Download citation
Download citation
link to html
N-Cyclo­hexyl­hydroxy­lamine(O–B)­tri­phenyl­boroxin N-cyclo­hexyl-C-(2-propyl)­nitro­ne hemi­benzene hemisolvate, C24H28B3NO4.C10H19NO·0.5C6H6, contains one mol­ecule of N-cyclo­hexyl­hydroxy­lamine in its N-oxide form added to a boroxin heterocycle, with one mol­ecule of N-cyclo­hexyl-C-(2-propyl)­nitro­ne linked by an O...H—N hydrogen bond to the protonated hydroxy­lamine moiety, and a mol­ecule of benzene which is located on a centre of inversion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802015052/om6103sup1.cif
Contains datablocks global, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802015052/om6103IIIsup2.hkl
Contains datablock III

CCDC reference: 197485

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.047
  • wR factor = 0.057
  • Data-to-parameter ratio = 17.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry
Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 77.50 From the CIF: _reflns_number_total 7215 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 7847 Completeness (_total/calc) 91.95% Alert C: < 95% complete
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Triphenylboroxin and N-cyclohexyl-C-(2-propyl)nitrone form the 1:1 B–O–N adduct (I). B,N-Betainic complexes of this type, which are readily obtained as crystalline compounds from boroxins and nitrones [a series of various nitrone–triphenylboroxin 1:1 complexes has been synthesized (Lubkowitz, 1992)], correspond with other nitrone adducts of arylboronates (Paetzold et al., 1976; Kliegel, Preu et al., 1985) and diarylborinates (Kliegel, Lauterbach et al., 1987; Kliegel, Metge et al., 1997, 1998a,b; Kliegel et al., 2000, 2001). Addition of an equimolar amount of N-cyclohexylhydroxylamine to (I) was expected to give the complex (II), a double addition product of the nitrone as well as the hydroxylamine, the latter presumably in its N-oxide form, as recently was established for the B–O–N complex from triphenylboroxin and N,N-diethylhydoxylamine (Kliegel et al., 2002). An N—B coordination between the hydroxylamine and the boron compound could not be entirely excluded at this point, however. The crystalline reaction product (method A), which could also be obtained in a three component one-pot reaction from 3 mole quivalents (m.e.) of phenylboronic acid, 2 m.e. of N-cyclohexylhydroxylamine and 1 m.e. of isobutyraldehyde (method B), shows indeed the elemental analysis of (II). Some spectroscopic data, however, might call the adduct structure (II) into question. Comparing the IR spectra of (I) and of the adduct, the nitrone-CN vibration is shifted from 1660 in (I) to about 1600 cm−1 in the adduct, and in the 1H NMR spectra, the signal of the NCH methine H atom is displaced from δ = 6.97 in (I) to 6.73 p.p.m. in the adduct. Both the IR and the 1H NMR data of the nitrone portion of the adduct coincide roughly with those of free N-cyclohexylisobutyraldonitrone. The X-ray analysis establishes the molecular structure (III) for the adduct, representing a triphenylboroxin complex with N-cyclohexylhydroxylamine in its N-oxide form, and the N-cyclohexylisobutyraldonitrone linked by an O···H—N+ hydrogen bond to the hydoxylamine moiety [the crystals contain additionally (solvate) benzene from the solvent mixture used for obtaining single crystals].

Obviously the N-alkylhydroxylamine (N-oxide form) is the stronger nucleophile and substitutes for the azomethine N-oxide (nitrone). It seems that, in this case, a mono-coordination with the boroxin ring system is preferred over a bifold coordination as depicted in (II). This is in line with the findings about the complex formation between triphenylboroxin, N,N-diethylhydroxylamine, and N,N-dimethylformamide (Kliegel et al., 2002). Multiple coordination had been suggested previously for a nitrone adduct of triphenyboroxin (Paetzold et al., 1975).

The crystal structure of (III) contains three separate fragments: an N-cyclohexylhydroxylamine–triphenylboroxin complex, an N-cyclohexyl-C-(2-propyl)nitrone (Fig. 1), and a benzene molecule which lies on a centre of inversion. The six-membered boroxin ring has an approximate envelope conformation, the O1—B2—O2—B3—O3 ring portion forming a rather distorted plane, with B1 on the `flap' [a closer description is perhaps a boat conformation, with B1 and to a lesser extent O2 displaced from the plane of the other four atoms]. The ring dimensions are very similar to those in related boroxin ring systems containing one tetrahedral sp3 B atom (Kliegel, Motzkus et al., 1985; Kliegel et al., 2002); in particular, two of the O—B bonds are short [O1—B2 = 1.345 (4) Å and O3—B3 = 1.347 (4) Å], with a high amount of double-bond charcter by (pp)π back donation. The longest O—B distance [O4—B1 = 1.530 (4)%A] is found in the exocyclic donor–acceptor bond between the N-oxide form of N-cyclohexylhydroxylamine and the boroxin moiety, very much like in the N,N-diethylhydroxylamine adduct reported (Kliegel et al., 2002). The geometry of the nitrone molecule, which shows a Z configuration with near planarity around the CN double bond [C31—N2 = 1.304 (5) Å] is typical for aldonitrones (Bedford et al., 1991, and references therein; Kliegel, Preu et al., 1985; Kliegel et al., 1998a,b; Olszewski & Stadnicka, 1995; Greci & Sgarabotto, 1984; Christensen et al., 1990).

The hydroxylamine–boroxin complex and the nitrone are linked by an N1—H1···O5 hydrogen bond: N···O = 2.751 (3), N—H = 0.98 (calculated H-atom site, assuming tetrahedral angles at N1), H···O = 1.80 Å and N—H···O = 163°. There is also an intra-boroxine contact which might represent a bifurcation of this hydrogen-bond system [N1—H1···O3: N···O = 2.904 (3), H···O = 2.45 Å and N—H···O = 108°]; this arrangement results in fairly short O5···B3 [2.860 (5) Å] and O5···O3 [2.991 (3) Å] distances. Finally, there is an inter-boroxin hydrogen bond [N1—H2···O4: N···O = 2.852 (3), N—H = 0.98, H···O = 2.03 Å and N—H···O = 141°].

The thermal motion is rather high, as evidenced by the ellipsoids in Fig. 1.

Experimental top

N-Cyclohexyl-C-(2-propyl)nitrone(OB)triphenylboroxin, (I): triphenylboroxin (2.50 g, 8 mmol) and N-cyclohexyl-C-(2-propyl)nitrone (1.35 g, 8 mmol) [N-(2-methylpropylidene)cyclohexanamine N-oxide; prepared according to the literature (Coates & Cummings, 1986)] were dissolved in 50 ml of ethanol and refluxed for 30 min. The solvent was distilled off in vacuo and the remaining oil mixed with a small amount of toluene. A crystalline substance was obtained after addition of petroleum ether and cooling. Yield: 3.66 g (95%) of colorless crystals; m.p. 413–415 K (from toluene/petroleum ether). IR (KBr): 1660 (CN), 1600 cm-l (phenyl-CC). 1H NMR (90 MHz, DMSO-d6/TMS), δ (p.p.m.): 1.00 [d, J = 7 Hz, (CH3)2C], 1.06–1.90 [m, (CH2)5], 3.02 (m, J = 7 Hz, NC—CH), 3.77 (m, N—CH), 6.97 (d, J = 7 Hz, NCH), 7.15–7.43 (m, 9 aromatic H), 7.68–7.96 (m, 6 aromatic H). Analysis calculated for C28H34B3NO4: C 69.92, H 7.12, B 6.74, N 2.91%; found: C 69.92, H 7.13, B 6.95, N 3.04%.

N-Cyclohexylhydroxylamine(OB)triphenylboroxin N-cyclohexyl-C-(2- propyl)nitrone, (III) [2-(cyclohexylammonio-oxy)-2,4,6-triphenyl-1,3,5-trioxa-4,6-dibora-2- boratacyclohexane N-(2-methylpropylidene)cyclohexanamine N-oxide]: method A: (I) (1.44 g, 3 mmol) and N-cyclohexylhydroxylamine (0.35 g, 3 mmol) were suspended in 30 ml of ethanol and refluxed for 30 min. The solution was evaporated to half of the volume and mixed with 200 ml of petroleum ether. Upon cooling, 1.69 g (90%) of colorless crystals were obtained; m.p. 379–380 K (from ethanol/petroleum ether). IR (KBr): 2710, 2560 (N—H), 1600 cm-l (CN/CC). 1H NMR (90 MHz, DMSO-d6-TMS), δ (p.p.m.): 1.00 [d, J = 7 Hz, (CH3)2], 1.11–2.24 [m, 2 (CH2)5], 2.89 (m, J = 7 Hz, NC—CH), 3.17–3.83 (m and m, 2 N—CH), 6.73 (d, J = 7 Hz, NCH), 7.03–7.49 (m, 9 aromatic H), 7.68–7.81 (m, 6 aromatic H), 7.91 (s, exchangeable, NH), 9.50 (s, very broad, exchangeable, NH). Analysis calculated for C34H47B3N2O5: C 68.50, H 7.95, B 5.44, N 4.70%; found: C 68.22, H 7.97, B 5.34, N 4.80%.

Method B: phenylboronic acid (1.83 g, 15 mmol) and N-cyclohexylhydroxylamine (1.15 g, 10 mmol) were dissolved in 40 ml of ethanol and mixed with 2-methylpropionaldehyde (isobutyraldehyde) (0.36 g, 5 mmol). After 1 h of refluxing, the solution is evaporated to a small volume. Addition of petroleum ether and cooling yields 2.69 g (90%) of colorless crystals, identical with the product from method A.

Single crystals suitable for X-ray analysis were obtained by slow crystallization from a solvent mixture of ethanol, petroleum ether, and a small amount of benzene.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: MITHRIL (Gilmore, 1984); program(s) used to refine structure: TEXSAN; software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. Views of the hydroxylamineboroxin complex and the nitrone components of the structure (ellipsoids at the 33% probability level).
(III) top
Crystal data top
C24H28B3NO4·C10H19NO·0.5C6H6F(000) = 1364
Mr = 635.24Dx = 1.145 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 13.660 (1) ÅCell parameters from 25 reflections
b = 19.504 (3) Åθ = 46.5–73.8°
c = 14.433 (2) ŵ = 0.58 mm1
β = 106.626 (8)°T = 294 K
V = 3684.6 (8) Å3Prism, colorless
Z = 40.35 × 0.30 × 0.25 mm
Data collection top
Rigaku AFC-6S
diffractometer
3098 reflections with I > 3σ(I)
Radiation source: X-ray tubeRint = 0.038
Graphite monochromatorθmax = 77.5°, θmin = 1.7°
ω–2θ scansh = 017
Absorption correction: ψ scan
AFC6 (Molecular Structure Corporation, 1989)
k = 024
Tmin = 0.84, Tmax = 0.87l = 1817
7579 measured reflections3 standard reflections every 250 reflections
7215 independent reflections intensity decay: 2.2%
Refinement top
Refinement on F0 constraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo) + 0.0004Fo2]
wR(F2) = 0.057(Δ/σ)max = 0.001
S = 1.89Δρmax = 0.22 e Å3
7215 reflectionsΔρmin = 0.14 e Å3
425 parametersExtinction correction: MSC (1989), equ(3) Acta Cryst.(1968) A24, 213
0 restraintsExtinction coefficient: 1.69E-6 (3)
Crystal data top
C24H28B3NO4·C10H19NO·0.5C6H6V = 3684.6 (8) Å3
Mr = 635.24Z = 4
Monoclinic, P21/nCu Kα radiation
a = 13.660 (1) ŵ = 0.58 mm1
b = 19.504 (3) ÅT = 294 K
c = 14.433 (2) Å0.35 × 0.30 × 0.25 mm
β = 106.626 (8)°
Data collection top
Rigaku AFC-6S
diffractometer
3098 reflections with I > 3σ(I)
Absorption correction: ψ scan
AFC6 (Molecular Structure Corporation, 1989)
Rint = 0.038
Tmin = 0.84, Tmax = 0.873 standard reflections every 250 reflections
7579 measured reflections intensity decay: 2.2%
7215 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.89Δρmax = 0.22 e Å3
7215 reflectionsΔρmin = 0.14 e Å3
425 parameters
Special details top

Experimental. The scan width was (1.10 + 0.20tanθ)° with an ω scan speed of 32° per minute (up to 10 scans to achieve I/σ(I) > 40). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1. Three standard reflections decreased gradually in intensity by 2.2%; a linear decay correction was applied to the data.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5734 (1)0.14938 (9)0.6865 (1)0.0584 (11)
O20.6121 (2)0.2567 (1)0.6286 (1)0.0619 (11)
O30.6264 (1)0.1559 (1)0.5411 (1)0.0608 (13)
O40.5511 (1)0.05186 (9)0.5795 (1)0.0579 (10)
O50.4106 (2)0.2064 (1)0.4821 (2)0.075 (1)
N10.4491 (2)0.0704 (1)0.5290 (2)0.054 (1)
N20.3544 (2)0.2485 (1)0.4183 (2)0.065 (1)
C10.3753 (2)0.0605 (1)0.5866 (2)0.061 (1)
C20.2689 (3)0.0698 (2)0.5196 (2)0.075 (2)
C30.1907 (3)0.0592 (3)0.5743 (3)0.106 (2)
C40.2030 (4)0.0098 (3)0.6244 (4)0.120 (4)
C50.3095 (4)0.0196 (2)0.6877 (3)0.111 (4)
C60.3881 (3)0.0094 (2)0.6335 (3)0.086 (2)
C70.7280 (3)0.0789 (1)0.6770 (2)0.066 (1)
C80.8140 (3)0.0885 (2)0.6462 (3)0.095 (2)
C90.9081 (4)0.0606 (3)0.6951 (5)0.136 (4)
C100.9174 (5)0.0231 (3)0.7756 (6)0.151 (4)
C110.8366 (5)0.0122 (2)0.8081 (4)0.139 (4)
C120.7409 (3)0.0404 (2)0.7595 (3)0.099 (2)
C130.5354 (2)0.2568 (2)0.7678 (2)0.061 (1)
C140.5469 (3)0.3273 (2)0.7816 (2)0.073 (2)
C150.5142 (3)0.3613 (2)0.8500 (3)0.095 (2)
C160.4679 (3)0.3264 (3)0.9074 (3)0.105 (2)
C170.4545 (3)0.2567 (3)0.8971 (3)0.106 (2)
C180.4881 (3)0.2230 (2)0.8269 (3)0.084 (2)
C190.6494 (2)0.2709 (2)0.4690 (2)0.068 (2)
C200.6768 (3)0.2436 (2)0.3924 (3)0.099 (2)
C210.6977 (4)0.2857 (4)0.3215 (3)0.129 (4)
C220.6906 (4)0.3549 (4)0.3297 (4)0.143 (5)
C230.6661 (4)0.3829 (3)0.4047 (4)0.123 (4)
C240.6442 (3)0.3416 (2)0.4737 (3)0.092 (2)
C250.3001 (3)0.3015 (2)0.4577 (2)0.070 (2)
C260.2426 (3)0.2706 (2)0.5202 (3)0.105 (2)
C270.1875 (4)0.3241 (3)0.5607 (4)0.141 (4)
C280.2612 (6)0.3775 (4)0.6155 (4)0.187 (6)
C290.3238 (4)0.4075 (3)0.5553 (5)0.155 (5)
C300.3771 (3)0.3541 (2)0.5133 (3)0.109 (2)
C310.3497 (3)0.2467 (2)0.3268 (3)0.077 (2)
C320.4041 (3)0.1965 (2)0.2844 (3)0.096 (2)
C330.4274 (3)0.2264 (3)0.1937 (3)0.130 (4)
C340.3415 (3)0.1320 (2)0.2594 (3)0.115 (2)
C351.0162 (6)0.4747 (5)0.4188 (4)0.142 (5)
C360.9448 (5)0.4472 (3)0.4547 (6)0.139 (5)
C370.9279 (4)0.4712 (4)0.5359 (6)0.128 (4)
B10.6203 (3)0.1126 (2)0.6218 (3)0.058 (2)
B20.5745 (3)0.2183 (2)0.6908 (3)0.057 (2)
B30.6272 (3)0.2248 (2)0.5481 (3)0.060 (2)
H10.44830.11890.51080.065*
H20.42690.04230.47040.065*
H30.38780.09560.63720.072*
H40.26200.11620.49260.090*
H50.25720.03630.46690.090*
H60.19890.09540.62300.128*
H70.12220.06200.52870.128*
H80.15560.01260.66400.144*
H90.18700.04610.57540.144*
H100.32250.01360.74080.133*
H110.31610.06620.71410.133*
H120.37920.04480.58350.104*
H130.45680.01310.67880.104*
H140.80830.11580.58800.114*
H150.96750.06820.67120.163*
H160.98390.00370.81040.180*
H170.84390.01560.86620.167*
H180.68250.03260.78490.119*
H190.57980.35350.74080.089*
H200.52410.41100.85760.114*
H210.44410.35100.95610.126*
H220.42170.23120.93850.128*
H230.47770.17340.81930.101*
H240.68190.19370.38700.118*
H250.71700.26570.26700.155*
H260.70360.38470.27980.171*
H270.66370.43290.41060.147*
H280.62440.36290.52720.111*
H290.25150.32470.40350.084*
H300.19260.23810.48190.125*
H310.29050.24640.57380.125*
H320.13600.34620.50760.168*
H330.15390.30210.60460.168*
H340.22250.41440.63500.225*
H350.30720.35630.67330.225*
H360.27850.43380.50220.186*
H370.37520.43820.59600.186*
H380.42850.33110.56560.132*
H390.41070.37590.46940.132*
H400.30740.28100.28390.094*
H410.46890.18530.33240.115*
H420.46940.26770.21150.157*
H430.46440.19230.16690.157*
H440.36320.23810.14520.157*
H450.27610.14260.21190.138*
H460.37870.09830.23200.138*
H470.32910.11320.31790.138*
H481.02780.45590.35990.171*
H490.90400.40850.42090.166*
H500.87620.45020.56190.155*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.072 (1)0.042 (1)0.063 (1)0.002 (1)0.021 (1)0.003 (1)
O20.072 (1)0.046 (1)0.065 (1)0.005 (1)0.016 (1)0.006 (1)
O30.065 (1)0.050 (1)0.065 (1)0.003 (1)0.017 (1)0.002 (1)
O40.053 (1)0.044 (1)0.070 (1)0.005 (1)0.007 (1)0.004 (1)
O50.083 (2)0.048 (1)0.080 (1)0.016 (1)0.004 (1)0.012 (1)
N10.056 (2)0.043 (1)0.062 (2)0.004 (1)0.010 (1)0.003 (1)
N20.060 (2)0.047 (1)0.075 (2)0.003 (1)0.004 (1)0.002 (1)
C10.066 (2)0.055 (2)0.063 (2)0.000 (2)0.024 (2)0.006 (2)
C20.061 (2)0.077 (2)0.086 (2)0.002 (2)0.018 (2)0.004 (2)
C30.069 (3)0.148 (4)0.107 (3)0.007 (3)0.032 (2)0.003 (3)
C40.120 (4)0.146 (4)0.113 (4)0.051 (3)0.064 (3)0.009 (3)
C50.132 (4)0.111 (3)0.108 (3)0.006 (3)0.062 (3)0.019 (3)
C60.102 (3)0.076 (2)0.089 (3)0.006 (2)0.040 (2)0.019 (2)
C70.070 (2)0.040 (2)0.075 (2)0.001 (2)0.003 (2)0.015 (2)
C80.065 (3)0.098 (3)0.114 (3)0.010 (2)0.012 (2)0.014 (2)
C90.063 (3)0.128 (4)0.197 (6)0.020 (3)0.004 (4)0.026 (4)
C100.092 (4)0.095 (4)0.205 (7)0.025 (4)0.052 (5)0.033 (4)
C110.135 (5)0.084 (3)0.147 (5)0.018 (4)0.043 (4)0.020 (3)
C120.095 (3)0.073 (2)0.105 (3)0.008 (2)0.008 (3)0.017 (2)
C130.056 (2)0.055 (2)0.064 (2)0.002 (2)0.007 (2)0.005 (2)
C140.086 (3)0.059 (2)0.073 (2)0.010 (2)0.016 (2)0.009 (2)
C150.114 (3)0.073 (3)0.094 (3)0.013 (2)0.024 (3)0.021 (2)
C160.109 (3)0.107 (4)0.103 (3)0.020 (3)0.039 (3)0.031 (3)
C170.108 (3)0.121 (4)0.104 (3)0.003 (3)0.055 (3)0.016 (3)
C180.094 (3)0.072 (2)0.090 (3)0.007 (2)0.032 (2)0.013 (2)
C190.054 (2)0.068 (2)0.068 (2)0.008 (2)0.008 (2)0.005 (2)
C200.093 (3)0.113 (3)0.091 (3)0.020 (2)0.028 (3)0.001 (3)
C210.119 (4)0.186 (6)0.090 (4)0.040 (4)0.044 (3)0.005 (4)
C220.127 (5)0.179 (7)0.111 (4)0.047 (5)0.015 (4)0.057 (5)
C230.125 (4)0.104 (4)0.127 (4)0.018 (3)0.016 (3)0.043 (4)
C240.094 (3)0.073 (2)0.106 (3)0.007 (2)0.020 (2)0.026 (2)
C250.070 (2)0.061 (2)0.073 (2)0.016 (2)0.008 (2)0.004 (2)
C260.098 (3)0.109 (3)0.111 (3)0.033 (3)0.036 (3)0.014 (3)
C270.140 (5)0.179 (5)0.111 (4)0.050 (4)0.050 (3)0.001 (4)
C280.178 (7)0.242 (8)0.118 (5)0.113 (6)0.000 (4)0.075 (5)
C290.123 (5)0.116 (4)0.195 (6)0.032 (3)0.006 (4)0.087 (4)
C300.097 (3)0.070 (2)0.135 (4)0.012 (2)0.009 (3)0.029 (2)
C310.073 (2)0.081 (2)0.067 (2)0.015 (2)0.001 (2)0.003 (2)
C320.076 (3)0.107 (3)0.094 (3)0.018 (2)0.008 (2)0.016 (3)
C330.103 (3)0.201 (5)0.099 (3)0.006 (3)0.045 (3)0.007 (3)
C340.112 (3)0.084 (3)0.135 (4)0.009 (3)0.010 (3)0.022 (3)
C350.123 (5)0.176 (6)0.126 (5)0.002 (4)0.034 (4)0.014 (5)
C360.113 (5)0.131 (5)0.171 (7)0.004 (4)0.040 (4)0.023 (4)
C370.117 (5)0.129 (5)0.145 (5)0.005 (4)0.048 (4)0.027 (4)
B10.064 (2)0.043 (2)0.063 (2)0.001 (2)0.011 (2)0.005 (2)
B20.054 (2)0.052 (2)0.057 (2)0.001 (2)0.005 (2)0.004 (2)
B30.048 (2)0.059 (2)0.067 (2)0.003 (2)0.007 (2)0.000 (2)
Geometric parameters (Å, º) top
O1—B11.463 (5)C16—H210.98
O1—B21.345 (4)C17—C181.391 (7)
O2—B21.376 (5)C17—H220.98
O2—B31.384 (5)C18—H230.98
O3—B11.460 (5)C19—C201.372 (6)
O3—B31.347 (4)C19—C241.383 (5)
O4—N11.422 (3)C19—B31.550 (6)
O4—B11.530 (4)C20—C211.404 (8)
O5—N21.306 (3)C20—H240.98
N1—C11.491 (4)C21—C221.36 (1)
N1—H10.98C21—H250.98
N1—H20.98C22—C231.338 (9)
N2—C251.478 (5)C22—H260.98
N2—C311.304 (5)C23—C241.379 (8)
C1—C21.509 (4)C23—H270.98
C1—C61.510 (4)C24—H280.98
C1—H30.98C25—C261.483 (6)
C2—C31.513 (6)C25—C301.523 (5)
C2—H40.98C25—H290.98
C2—H50.98C26—C271.500 (7)
C3—C41.514 (8)C26—H300.98
C3—H60.98C26—H310.98
C3—H70.98C27—C281.506 (9)
C4—C51.492 (7)C27—H320.98
C4—H80.98C27—H330.98
C4—H90.98C28—C291.50 (1)
C5—C61.512 (7)C28—H340.98
C5—H100.98C28—H350.98
C5—H110.98C29—C301.495 (8)
C6—H120.98C29—H360.98
C6—H130.98C29—H370.98
C7—C81.383 (6)C30—H380.98
C7—C121.376 (5)C30—H390.98
C7—B11.600 (5)C31—C321.465 (6)
C8—C91.388 (6)C31—H400.98
C8—H140.98C32—C331.547 (7)
C9—C101.35 (1)C32—C341.506 (5)
C9—H150.98C32—H410.98
C10—C111.33 (1)C33—H420.98
C10—H160.98C33—H430.98
C11—C121.407 (7)C33—H440.98
C11—H170.98C34—H450.98
C12—H180.98C34—H460.98
C13—C141.392 (5)C34—H470.98
C13—C181.377 (6)C35—C361.34 (1)
C13—B21.557 (6)C35—C37i1.36 (1)
C14—C151.366 (6)C35—H480.98
C14—H190.98C36—C371.34 (1)
C15—C161.360 (7)C36—H490.98
C15—H200.98C37—H500.98
C16—C171.374 (8)
O1···O53.336 (3)O5···B23.206 (4)
O2···O53.111 (3)O5···C13.320 (3)
O3···O52.991 (3)O5···C23.426 (5)
O4···N1ii2.852 (3)O5···B13.509 (4)
O4···O4ii3.078 (3)O5···C193.551 (4)
O4···C6ii3.505 (5)N1···N1ii3.293 (5)
O4···C1ii3.597 (3)C12···C34ii3.532 (5)
O5···N12.751 (3)C17···C21iii3.463 (7)
O5···B32.860 (5)
B1—O1—B2121.2 (3)C20—C21—C22118.8 (5)
B2—O2—B3118.4 (3)C20—C21—H25120.7
B1—O3—B3121.2 (3)C22—C21—H25120.5
N1—O4—B1114.2 (2)C21—C22—C23121.1 (6)
O4—N1—C1113.6 (2)C21—C22—H26119.5
O4—N1—H1108.5C23—C22—H26119.5
O4—N1—H2108.4C22—C23—C24120.2 (6)
C1—N1—H1108.5C22—C23—H27119.9
C1—N1—H2108.5C24—C23—H27119.9
H1—N1—H2109.3C19—C24—C23121.5 (4)
O5—N2—C25115.3 (3)C19—C24—H28119.4
O5—N2—C31123.1 (3)C23—C24—H28119.1
C25—N2—C31121.6 (3)N2—C25—C26111.2 (3)
N1—C1—C2107.9 (2)N2—C25—C30109.1 (3)
N1—C1—C6110.9 (3)N2—C25—H29108.4
N1—C1—H3108.9C26—C25—C30111.1 (3)
C2—C1—C6111.3 (3)C26—C25—H29108.5
C2—C1—H3108.9C30—C25—H29108.5
C6—C1—H3108.9C25—C26—C27111.5 (4)
C1—C2—C3110.1 (3)C25—C26—H30109.0
C1—C2—H4109.4C25—C26—H31109.0
C1—C2—H5109.3C27—C26—H30108.9
C3—C2—H4109.4C27—C26—H31108.9
C3—C2—H5109.3H30—C26—H31109.5
H4—C2—H5109.4C26—C27—C28110.6 (5)
C2—C3—C4111.8 (4)C26—C27—H32109.2
C2—C3—H6108.8C26—C27—H33109.1
C2—C3—H7108.9C28—C27—H32109.2
C4—C3—H6108.9C28—C27—H33109.2
C4—C3—H7108.9H32—C27—H33109.5
H6—C3—H7109.5C27—C28—C29111.8 (5)
C3—C4—C5111.2 (4)C27—C28—H34108.9
C3—C4—H8109.1C27—C28—H35108.9
C3—C4—H9109.0C29—C28—H34108.9
C5—C4—H8109.1C29—C28—H35108.9
C5—C4—H9109.0H34—C28—H35109.4
H8—C4—H9109.4C28—C29—C30112.8 (5)
C4—C5—C6112.3 (4)C28—C29—H36108.6
C4—C5—H10108.7C28—C29—H37108.7
C4—C5—H11108.8C30—C29—H36108.6
C6—C5—H10108.7C30—C29—H37108.7
C6—C5—H11108.9H36—C29—H37109.4
H10—C5—H11109.4C25—C30—C29109.9 (4)
C1—C6—C5110.0 (3)C25—C30—H38109.4
C1—C6—H12109.4C25—C30—H39109.4
C1—C6—H13109.3C29—C30—H38109.3
C5—C6—H12109.3C29—C30—H39109.4
C5—C6—H13109.3H38—C30—H39109.4
H12—C6—H13109.4N2—C31—C32123.9 (3)
C8—C7—C12116.2 (3)N2—C31—H40118.1
C8—C7—B1121.9 (3)C32—C31—H40118.1
C12—C7—B1121.8 (4)C31—C32—C33110.7 (4)
C7—C8—C9122.1 (4)C31—C32—C34109.7 (4)
C7—C8—H14118.9C31—C32—H41108.5
C9—C8—H14119.0C33—C32—C34110.6 (4)
C8—C9—C10119.7 (6)C33—C32—H41108.6
C8—C9—H15120.1C34—C32—H41108.6
C10—C9—H15120.2C32—C33—H42109.6
C9—C10—C11120.4 (6)C32—C33—H43109.4
C9—C10—H16119.8C32—C33—H44109.5
C11—C10—H16119.8H42—C33—H43109.4
C10—C11—C12120.4 (5)H42—C33—H44109.5
C10—C11—H17119.8H43—C33—H44109.5
C12—C11—H17119.7C32—C34—H45109.4
C7—C12—C11121.0 (5)C32—C34—H46109.4
C7—C12—H18119.5C32—C34—H47109.4
C11—C12—H18119.5H45—C34—H46109.5
C14—C13—C18116.0 (3)H45—C34—H47109.5
C14—C13—B2122.1 (3)H46—C34—H47109.5
C18—C13—B2121.9 (4)C36—C35—C37i119.8 (7)
C13—C14—C15122.4 (4)C36—C35—H48120.1
C13—C14—H19118.8C37i—C35—H48120.1
C15—C14—H19118.8C35—C36—C37121.6 (6)
C14—C15—C16120.2 (4)C35—C36—H49119.2
C14—C15—H20119.8C37—C36—H49119.2
C16—C15—H20120.0C35i—C37—C36118.6 (7)
C15—C16—C17120.0 (5)C35i—C37—H50120.6
C15—C16—H21120.0C36—C37—H50120.8
C17—C16—H21120.0O1—B1—O3111.2 (3)
C16—C17—C18119.0 (4)O1—B1—O4107.5 (3)
C16—C17—H22120.4O1—B1—C7113.1 (3)
C18—C17—H22120.6O3—B1—O4107.4 (3)
C13—C18—C17122.4 (4)O3—B1—C7112.4 (3)
C13—C18—H23118.8O4—B1—C7104.8 (2)
C17—C18—H23118.7O1—B2—O2121.0 (4)
C20—C19—C24117.1 (4)O1—B2—C13120.9 (4)
C20—C19—B3121.6 (4)O2—B2—C13118.1 (3)
C24—C19—B3121.2 (3)O2—B3—O3120.7 (3)
C19—C20—C21121.3 (4)O2—B3—C19117.7 (3)
C19—C20—H24119.4O3—B3—C19121.5 (4)
C21—C20—H24119.3
O1—B1—O3—B324.1 (4)C3—C2—C1—C657.3 (4)
O1—B1—O4—N157.7 (3)C3—C4—C5—C654.4 (5)
O1—B1—C7—C8129.7 (3)C7—C8—C9—C100.3 (8)
O1—B1—C7—C1248.3 (4)C7—C12—C11—C100.9 (7)
O1—B2—O2—B314.4 (4)C7—B1—O1—B2103.8 (3)
O1—B2—C13—C14172.1 (3)C7—B1—O3—B3103.8 (3)
O1—B2—C13—C187.3 (4)C8—C7—C12—C110.7 (5)
O2—B2—O1—B15.6 (4)C8—C9—C10—C110.5 (9)
O2—B2—C13—C146.6 (4)C9—C8—C7—C120.4 (6)
O2—B2—C13—C18173.9 (3)C9—C8—C7—B1178.6 (4)
O2—B3—O3—B16.4 (4)C9—C10—C11—C120.8 (9)
O2—B3—C19—C20172.4 (3)C11—C12—C7—B1178.8 (3)
O2—B3—C19—C246.4 (4)C13—C14—C15—C160.4 (5)
O3—B1—O1—B223.7 (4)C13—C18—C17—C160.7 (5)
O3—B1—O4—N162.1 (3)C13—B2—O1—B1173.1 (3)
O3—B1—C7—C82.9 (4)C13—B2—O2—B3166.9 (3)
O3—B1—C7—C12175.1 (3)C14—C13—C18—C170.7 (5)
O3—B3—O2—B214.0 (5)C14—C15—C16—C170.4 (5)
O3—B3—C19—C205.1 (5)C15—C14—C13—C180.5 (5)
O3—B3—C19—C24176.1 (3)C15—C14—C13—B2179.0 (3)
O4—N1—C1—C2170.1 (2)C15—C16—C17—C180.6 (5)
O4—N1—C1—C648.0 (3)C17—C18—C13—B2178.8 (3)
O4—B1—O1—B2141.0 (2)C19—C20—C21—C220.1 (6)
O4—B1—O3—B3141.4 (3)C19—C24—C23—C221.7 (7)
O4—B1—C7—C8113.4 (3)C19—B3—O2—B2168.5 (3)
O4—B1—C7—C1268.5 (4)C19—B3—O3—B1171.0 (3)
O5—N2—C25—C2650.9 (3)C20—C19—C24—C230.3 (5)
O5—N2—C25—C3071.9 (4)C20—C21—C22—C231.3 (7)
O5—N2—C31—C321.8 (5)C21—C20—C19—C240.6 (5)
N1—O4—B1—C7178.2 (3)C21—C20—C19—B3179.4 (3)
N1—C1—C2—C3179.2 (3)C21—C22—C23—C242.2 (7)
N1—C1—C6—C5177.4 (3)C23—C24—C19—B3178.5 (4)
N2—C25—C26—C27179.8 (3)C25—N2—C31—C32178.3 (3)
N2—C25—C30—C29179.0 (4)C25—C26—C27—C2856.5 (5)
N2—C31—C32—C33152.2 (4)C25—C30—C29—C2853.9 (5)
N2—C31—C32—C3485.4 (4)C26—C25—N2—C31132.3 (3)
C1—N1—O4—B1100.5 (3)C26—C25—C30—C2956.1 (5)
C1—C2—C3—C455.3 (4)C26—C27—C28—C2953.5 (7)
C1—C6—C5—C455.9 (4)C27—C26—C25—C3058.2 (4)
C2—C1—C6—C557.3 (4)C27—C28—C29—C3053.5 (7)
C2—C3—C4—C554.1 (5)C30—C25—N2—C31104.9 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1; (iii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H28B3NO4·C10H19NO·0.5C6H6
Mr635.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)13.660 (1), 19.504 (3), 14.433 (2)
β (°) 106.626 (8)
V3)3684.6 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.58
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerRigaku AFC-6S
diffractometer
Absorption correctionψ scan
AFC6 (Molecular Structure Corporation, 1989)
Tmin, Tmax0.84, 0.87
No. of measured, independent and
observed [I > 3σ(I)] reflections
7579, 7215, 3098
Rint0.038
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.057, 1.89
No. of reflections7215
No. of parameters425
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.14

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1989), MITHRIL (Gilmore, 1984), TEXSAN.

Selected geometric parameters (Å, º) top
O1—B11.463 (5)C13—C181.377 (6)
O1—B21.345 (4)C13—B21.557 (6)
O2—B21.376 (5)C14—C151.366 (6)
O2—B31.384 (5)C15—C161.360 (7)
O3—B11.460 (5)C16—C171.374 (8)
O3—B31.347 (4)C17—C181.391 (7)
O4—N11.422 (3)C19—C201.372 (6)
O4—B11.530 (4)C19—C241.383 (5)
O5—N21.306 (3)C19—B31.550 (6)
N1—C11.491 (4)C20—C211.404 (8)
N2—C251.478 (5)C21—C221.36 (1)
N2—C311.304 (5)C22—C231.338 (9)
C1—C21.509 (4)C23—C241.379 (8)
C1—C61.510 (4)C25—C261.483 (6)
C2—C31.513 (6)C25—C301.523 (5)
C3—C41.514 (8)C26—C271.500 (7)
C4—C51.492 (7)C27—C281.506 (9)
C5—C61.512 (7)C28—C291.50 (1)
C7—C81.383 (6)C29—C301.495 (8)
C7—C121.376 (5)C31—C321.465 (6)
C7—B11.600 (5)C32—C331.547 (7)
C8—C91.388 (6)C32—C341.506 (5)
C9—C101.35 (1)C35—C361.34 (1)
C10—C111.33 (1)C35—C37i1.36 (1)
C11—C121.407 (7)C36—C371.34 (1)
C13—C141.392 (5)
B1—O1—B2121.2 (3)C24—C19—B3121.2 (3)
B2—O2—B3118.4 (3)C19—C20—C21121.3 (4)
B1—O3—B3121.2 (3)C20—C21—C22118.8 (5)
N1—O4—B1114.2 (2)C21—C22—C23121.1 (6)
O4—N1—C1113.6 (2)C22—C23—C24120.2 (6)
O5—N2—C25115.3 (3)C19—C24—C23121.5 (4)
O5—N2—C31123.1 (3)N2—C25—C26111.2 (3)
C25—N2—C31121.6 (3)N2—C25—C30109.1 (3)
N1—C1—C2107.9 (2)C26—C25—C30111.1 (3)
N1—C1—C6110.9 (3)C25—C26—C27111.5 (4)
C2—C1—C6111.3 (3)C26—C27—C28110.6 (5)
C1—C2—C3110.1 (3)C27—C28—C29111.8 (5)
C2—C3—C4111.8 (4)C28—C29—C30112.8 (5)
C3—C4—C5111.2 (4)C25—C30—C29109.9 (4)
C4—C5—C6112.3 (4)N2—C31—C32123.9 (3)
C1—C6—C5110.0 (3)C31—C32—C33110.7 (4)
C8—C7—C12116.2 (3)C31—C32—C34109.7 (4)
C8—C7—B1121.9 (3)C33—C32—C34110.6 (4)
C12—C7—B1121.8 (4)C36—C35—C37i119.8 (7)
C7—C8—C9122.1 (4)C35—C36—C37121.6 (6)
C8—C9—C10119.7 (6)C35i—C37—C36118.6 (7)
C9—C10—C11120.4 (6)O1—B1—O3111.2 (3)
C10—C11—C12120.4 (5)O1—B1—O4107.5 (3)
C7—C12—C11121.0 (5)O1—B1—C7113.1 (3)
C14—C13—C18116.0 (3)O3—B1—O4107.4 (3)
C14—C13—B2122.1 (3)O3—B1—C7112.4 (3)
C18—C13—B2121.9 (4)O4—B1—C7104.8 (2)
C13—C14—C15122.4 (4)O1—B2—O2121.0 (4)
C14—C15—C16120.2 (4)O1—B2—C13120.9 (4)
C15—C16—C17120.0 (5)O2—B2—C13118.1 (3)
C16—C17—C18119.0 (4)O2—B3—O3120.7 (3)
C13—C18—C17122.4 (4)O2—B3—C19117.7 (3)
C20—C19—C24117.1 (4)O3—B3—C19121.5 (4)
C20—C19—B3121.6 (4)
Symmetry code: (i) x+2, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds