crystal data top
C14H11Cl3O4SF(000) = 776
Mr = 381.64Dx = 1.628 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 19102 reflections
a = 7.5761 (2) Åθ = 1.0–27.5°
b = 5.8272 (2) ŵ = 0.74 mm1
c = 35.2679 (11) ÅT = 90 K
β = 90.181 (2)°Slab, colourless
V = 1556.98 (8) Å30.43 × 0.40 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3041 independent reflections
Radiation source: fine-focus sealed tube1939 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 18 pixels mm-1θmax = 26.0°, θmin = 2.3°
ω scans at fixed χ = 55°h = 99
Absorption correction: multi-scan
(SADABS; Bruker Nonius, 2006)
k = 77
Tmin = 0.699, Tmax = 0.944l = 4343
15429 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0617P)2 + 1.446P]
where P = (Fo2 + 2Fc2)/3
3041 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C14H11Cl3O4SV = 1556.98 (8) Å3
Mr = 381.64Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5761 (2) ŵ = 0.74 mm1
b = 5.8272 (2) ÅT = 90 K
c = 35.2679 (11) Å0.43 × 0.40 × 0.08 mm
β = 90.181 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3041 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker Nonius, 2006)
1939 reflections with I > 2σ(I)
Tmin = 0.699, Tmax = 0.944Rint = 0.079
15429 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.09Δρmax = 0.62 e Å3
3041 reflectionsΔρmin = 0.46 e Å3
199 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.57446 (13)0.92450 (18)0.59262 (3)0.0208 (3)
O10.6710 (3)0.7616 (5)0.62196 (7)0.0220 (7)
O20.3875 (3)0.8117 (5)0.58864 (7)0.0209 (6)
O30.6713 (4)0.8999 (5)0.55880 (7)0.0261 (7)
O40.5421 (4)1.1419 (5)0.60895 (7)0.0261 (7)
Cl10.21565 (14)0.28054 (18)0.52992 (3)0.0281 (3)
Cl20.03163 (13)0.6724 (2)0.56132 (3)0.0289 (3)
Cl30.29160 (14)0.73955 (18)0.50317 (3)0.0260 (3)
C10.5167 (5)0.7417 (7)0.73623 (11)0.0193 (9)
C20.4726 (5)0.5655 (7)0.71089 (11)0.0234 (10)
H20.40870.43650.71990.028*
C30.5198 (6)0.5746 (7)0.67315 (10)0.0248 (10)
H30.48880.45390.65630.030*
C40.6121 (5)0.7612 (7)0.66051 (10)0.0192 (9)
C50.6597 (5)0.9377 (8)0.68381 (11)0.0262 (10)
H50.72431.06500.67430.031*
C60.6116 (5)0.9270 (7)0.72177 (11)0.0242 (10)
H60.64411.04890.73830.029*
C70.3776 (5)0.5798 (7)0.57323 (10)0.0202 (9)
H7A0.34970.46960.59370.024*
H7B0.49280.53640.56210.024*
C80.2351 (5)0.5715 (7)0.54294 (10)0.0203 (9)
C1'0.4713 (5)0.7278 (7)0.77748 (10)0.0188 (9)
C2'0.5201 (6)0.9018 (7)0.80282 (11)0.0268 (10)
H2'0.57731.03520.79340.032*
C3'0.4867 (6)0.8833 (8)0.84125 (12)0.0304 (11)
H3'0.52191.00330.85790.037*
C4'0.4027 (5)0.6923 (8)0.85568 (11)0.0265 (10)
H4'0.38110.67880.88210.032*
C5'0.3503 (6)0.5199 (8)0.83080 (11)0.0330 (11)
H5'0.29030.38870.84020.040*
C6'0.3851 (5)0.5385 (8)0.79256 (11)0.0305 (11)
H6'0.34890.41840.77610.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0235 (6)0.0200 (6)0.0188 (5)0.0022 (5)0.0014 (4)0.0011 (4)
O10.0250 (16)0.0222 (17)0.0187 (14)0.0051 (13)0.0025 (12)0.0031 (12)
O20.0179 (15)0.0206 (16)0.0242 (15)0.0040 (13)0.0021 (11)0.0042 (12)
O30.0283 (16)0.0268 (18)0.0232 (14)0.0012 (14)0.0034 (12)0.0018 (13)
O40.0368 (17)0.0170 (16)0.0245 (15)0.0058 (14)0.0058 (13)0.0071 (13)
Cl10.0364 (6)0.0211 (6)0.0267 (5)0.0025 (5)0.0040 (5)0.0021 (4)
Cl20.0223 (6)0.0371 (7)0.0274 (6)0.0027 (5)0.0009 (4)0.0017 (5)
Cl30.0353 (6)0.0243 (6)0.0186 (5)0.0011 (5)0.0026 (4)0.0022 (4)
C10.014 (2)0.021 (2)0.023 (2)0.0037 (18)0.0018 (16)0.0023 (18)
C20.032 (2)0.011 (2)0.027 (2)0.0016 (19)0.0028 (18)0.0027 (18)
C30.038 (3)0.018 (2)0.019 (2)0.004 (2)0.0042 (19)0.0019 (18)
C40.018 (2)0.022 (2)0.0171 (19)0.0096 (18)0.0041 (16)0.0004 (18)
C50.024 (2)0.029 (3)0.026 (2)0.009 (2)0.0031 (18)0.0021 (19)
C60.022 (2)0.026 (3)0.024 (2)0.0067 (19)0.0041 (17)0.0071 (19)
C70.028 (2)0.015 (2)0.0177 (19)0.0027 (18)0.0002 (17)0.0003 (16)
C80.024 (2)0.016 (2)0.021 (2)0.0034 (18)0.0002 (17)0.0008 (17)
C1'0.016 (2)0.018 (2)0.022 (2)0.0012 (18)0.0009 (16)0.0024 (17)
C2'0.034 (3)0.022 (3)0.024 (2)0.003 (2)0.0029 (19)0.0009 (19)
C3'0.037 (3)0.030 (3)0.024 (2)0.004 (2)0.005 (2)0.006 (2)
C4'0.026 (2)0.034 (3)0.019 (2)0.005 (2)0.0074 (18)0.0019 (19)
C5'0.043 (3)0.030 (3)0.026 (2)0.013 (2)0.012 (2)0.001 (2)
C6'0.031 (3)0.031 (3)0.030 (2)0.009 (2)0.006 (2)0.008 (2)
Geometric parameters (Å, º) top
S1—O31.410 (3)C5—C61.390 (5)
S1—O41.414 (3)C5—H50.9500
S1—O21.567 (3)C6—H60.9500
S1—O11.582 (3)C7—C81.518 (5)
O1—C41.432 (4)C7—H7A0.9900
O2—C71.459 (5)C7—H7B0.9900
Cl1—C81.762 (4)C1'—C6'1.389 (6)
Cl2—C81.774 (4)C1'—C2'1.400 (5)
Cl3—C81.765 (4)C2'—C3'1.384 (5)
C1—C61.395 (6)C2'—H2'0.9500
C1—C21.401 (5)C3'—C4'1.380 (6)
C1—C1'1.498 (5)C3'—H3'0.9500
C2—C31.380 (5)C4'—C5'1.391 (6)
C2—H20.9500C4'—H4'0.9500
C3—C41.368 (6)C5'—C6'1.379 (5)
C3—H30.9500C5'—H5'0.9500
C4—C51.364 (5)C6'—H6'0.9500
O3—S1—O4121.83 (18)C8—C7—H7A109.9
O3—S1—O2110.75 (16)O2—C7—H7B109.9
O4—S1—O2104.74 (16)C8—C7—H7B109.9
O3—S1—O1104.57 (16)H7A—C7—H7B108.3
O4—S1—O1110.58 (15)C7—C8—Cl1105.8 (3)
O2—S1—O1102.89 (15)C7—C8—Cl3111.6 (3)
C4—O1—S1118.5 (2)Cl1—C8—Cl3110.3 (2)
C7—O2—S1117.8 (2)C7—C8—Cl2110.5 (3)
C6—C1—C2117.1 (4)Cl1—C8—Cl2110.0 (2)
C6—C1—C1'121.1 (4)Cl3—C8—Cl2108.6 (2)
C2—C1—C1'121.7 (4)C6'—C1'—C2'117.0 (4)
C3—C2—C1121.7 (4)C6'—C1'—C1121.6 (4)
C3—C2—H2119.2C2'—C1'—C1121.3 (4)
C1—C2—H2119.2C3'—C2'—C1'121.3 (4)
C4—C3—C2118.6 (4)C3'—C2'—H2'119.3
C4—C3—H3120.7C1'—C2'—H2'119.3
C2—C3—H3120.7C4'—C3'—C2'120.7 (4)
C5—C4—C3122.5 (4)C4'—C3'—H3'119.7
C5—C4—O1119.2 (4)C2'—C3'—H3'119.7
C3—C4—O1118.2 (3)C3'—C4'—C5'118.7 (4)
C4—C5—C6118.5 (4)C3'—C4'—H4'120.6
C4—C5—H5120.8C5'—C4'—H4'120.6
C6—C5—H5120.8C6'—C5'—C4'120.4 (4)
C5—C6—C1121.6 (4)C6'—C5'—H5'119.8
C5—C6—H6119.2C4'—C5'—H5'119.8
C1—C6—H6119.2C5'—C6'—C1'121.9 (4)
O2—C7—C8109.1 (3)C5'—C6'—H6'119.1
O2—C7—H7A109.9C1'—C6'—H6'119.1
O3—S1—O1—C4175.2 (3)C1'—C1—C6—C5177.7 (4)
O4—S1—O1—C442.4 (3)S1—O2—C7—C8132.5 (3)
O2—S1—O1—C469.0 (3)O2—C7—C8—Cl1173.5 (2)
O3—S1—O2—C748.4 (3)O2—C7—C8—Cl366.5 (3)
O4—S1—O2—C7178.5 (2)O2—C7—C8—Cl254.5 (4)
O1—S1—O2—C762.8 (3)C6—C1—C1'—C6'176.6 (4)
C6—C1—C2—C30.4 (6)C2—C1—C1'—C6'0.7 (6)
C1'—C1—C2—C3177.7 (4)C6—C1—C1'—C2'1.0 (6)
C1—C2—C3—C40.1 (6)C2—C1—C1'—C2'178.2 (4)
C2—C3—C4—C50.3 (6)C6'—C1'—C2'—C3'1.2 (6)
C2—C3—C4—O1175.7 (3)C1—C1'—C2'—C3'176.4 (4)
S1—O1—C4—C577.2 (4)C1'—C2'—C3'—C4'0.5 (7)
S1—O1—C4—C3107.2 (4)C2'—C3'—C4'—C5'0.8 (7)
C3—C4—C5—C60.3 (6)C3'—C4'—C5'—C6'1.2 (7)
O1—C4—C5—C6175.7 (3)C4'—C5'—C6'—C1'0.5 (7)
C4—C5—C6—C10.1 (6)C2'—C1'—C6'—C5'0.8 (6)
C2—C1—C6—C50.4 (6)C1—C1'—C6'—C5'176.9 (4)

Experimental details

Crystal data
Chemical formulaC14H11Cl3O4S
Mr381.64
Crystal system, space groupMonoclinic, P21/n
Temperature (K)90
a, b, c (Å)7.5761 (2), 5.8272 (2), 35.2679 (11)
β (°) 90.181 (2)
V3)1556.98 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.43 × 0.40 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker Nonius, 2006)
Tmin, Tmax0.699, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
15429, 3041, 1939
Rint0.079
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.137, 1.09
No. of reflections3041
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.46

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELX97 (Sheldrick, 2008) and local procedures.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds