Download citation
Download citation
link to html
The asymmetric unit of the title compound, (C13H11N2)2[Mn(C7H3NO4)2]·3H2O, consists of a discrete mononuclear [Mn(2,6-pydc)2]2− anionic complex (2,6-pydc is pyridine-2,6-dicarboxyl­ate) associated with two 9-amino­acridinium counter-ions for neutralization of charge and three uncoordin­ated water mol­ecules. The MnII atom is six-coordinated by (2,6-pydc)2− anions in a tridentate fashion and is at the centre of a distorted octa­hedron formed by the MnO4N2 bonding set. In the crystal, various inter­molecular inter­actions between different moieties can be found, such as different kinds of hydrogen bonds, offset or slipped π–π [centroid–centroid distances in the range 3.3704 (12) to 3.8674 (13)Å] and C=O...π [3.563 Å] inter­actions, which lead to the formation of a three-dimensional supra­molecular network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536811036981/om2447sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536811036981/om2447Isup2.hkl
Contains datablock I

CCDC reference: 850382

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.038
  • wR factor = 0.114
  • Data-to-parameter ratio = 13.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Reported MoietyFormula Strings Differ ? PLAT125_ALERT_4_C No '_symmetry_space_group_name_Hall' Given ..... ? PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C12 - C14 ... 1.53 Ang. PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 15 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 73 PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF .... 1
Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 13 PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF .... ? PLAT154_ALERT_1_G The su's on the Cell Angles are Equal .......... 0.00300 Deg. PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. # 4 H2 O PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. # 6 H2 O PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 9 PLAT960_ALERT_3_G Number of Intensities with I .LT. - 2*sig(I) ... 1
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 6 ALERT level C = Check. Ensure it is not caused by an omission or oversight 9 ALERT level G = General information/check it is not something unexpected 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Acridine derivatives with two benzene rings fused to pyridine are highly fluorescent agents. These compounds are used as topical antiseptics and experimentally as mutagens, intracellular pH indicators and as MALDI matrices (Derikvand et al. 2010). Acridine and related derivatives bind to DNA and RNA due to their abilitiy to intercalate. In the viewpoint of crystal engineering, acridine and its 9-amino derivative are very interesting because of their capability for hydrogen bonding via N atom of the ring and π-π stacking since they possess three rings (Aghabozorg et al. 2010, Mei & Wolf, 2004).

In continuation of our study on proton transfer compounds and their complexes (Mirzaei et al., 2011; Eshtiagh-Hosseini, Aghabozorg et al., 2010; Eshtiagh-Hosseini, Alfi et al., 2010; Eshtiagh-Hosseini, Gschwind et al., 2010; Eshtiagh-Hosseini, Yousefi et al., 2010), here we describe the crystal structure of a new coordination compound based upon MnII atom, 2,6-pydcH2, and 9aa (abbreviation for 9-aminoacridine) fragments. The asymmetric unit of 1 comprises an anionic complex [Mn(2,6-pydc)2]2–, two monoprotonated (9aaH+), and three uncoordinated water molecules (Fig. 1). The MnII atom is six-coordinated via two tridentate (2,6-pydc)2– with polyhedron MnO4N2 which adopts a distorted octahedral geometry. Indeed, in anionic fragment two rigid (2,6-pydc)2– are almost perpendicular to each other. The geometry, bond distances and angles of title compound are comprable with similar compounds in reported litratures (Aghabozorg et al., 2008; MacDonald et al. 2000) It is interesting to point out that in the crystal structure of 1, two cationic fragments participate in different H-bonds, that is, one of them takes part in three H-bonds via NH2 group and an N atom located in the ring with anionic complex fragments and water molecule, while, the other partakes in H-bond with a water molecule and an anionic moiety via with NH2 group and with another complex via N atom of ring. Also, there is a H-bond pattern with graph set R42(8) created by two water molecules and two complex fragments. Alongside different H-bonds, π-π stacking interactions play an important role in the stability of 1. As claimed before, 9aa can establish several π-π stacking interactions, and this point is evident in this structure, as well as the intermolecular π-π interaction which occurs between the two symmetry-related anionic fragments (2,6-pydc)2–. Distances between centroids of aromatic rings range from 3.3704 (12)Å to 3.8674 (13)Å (Cg1—Cg2= 3.703 Å, Cg1=C16—C17—C18—C19—C20—C21 and Cg2= C34—C35—C36—C37—C39—C40; Cg1—Cg3= 3.515 Å, Cg3=C28—C29—C34—C35—C40—N5; Cg2—Cg3=3.370 Å) as calculated by PLATON (Spek, 2009). In addition to these intermolecular interactions, some weak interactions such as C=O···π (Cg4—O= 3.563 Å, Cg4=C8—C9—C10—C11—C12—N2), aid to construct a three-dimensional supramolecular network (Fig. 2).

Related literature top

For complexes containing a Mn(II) atom and pyridine-2,6-dicarboxlic acid, see: Aghabozorg et al. (2010, 2011). For similar compounds, see: Mirzaei et al. (2011); Derikvand et al. (2010); Eshtiagh-Hosseini, Aghabozorg et al. (2010); Eshtiagh-Hosseini, Alfi et al. (2010); Eshtiagh-Hosseini, Gschwind et al. (2010); Eshtiagh-Hosseini, Yousefi et al. (2010 ); Mei & Wolf (2004); MacDonald et al. (2000); Aghabozorg et al. (2008).

Experimental top

To an aqeous solution of pydcH2 (0.0167 g, 0.1 mmol) a solution of 9a-ac (0.02 g,0.1 mmol) in methanol was added dropwise, then a soution of MnCl2.2H2O(0.0167 g, 0.1 mmol)) in water was added and the resultant solution was heated and stirred for 3 hrs at 60 °C. The yellow crystals were obtained by slow evaporation at room temprature after 3 days.

Refinement top

The structure was refined using the full-matrix least-squares refinement included in the SHELXL-97 (Sheldrick, 2008). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms bound to N and O atoms were located from the difference Fourier map and refined as free entities; O–H bonds were restrained to 0.95 (2) Å and H–H distances to 1.50 (4) Å. Hydrogen atoms bond to carbon atoms placed according to their geometrical environment and refined using a riding model with C–H distance 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Acridine derivatives with two benzene rings fused to pyridine are highly fluorescent agents. These compounds are used as topical antiseptics and experimentally as mutagens, intracellular pH indicators and as MALDI matrices (Derikvand et al. 2010). Acridine and related derivatives bind to DNA and RNA due to their abilitiy to intercalate. In the viewpoint of crystal engineering, acridine and its 9-amino derivative are very interesting because of their capability for hydrogen bonding via N atom of the ring and π-π stacking since they possess three rings (Aghabozorg et al. 2010, Mei & Wolf, 2004).

In continuation of our study on proton transfer compounds and their complexes (Mirzaei et al., 2011; Eshtiagh-Hosseini, Aghabozorg et al., 2010; Eshtiagh-Hosseini, Alfi et al., 2010; Eshtiagh-Hosseini, Gschwind et al., 2010; Eshtiagh-Hosseini, Yousefi et al., 2010), here we describe the crystal structure of a new coordination compound based upon MnII atom, 2,6-pydcH2, and 9aa (abbreviation for 9-aminoacridine) fragments. The asymmetric unit of 1 comprises an anionic complex [Mn(2,6-pydc)2]2–, two monoprotonated (9aaH+), and three uncoordinated water molecules (Fig. 1). The MnII atom is six-coordinated via two tridentate (2,6-pydc)2– with polyhedron MnO4N2 which adopts a distorted octahedral geometry. Indeed, in anionic fragment two rigid (2,6-pydc)2– are almost perpendicular to each other. The geometry, bond distances and angles of title compound are comprable with similar compounds in reported litratures (Aghabozorg et al., 2008; MacDonald et al. 2000) It is interesting to point out that in the crystal structure of 1, two cationic fragments participate in different H-bonds, that is, one of them takes part in three H-bonds via NH2 group and an N atom located in the ring with anionic complex fragments and water molecule, while, the other partakes in H-bond with a water molecule and an anionic moiety via with NH2 group and with another complex via N atom of ring. Also, there is a H-bond pattern with graph set R42(8) created by two water molecules and two complex fragments. Alongside different H-bonds, π-π stacking interactions play an important role in the stability of 1. As claimed before, 9aa can establish several π-π stacking interactions, and this point is evident in this structure, as well as the intermolecular π-π interaction which occurs between the two symmetry-related anionic fragments (2,6-pydc)2–. Distances between centroids of aromatic rings range from 3.3704 (12)Å to 3.8674 (13)Å (Cg1—Cg2= 3.703 Å, Cg1=C16—C17—C18—C19—C20—C21 and Cg2= C34—C35—C36—C37—C39—C40; Cg1—Cg3= 3.515 Å, Cg3=C28—C29—C34—C35—C40—N5; Cg2—Cg3=3.370 Å) as calculated by PLATON (Spek, 2009). In addition to these intermolecular interactions, some weak interactions such as C=O···π (Cg4—O= 3.563 Å, Cg4=C8—C9—C10—C11—C12—N2), aid to construct a three-dimensional supramolecular network (Fig. 2).

For complexes containing a Mn(II) atom and pyridine-2,6-dicarboxlic acid, see: Aghabozorg et al. (2010, 2011). For similar compounds, see: Mirzaei et al. (2011); Derikvand et al. (2010); Eshtiagh-Hosseini, Aghabozorg et al. (2010); Eshtiagh-Hosseini, Alfi et al. (2010); Eshtiagh-Hosseini, Gschwind et al. (2010); Eshtiagh-Hosseini, Yousefi et al. (2010 ); Mei & Wolf (2004); MacDonald et al. (2000); Aghabozorg et al. (2008).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek; 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compoud showing extensive π···π stacking interaction between aromatic rings of (9aaH)+ ions and carbonyl···π interactions (Cg1—Cg2= 3.703 Å, Cg1=C16—C17—C18—C19—C20—C21 and Cg2= C34—C35—C36—C37—C39—C40; Cg1—Cg3= 3.515 Å, Cg3=C28—C29—C34—C35—C40—N5; Cg2—Cg3=3.370 Å; Cg4—O= 3.563 Å, Cg4=C8—C9—C10—C11—C12—N2).
Bis(9-aminoacridinium) bis(pyridine-2,6-dicarboxylato- κ3O2,N,O6)manganate(II) trihydrate top
Crystal data top
(C13H11N2)2[Mn(C7H3NO4)2]·3H2OZ = 2
Mr = 829.67F(000) = 858
Triclinic, P1Dx = 1.498 Mg m3
a = 10.8202 (4) ÅCu Kα radiation, λ = 1.54184 Å
b = 13.5186 (5) ÅCell parameters from 11391 reflections
c = 13.9844 (5) Åθ = 3.4–75.9°
α = 102.351 (3)°µ = 3.55 mm1
β = 103.466 (3)°T = 293 K
γ = 104.868 (3)°Prism, yellow
V = 1839.42 (12) Å30.20 × 0.12 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur Nova
diffractometer
7606 independent reflections
Radiation source: Enhance (Cu) X-ray Source6791 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.4323 pixels mm-1θmax = 76.1°, θmin = 3.4°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1716
Tmin = 0.538, Tmax = 0.718l = 1712
17948 measured reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0654P)2 + 0.2228P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.038(Δ/σ)max < 0.001
wR(F2) = 0.114Δρmax = 0.25 e Å3
S = 1.08Δρmin = 0.31 e Å3
7606 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
572 parametersExtinction coefficient: 0.00077 (19)
9 restraints
Crystal data top
(C13H11N2)2[Mn(C7H3NO4)2]·3H2Oγ = 104.868 (3)°
Mr = 829.67V = 1839.42 (12) Å3
Triclinic, P1Z = 2
a = 10.8202 (4) ÅCu Kα radiation
b = 13.5186 (5) ŵ = 3.55 mm1
c = 13.9844 (5) ÅT = 293 K
α = 102.351 (3)°0.20 × 0.12 × 0.10 mm
β = 103.466 (3)°
Data collection top
Oxford Diffraction Xcalibur Nova
diffractometer
7606 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
6791 reflections with I > 2σ(I)
Tmin = 0.538, Tmax = 0.718Rint = 0.029
17948 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0389 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.25 e Å3
7606 reflectionsΔρmin = 0.31 e Å3
572 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.64063 (3)0.25673 (2)0.40959 (2)0.04394 (10)
O10.44381 (15)0.20160 (11)0.28655 (10)0.0518 (3)
O20.26457 (17)0.05818 (15)0.19184 (12)0.0669 (4)
O30.79344 (15)0.20184 (11)0.50812 (11)0.0535 (3)
O40.84704 (14)0.06026 (11)0.53782 (11)0.0529 (3)
N10.56149 (14)0.08499 (11)0.37675 (10)0.0360 (3)
C10.43716 (17)0.03411 (14)0.31346 (11)0.0377 (3)
C20.37476 (18)0.07366 (15)0.29815 (13)0.0451 (4)
H20.28810.10840.25350.054*
C30.44423 (19)0.12868 (14)0.35074 (14)0.0447 (4)
H30.40420.20090.34220.054*
C40.57380 (18)0.07533 (13)0.41616 (12)0.0404 (3)
H40.62210.11110.45170.048*
C50.62957 (16)0.03236 (13)0.42732 (11)0.0356 (3)
C60.37496 (19)0.10379 (16)0.25923 (13)0.0444 (4)
C70.76853 (18)0.10354 (14)0.49707 (12)0.0407 (3)
O50.54528 (17)0.30295 (10)0.52945 (11)0.0543 (3)
O60.52901 (17)0.43798 (12)0.64314 (11)0.0581 (4)
O70.76616 (18)0.31403 (12)0.31869 (11)0.0609 (4)
O80.91391 (19)0.45506 (14)0.30369 (13)0.0657 (4)
N20.71790 (16)0.42813 (11)0.47040 (10)0.0416 (3)
C80.67712 (19)0.47705 (14)0.54468 (12)0.0425 (4)
C90.7249 (2)0.58709 (15)0.58508 (14)0.0528 (4)
H90.69450.62130.63540.063*
C100.8191 (3)0.64496 (16)0.54865 (17)0.0605 (5)
H100.85420.7190.57570.073*
C110.8613 (2)0.59309 (16)0.47198 (16)0.0567 (5)
H110.92510.63130.44740.068*
C120.8062 (2)0.48295 (14)0.43303 (13)0.0453 (4)
C130.5753 (2)0.40030 (14)0.57584 (12)0.0435 (4)
C140.8333 (2)0.41252 (16)0.34409 (14)0.0493 (4)
N30.14305 (15)0.10470 (12)0.02023 (11)0.0411 (3)
H3N0.181 (2)0.0906 (19)0.0761 (19)0.050 (6)*
N40.01292 (19)0.18331 (17)0.24082 (13)0.0553 (4)
H4A0.029 (3)0.141 (2)0.300 (2)0.065 (7)*
H4B0.029 (3)0.248 (2)0.236 (2)0.073 (8)*
C150.03526 (17)0.15624 (15)0.15714 (13)0.0428 (4)
C160.05018 (16)0.22265 (14)0.05743 (13)0.0397 (3)
C170.01312 (18)0.31667 (16)0.04250 (15)0.0475 (4)
H170.02320.33730.09910.057*
C180.0302 (2)0.37710 (17)0.05400 (17)0.0525 (4)
H180.00650.43910.06270.063*
C190.0832 (2)0.34669 (18)0.14030 (15)0.0539 (4)
H190.09240.38790.20560.065*
C200.12132 (19)0.25721 (16)0.12938 (14)0.0468 (4)
H200.15760.2380.1870.056*
C210.10539 (16)0.19399 (14)0.03001 (12)0.0389 (3)
C220.12958 (16)0.03901 (14)0.07291 (13)0.0414 (3)
C230.1714 (2)0.05174 (16)0.07770 (16)0.0500 (4)
H230.20690.06720.01750.06*
C240.1597 (2)0.11733 (17)0.17090 (18)0.0589 (5)
H240.18810.1770.17370.071*
C250.1055 (2)0.09545 (19)0.26169 (17)0.0628 (5)
H250.09820.14060.32460.075*
C260.0634 (2)0.00866 (19)0.25909 (15)0.0586 (5)
H260.02710.00460.32040.07*
C270.07390 (17)0.06234 (15)0.16393 (13)0.0445 (4)
N50.66357 (16)0.67352 (14)1.11671 (11)0.0465 (3)
H5N0.677 (3)0.680 (2)1.180 (2)0.073 (8)*
N60.54690 (18)0.61190 (14)0.80226 (11)0.0475 (3)
H6A0.556 (2)0.5560 (19)0.7592 (19)0.053 (6)*
H6B0.523 (3)0.661 (2)0.7753 (19)0.060 (7)*
C280.58159 (16)0.62845 (13)0.90294 (12)0.0375 (3)
C290.56236 (17)0.71798 (13)0.96725 (12)0.0393 (3)
C300.4940 (2)0.78319 (15)0.92699 (14)0.0466 (4)
H300.46110.76940.85620.056*
C310.4756 (2)0.86606 (17)0.99064 (18)0.0569 (5)
H310.42950.90790.9630.068*
C320.5257 (3)0.88850 (18)1.09755 (18)0.0627 (6)
H320.51540.94681.14030.075*
C330.5889 (2)0.82645 (17)1.13944 (15)0.0559 (5)
H330.62080.84161.21050.067*
C340.60641 (17)0.73838 (15)1.07472 (13)0.0424 (4)
C350.67653 (16)0.58457 (15)1.05882 (13)0.0424 (4)
C360.73090 (19)0.51809 (18)1.10862 (17)0.0542 (5)
H360.75850.53581.180.065*
C370.7427 (2)0.42785 (19)1.05168 (19)0.0594 (5)
H370.77660.38321.08460.071*
C380.7046 (2)0.40105 (17)0.94423 (19)0.0584 (5)
H380.71440.33950.90650.07*
C390.65279 (19)0.46540 (15)0.89438 (15)0.0476 (4)
H390.62830.44740.8230.057*
C400.63637 (16)0.55866 (14)0.95048 (13)0.0396 (3)
O90.88560 (18)0.13804 (14)0.47029 (16)0.0717 (4)
H9A0.866 (3)0.0741 (19)0.486 (3)0.096 (11)*
H9B0.971 (2)0.119 (3)0.463 (3)0.103 (12)*
O101.0899 (2)0.63986 (16)0.28914 (14)0.0766 (5)
H10A1.135 (3)0.684 (2)0.3551 (16)0.087 (10)*
H10B1.036 (3)0.580 (2)0.298 (3)0.114 (13)*
O110.6811 (2)0.69942 (17)1.31723 (11)0.0742 (5)
H11A0.618 (3)0.657 (2)1.338 (3)0.100 (11)*
H11B0.744 (3)0.750 (2)1.3740 (19)0.089 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0648 (2)0.03080 (15)0.03618 (15)0.01615 (12)0.01555 (12)0.00863 (10)
O10.0674 (8)0.0479 (7)0.0453 (7)0.0261 (6)0.0124 (6)0.0202 (6)
O20.0601 (9)0.0752 (10)0.0585 (8)0.0199 (8)0.0034 (7)0.0314 (8)
O30.0560 (8)0.0393 (7)0.0511 (7)0.0095 (6)0.0022 (6)0.0079 (5)
O40.0479 (7)0.0520 (7)0.0527 (7)0.0204 (6)0.0020 (6)0.0123 (6)
N10.0452 (7)0.0343 (6)0.0295 (6)0.0150 (5)0.0110 (5)0.0090 (5)
C10.0442 (8)0.0426 (8)0.0285 (7)0.0162 (7)0.0117 (6)0.0118 (6)
C20.0437 (9)0.0473 (9)0.0385 (8)0.0089 (7)0.0084 (7)0.0120 (7)
C30.0532 (10)0.0353 (8)0.0447 (9)0.0101 (7)0.0160 (7)0.0140 (7)
C40.0518 (9)0.0385 (8)0.0370 (8)0.0207 (7)0.0147 (7)0.0146 (6)
C50.0426 (8)0.0364 (8)0.0303 (7)0.0162 (6)0.0126 (6)0.0091 (6)
C60.0491 (9)0.0548 (10)0.0344 (7)0.0223 (8)0.0115 (7)0.0180 (7)
C70.0457 (9)0.0409 (8)0.0348 (7)0.0157 (7)0.0103 (6)0.0091 (6)
O50.0814 (10)0.0353 (6)0.0494 (7)0.0152 (6)0.0312 (7)0.0112 (5)
O60.0752 (9)0.0496 (8)0.0451 (7)0.0153 (7)0.0266 (7)0.0016 (6)
O70.0890 (11)0.0468 (7)0.0525 (8)0.0196 (7)0.0377 (8)0.0110 (6)
O80.0794 (10)0.0665 (10)0.0610 (9)0.0203 (8)0.0370 (8)0.0254 (7)
N20.0566 (8)0.0335 (7)0.0335 (6)0.0140 (6)0.0127 (6)0.0090 (5)
C80.0561 (10)0.0368 (8)0.0304 (7)0.0147 (7)0.0081 (6)0.0067 (6)
C90.0733 (13)0.0380 (9)0.0383 (8)0.0150 (8)0.0125 (8)0.0021 (7)
C100.0792 (14)0.0332 (9)0.0544 (11)0.0049 (9)0.0154 (10)0.0046 (8)
C110.0662 (12)0.0426 (10)0.0539 (11)0.0062 (9)0.0169 (9)0.0143 (8)
C120.0567 (10)0.0401 (9)0.0375 (8)0.0130 (7)0.0112 (7)0.0147 (7)
C130.0600 (10)0.0402 (9)0.0304 (7)0.0182 (7)0.0130 (7)0.0089 (6)
C140.0649 (11)0.0473 (10)0.0409 (9)0.0198 (8)0.0193 (8)0.0177 (7)
N30.0403 (7)0.0457 (8)0.0354 (7)0.0127 (6)0.0078 (5)0.0137 (6)
N40.0621 (10)0.0606 (10)0.0367 (8)0.0191 (8)0.0042 (7)0.0139 (7)
C150.0351 (8)0.0483 (9)0.0374 (8)0.0065 (7)0.0050 (6)0.0123 (7)
C160.0316 (7)0.0459 (9)0.0396 (8)0.0097 (6)0.0087 (6)0.0144 (7)
C170.0403 (8)0.0532 (10)0.0501 (9)0.0169 (7)0.0096 (7)0.0198 (8)
C180.0466 (10)0.0519 (10)0.0625 (11)0.0214 (8)0.0195 (8)0.0137 (9)
C190.0554 (11)0.0572 (11)0.0465 (9)0.0188 (9)0.0175 (8)0.0066 (8)
C200.0484 (9)0.0531 (10)0.0375 (8)0.0139 (8)0.0130 (7)0.0131 (7)
C210.0326 (7)0.0431 (8)0.0385 (8)0.0083 (6)0.0102 (6)0.0125 (7)
C220.0359 (8)0.0415 (8)0.0418 (8)0.0070 (6)0.0107 (6)0.0098 (7)
C230.0471 (9)0.0464 (10)0.0556 (10)0.0140 (8)0.0146 (8)0.0152 (8)
C240.0576 (11)0.0439 (10)0.0700 (13)0.0145 (9)0.0218 (10)0.0063 (9)
C250.0663 (13)0.0557 (12)0.0523 (11)0.0120 (10)0.0180 (9)0.0030 (9)
C260.0613 (12)0.0601 (12)0.0390 (9)0.0110 (9)0.0072 (8)0.0027 (8)
C270.0390 (8)0.0477 (9)0.0383 (8)0.0067 (7)0.0080 (6)0.0083 (7)
N50.0428 (7)0.0589 (9)0.0324 (7)0.0093 (7)0.0104 (6)0.0122 (6)
N60.0635 (10)0.0470 (8)0.0335 (7)0.0255 (7)0.0120 (6)0.0086 (6)
C280.0350 (7)0.0380 (8)0.0348 (7)0.0078 (6)0.0097 (6)0.0074 (6)
C290.0392 (8)0.0391 (8)0.0360 (8)0.0085 (6)0.0124 (6)0.0074 (6)
C300.0515 (10)0.0445 (9)0.0450 (9)0.0162 (8)0.0169 (7)0.0119 (7)
C310.0651 (12)0.0478 (10)0.0647 (12)0.0238 (9)0.0276 (10)0.0147 (9)
C320.0794 (15)0.0491 (11)0.0640 (12)0.0218 (10)0.0390 (11)0.0054 (9)
C330.0649 (12)0.0561 (11)0.0404 (9)0.0106 (9)0.0237 (8)0.0037 (8)
C340.0385 (8)0.0474 (9)0.0356 (8)0.0063 (7)0.0142 (6)0.0069 (7)
C350.0317 (7)0.0504 (9)0.0428 (8)0.0067 (6)0.0102 (6)0.0183 (7)
C360.0397 (9)0.0676 (13)0.0569 (11)0.0109 (8)0.0109 (8)0.0333 (10)
C370.0427 (9)0.0623 (12)0.0828 (14)0.0169 (9)0.0170 (9)0.0431 (11)
C380.0491 (10)0.0470 (10)0.0811 (14)0.0169 (8)0.0191 (10)0.0219 (10)
C390.0438 (9)0.0434 (9)0.0532 (10)0.0139 (7)0.0122 (7)0.0126 (8)
C400.0341 (7)0.0402 (8)0.0404 (8)0.0076 (6)0.0092 (6)0.0111 (6)
O90.0588 (9)0.0509 (9)0.0911 (12)0.0094 (7)0.0181 (8)0.0069 (8)
O100.0891 (13)0.0703 (11)0.0565 (9)0.0100 (9)0.0071 (8)0.0260 (8)
O110.0774 (11)0.0874 (12)0.0363 (7)0.0017 (9)0.0132 (7)0.0133 (7)
Geometric parameters (Å, º) top
Mn1—N22.1501 (14)C18—H180.93
Mn1—N12.1622 (14)C19—C201.365 (3)
Mn1—O72.1786 (15)C19—H190.93
Mn1—O52.2254 (13)C20—C211.413 (2)
Mn1—O12.2319 (15)C20—H200.93
Mn1—O32.2780 (14)C22—C231.406 (3)
O1—C61.263 (2)C22—C271.412 (3)
O2—C61.243 (2)C23—C241.368 (3)
O3—C71.254 (2)C23—H230.93
O4—C71.249 (2)C24—C251.395 (4)
N1—C11.333 (2)C24—H240.93
N1—C51.338 (2)C25—C261.360 (4)
C1—C21.385 (2)C25—H250.93
C1—C61.519 (2)C26—C271.425 (3)
C2—C31.387 (3)C26—H260.93
C2—H20.93N5—C341.351 (3)
C3—C41.387 (3)N5—C351.358 (3)
C3—H30.93N5—H5N0.84 (3)
C4—C51.384 (2)N6—C281.323 (2)
C4—H40.93N6—H6A0.90 (2)
C5—C71.520 (2)N6—H6B0.90 (3)
O5—C131.255 (2)C28—C401.434 (2)
O6—C131.241 (2)C28—C291.438 (2)
O7—C141.268 (3)C29—C341.408 (2)
O8—C141.233 (3)C29—C301.413 (3)
N2—C121.330 (2)C30—C311.363 (3)
N2—C81.334 (2)C30—H300.93
C8—C91.382 (3)C31—C321.402 (3)
C8—C131.520 (3)C31—H310.93
C9—C101.383 (3)C32—C331.354 (4)
C9—H90.93C32—H320.93
C10—C111.387 (3)C33—C341.416 (3)
C10—H100.93C33—H330.93
C11—C121.384 (3)C35—C361.410 (3)
C11—H110.93C35—C401.412 (2)
C12—C141.532 (3)C36—C371.360 (4)
N3—C211.360 (2)C36—H360.93
N3—C221.363 (2)C37—C381.400 (3)
N3—H3N0.88 (2)C37—H370.93
N4—C151.331 (2)C38—C391.373 (3)
N4—H4A0.85 (3)C38—H380.93
N4—H4B0.93 (3)C39—C401.412 (3)
C15—C271.426 (3)C39—H390.93
C15—C161.436 (2)O9—H9A0.933 (18)
C16—C211.408 (2)O9—H9B0.926 (18)
C16—C171.417 (3)O10—H10A0.924 (18)
C17—C181.363 (3)O10—H10B0.922 (18)
C17—H170.93O11—H11A0.923 (18)
C18—C191.402 (3)O11—H11B0.914 (18)
N2—Mn1—N1169.44 (5)C18—C17—H17119.7
N2—Mn1—O773.33 (5)C16—C17—H17119.7
N1—Mn1—O7115.96 (5)C17—C18—C19120.64 (19)
N2—Mn1—O572.69 (5)C17—C18—H18119.7
N1—Mn1—O598.33 (5)C19—C18—H18119.7
O7—Mn1—O5145.68 (5)C20—C19—C18120.60 (18)
N2—Mn1—O1112.02 (5)C20—C19—H19119.7
N1—Mn1—O172.97 (5)C18—C19—H19119.7
O7—Mn1—O197.13 (6)C19—C20—C21119.58 (18)
O5—Mn1—O191.08 (6)C19—C20—H20120.2
N2—Mn1—O3103.37 (5)C21—C20—H20120.2
N1—Mn1—O371.55 (5)N3—C21—C16120.66 (15)
O7—Mn1—O396.10 (6)N3—C21—C20118.95 (16)
O5—Mn1—O396.27 (6)C16—C21—C20120.38 (17)
O1—Mn1—O3144.44 (5)N3—C22—C23119.67 (17)
C6—O1—Mn1118.13 (11)N3—C22—C27119.93 (17)
C7—O3—Mn1118.29 (11)C23—C22—C27120.40 (17)
C1—N1—C5120.32 (14)C24—C23—C22120.0 (2)
C1—N1—Mn1118.51 (11)C24—C23—H23120
C5—N1—Mn1120.76 (11)C22—C23—H23120
N1—C1—C2121.49 (15)C23—C24—C25120.5 (2)
N1—C1—C6114.05 (15)C23—C24—H24119.7
C2—C1—C6124.43 (16)C25—C24—H24119.7
C1—C2—C3118.59 (16)C26—C25—C24120.59 (19)
C1—C2—H2120.7C26—C25—H25119.7
C3—C2—H2120.7C24—C25—H25119.7
C2—C3—C4119.62 (16)C25—C26—C27121.0 (2)
C2—C3—H3120.2C25—C26—H26119.5
C4—C3—H3120.2C27—C26—H26119.5
C5—C4—C3118.45 (15)C22—C27—C26117.47 (19)
C5—C4—H4120.8C22—C27—C15119.44 (16)
C3—C4—H4120.8C26—C27—C15123.06 (18)
N1—C5—C4121.53 (15)C34—N5—C35122.46 (15)
N1—C5—C7112.96 (14)C34—N5—H5N120 (2)
C4—C5—C7125.51 (15)C35—N5—H5N117 (2)
O2—C6—O1127.50 (17)C28—N6—H6A122.2 (15)
O2—C6—C1116.80 (17)C28—N6—H6B120.0 (16)
O1—C6—C1115.68 (15)H6A—N6—H6B117 (2)
O4—C7—O3125.91 (17)N6—C28—C40121.98 (16)
O4—C7—C5118.23 (16)N6—C28—C29119.49 (16)
O3—C7—C5115.85 (15)C40—C28—C29118.52 (15)
C13—O5—Mn1118.71 (12)C34—C29—C30118.19 (16)
C14—O7—Mn1119.60 (12)C34—C29—C28119.07 (16)
C12—N2—C8121.52 (16)C30—C29—C28122.64 (15)
C12—N2—Mn1118.88 (12)C31—C30—C29120.82 (18)
C8—N2—Mn1119.60 (12)C31—C30—H30119.6
N2—C8—C9120.87 (18)C29—C30—H30119.6
N2—C8—C13113.30 (15)C30—C31—C32120.3 (2)
C9—C8—C13125.81 (17)C30—C31—H31119.9
C8—C9—C10118.25 (19)C32—C31—H31119.9
C8—C9—H9120.9C33—C32—C31120.89 (19)
C10—C9—H9120.9C33—C32—H32119.6
C9—C10—C11120.29 (18)C31—C32—H32119.6
C9—C10—H10119.9C32—C33—C34119.79 (19)
C11—C10—H10119.9C32—C33—H33120.1
C12—C11—C10118.25 (19)C34—C33—H33120.1
C12—C11—H11120.9N5—C34—C29120.45 (16)
C10—C11—H11120.9N5—C34—C33119.60 (17)
N2—C12—C11120.78 (18)C29—C34—C33119.95 (18)
N2—C12—C14113.29 (16)N5—C35—C36118.89 (17)
C11—C12—C14125.90 (18)N5—C35—C40120.82 (16)
O6—C13—O5125.91 (18)C36—C35—C40120.29 (19)
O6—C13—C8118.40 (16)C37—C36—C35119.61 (19)
O5—C13—C8115.69 (15)C37—C36—H36120.2
O8—C14—O7126.68 (19)C35—C36—H36120.2
O8—C14—C12118.80 (18)C36—C37—C38121.07 (19)
O7—C14—C12114.51 (16)C36—C37—H37119.5
C21—N3—C22122.48 (15)C38—C37—H37119.5
C21—N3—H3N118.6 (15)C39—C38—C37120.2 (2)
C22—N3—H3N118.9 (15)C39—C38—H38119.9
C15—N4—H4A119.1 (19)C37—C38—H38119.9
C15—N4—H4B121.4 (18)C38—C39—C40120.57 (19)
H4A—N4—H4B119 (2)C38—C39—H39119.7
N4—C15—C27121.37 (17)C40—C39—H39119.7
N4—C15—C16119.93 (18)C39—C40—C35118.27 (17)
C27—C15—C16118.70 (16)C39—C40—C28123.25 (16)
C21—C16—C17118.15 (16)C35—C40—C28118.48 (16)
C21—C16—C15118.76 (16)H9A—O9—H9B105 (3)
C17—C16—C15123.09 (16)H10A—O10—H10B104 (3)
C18—C17—C16120.63 (18)H11A—O11—H11B108 (3)
N2—Mn1—O1—C6165.89 (13)Mn1—O5—C13—O6178.93 (16)
N1—Mn1—O1—C64.23 (13)Mn1—O5—C13—C80.7 (2)
O7—Mn1—O1—C6119.25 (13)N2—C8—C13—O6178.68 (17)
O5—Mn1—O1—C694.15 (13)C9—C8—C13—O60.3 (3)
O3—Mn1—O1—C68.22 (18)N2—C8—C13—O51.0 (2)
N2—Mn1—O3—C7173.32 (13)C9—C8—C13—O5179.98 (19)
N1—Mn1—O3—C72.96 (13)Mn1—O7—C14—O8175.59 (18)
O7—Mn1—O3—C7112.41 (14)Mn1—O7—C14—C125.7 (2)
O5—Mn1—O3—C799.67 (14)N2—C12—C14—O8179.84 (19)
O1—Mn1—O3—C71.07 (19)C11—C12—C14—O82.1 (3)
N2—Mn1—N1—C1112.5 (3)N2—C12—C14—O71.3 (3)
O7—Mn1—N1—C197.01 (12)C11—C12—C14—O7176.8 (2)
O5—Mn1—N1—C181.29 (12)N4—C15—C16—C21178.00 (17)
O1—Mn1—N1—C17.29 (11)C27—C15—C16—C211.5 (2)
O3—Mn1—N1—C1175.16 (12)N4—C15—C16—C171.4 (3)
N2—Mn1—N1—C560.2 (4)C27—C15—C16—C17179.12 (16)
O7—Mn1—N1—C590.30 (12)C21—C16—C17—C180.3 (3)
O5—Mn1—N1—C591.40 (12)C15—C16—C17—C18179.62 (17)
O1—Mn1—N1—C5179.98 (12)C16—C17—C18—C190.8 (3)
O3—Mn1—N1—C52.47 (11)C17—C18—C19—C201.4 (3)
C5—N1—C1—C20.1 (2)C18—C19—C20—C210.9 (3)
Mn1—N1—C1—C2172.62 (12)C22—N3—C21—C160.1 (2)
C5—N1—C1—C6178.14 (13)C22—N3—C21—C20179.29 (16)
Mn1—N1—C1—C69.13 (17)C17—C16—C21—N3179.84 (15)
N1—C1—C2—C30.3 (2)C15—C16—C21—N30.4 (2)
C6—C1—C2—C3178.37 (16)C17—C16—C21—C200.8 (2)
C1—C2—C3—C40.6 (3)C15—C16—C21—C20179.84 (16)
C2—C3—C4—C50.4 (3)C19—C20—C21—N3179.59 (17)
C1—N1—C5—C40.3 (2)C19—C20—C21—C160.2 (3)
Mn1—N1—C5—C4172.30 (11)C21—N3—C22—C23179.56 (16)
C1—N1—C5—C7179.10 (13)C21—N3—C22—C270.4 (2)
Mn1—N1—C5—C76.54 (17)N3—C22—C23—C24179.19 (18)
C3—C4—C5—N10.0 (2)C27—C22—C23—C240.8 (3)
C3—C4—C5—C7178.68 (15)C22—C23—C24—C250.5 (3)
Mn1—O1—C6—O2179.12 (17)C23—C24—C25—C260.1 (4)
Mn1—O1—C6—C11.0 (2)C24—C25—C26—C270.3 (4)
N1—C1—C6—O2173.11 (17)N3—C22—C27—C26179.45 (17)
C2—C1—C6—O25.1 (3)C23—C22—C27—C260.5 (3)
N1—C1—C6—O15.2 (2)N3—C22—C27—C151.5 (2)
C2—C1—C6—O1176.59 (16)C23—C22—C27—C15178.46 (16)
Mn1—O3—C7—O4172.80 (14)C25—C26—C27—C220.0 (3)
Mn1—O3—C7—C57.1 (2)C25—C26—C27—C15177.8 (2)
N1—C5—C7—O4171.07 (15)N4—C15—C27—C22177.46 (17)
C4—C5—C7—O410.1 (2)C16—C15—C27—C222.0 (2)
N1—C5—C7—O38.9 (2)N4—C15—C27—C260.4 (3)
C4—C5—C7—O3169.90 (16)C16—C15—C27—C26179.86 (17)
N2—Mn1—O5—C130.21 (14)N6—C28—C29—C34176.52 (16)
N1—Mn1—O5—C13174.50 (15)C40—C28—C29—C344.4 (2)
O7—Mn1—O5—C138.2 (2)N6—C28—C29—C307.2 (3)
O1—Mn1—O5—C13112.55 (15)C40—C28—C29—C30171.89 (16)
O3—Mn1—O5—C13102.30 (15)C34—C29—C30—C312.4 (3)
N2—Mn1—O7—C145.78 (16)C28—C29—C30—C31178.69 (18)
N1—Mn1—O7—C14168.81 (15)C29—C30—C31—C320.6 (3)
O5—Mn1—O7—C1414.2 (2)C30—C31—C32—C332.3 (4)
O1—Mn1—O7—C14116.70 (17)C31—C32—C33—C340.8 (3)
O3—Mn1—O7—C1496.39 (17)C35—N5—C34—C292.7 (3)
N1—Mn1—N2—C12147.6 (3)C35—N5—C34—C33176.34 (17)
O7—Mn1—N2—C124.85 (14)C30—C29—C34—N5175.17 (16)
O5—Mn1—N2—C12179.90 (15)C28—C29—C34—N51.3 (2)
O1—Mn1—N2—C1295.92 (14)C30—C29—C34—C333.8 (3)
O3—Mn1—N2—C1287.60 (14)C28—C29—C34—C33179.73 (16)
N1—Mn1—N2—C832.1 (4)C32—C33—C34—N5176.72 (19)
O7—Mn1—N2—C8175.43 (15)C32—C33—C34—C292.3 (3)
O5—Mn1—N2—C80.38 (13)C34—N5—C35—C36176.67 (16)
O1—Mn1—N2—C884.37 (14)C34—N5—C35—C403.3 (3)
O3—Mn1—N2—C892.12 (14)N5—C35—C36—C37179.03 (17)
C12—N2—C8—C90.4 (3)C40—C35—C36—C371.0 (3)
Mn1—N2—C8—C9179.87 (14)C35—C36—C37—C381.5 (3)
C12—N2—C8—C13179.48 (16)C36—C37—C38—C390.8 (3)
Mn1—N2—C8—C130.8 (2)C37—C38—C39—C400.5 (3)
N2—C8—C9—C101.9 (3)C38—C39—C40—C351.0 (3)
C13—C8—C9—C10179.18 (19)C38—C39—C40—C28179.30 (17)
C8—C9—C10—C111.4 (3)N5—C35—C40—C39179.74 (16)
C9—C10—C11—C120.5 (4)C36—C35—C40—C390.3 (2)
C8—N2—C12—C111.6 (3)N5—C35—C40—C280.0 (2)
Mn1—N2—C12—C11178.14 (15)C36—C35—C40—C28179.99 (15)
C8—N2—C12—C14176.62 (16)N6—C28—C40—C392.5 (3)
Mn1—N2—C12—C143.7 (2)C29—C28—C40—C39176.53 (16)
C10—C11—C12—N22.0 (3)N6—C28—C40—C35177.18 (16)
C10—C11—C12—C14176.0 (2)C29—C28—C40—C353.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O20.88 (2)1.86 (2)2.736 (2)178 (2)
N4—H4A···O4i0.85 (3)2.22 (3)2.994 (2)152 (3)
N4—H4B···O10ii0.93 (3)2.01 (3)2.884 (3)156 (2)
N5—H5N···O110.84 (3)1.87 (3)2.706 (2)171 (3)
N6—H6A···O60.90 (2)1.92 (3)2.801 (2)164 (2)
N6—H6B···O1iii0.89 (3)2.20 (3)3.029 (2)155 (3)
O9—H9A···O40.94 (3)1.89 (3)2.815 (2)171 (3)
O9—H9B···O4iv0.93 (3)1.93 (3)2.851 (3)172 (3)
O10—H10A···O3v0.92 (2)2.02 (2)2.926 (2)168 (3)
O10—H10B···O80.92 (3)1.89 (3)2.805 (3)175 (4)
O11—H11A···O6vi0.92 (3)1.88 (3)2.790 (3)170 (4)
O11—H11B···O9vii0.92 (3)1.85 (3)2.756 (3)169 (2)
Symmetry codes: (i) x1, y, z1; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+2, y, z+1; (v) x+2, y+1, z+1; (vi) x+1, y+1, z+2; (vii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C13H11N2)2[Mn(C7H3NO4)2]·3H2O
Mr829.67
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.8202 (4), 13.5186 (5), 13.9844 (5)
α, β, γ (°)102.351 (3), 103.466 (3), 104.868 (3)
V3)1839.42 (12)
Z2
Radiation typeCu Kα
µ (mm1)3.55
Crystal size (mm)0.20 × 0.12 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur Nova
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.538, 0.718
No. of measured, independent and
observed [I > 2σ(I)] reflections
17948, 7606, 6791
Rint0.029
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.114, 1.08
No. of reflections7606
No. of parameters572
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.31

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek; 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O20.88 (2)1.86 (2)2.736 (2)178 (2)
N4—H4A···O4i0.85 (3)2.22 (3)2.994 (2)152 (3)
N4—H4B···O10ii0.93 (3)2.01 (3)2.884 (3)156 (2)
N5—H5N···O110.84 (3)1.87 (3)2.706 (2)171 (3)
N6—H6A···O60.90 (2)1.92 (3)2.801 (2)164 (2)
N6—H6B···O1iii0.89 (3)2.20 (3)3.029 (2)155 (3)
O9—H9A···O40.94 (3)1.89 (3)2.815 (2)171 (3)
O9—H9B···O4iv0.93 (3)1.93 (3)2.851 (3)172 (3)
O10—H10A···O3v0.92 (2)2.02 (2)2.926 (2)168 (3)
O10—H10B···O80.92 (3)1.89 (3)2.805 (3)175 (4)
O11—H11A···O6vi0.92 (3)1.88 (3)2.790 (3)170 (4)
O11—H11B···O9vii0.92 (3)1.85 (3)2.756 (3)169 (2)
Symmetry codes: (i) x1, y, z1; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+2, y, z+1; (v) x+2, y+1, z+1; (vi) x+1, y+1, z+2; (vii) x, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds