Download citation
Download citation
link to html
The title compound, C5H6BrN2+·Br, crystallizes in the centrosymmetric space group Cmca with all atoms lying on a crystallographic mirror plane at (0, y, z). The ion pairs pack as ribbons through N—H...Br hydrogen bonds and Br...Br halogen interactions. The ribbons are linked through weak C—H...Br interactions to form layers which stack perpendic­ular to the a axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803008870/om6141sup1.cif
Contains datablocks global, 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803008870/om61411sup2.hkl
Contains datablock 1

CCDC reference: 214849

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.012 Å
  • R factor = 0.040
  • wR factor = 0.116
  • Data-to-parameter ratio = 13.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The title compound, 2-amino-6-bromopyridinium bromide, (1), a precursor for 2-bromo-6-iodopyridine (Holmes et al., 2002), was also of interest to us for comparison of weak N—H···Br hydrogen bonding with Br···Br—C halogen bonding. The conversion of commercially and synthetically abundant amino derivatives to halogens has traditionally been accomplished using Sandmeyer-type conditions and is very useful in organic synthesis (Lavastre et al., 1997; Smith & Ho, 1990). The salt crystallizes in space group Cmca with all non-H atoms lying on a crystallographic mirror plane at (0, y, z) (Fig. 1). The geometric parameters for (1) are generally comparable to those found in related derivatives, such as 2-bromopyridinium bromide (Freytag & Jones, 2001), 2-chloro-6-dimethylamino-3,5-pyridinedicarbaldehyde (Lai et al., 1995), 7-amino-5-bromo-4-methyl-2-oxo-1,2,3,4-tetrahydro-1,6-naphthyridine- 8-carbonitrile monohydrate (De Anderez et al., 1992), and 6-bromo-3,5-difluoro-2-piperidyl-4-(1,2,2,2-tetrafluoro-1- trifluoromethylethyl)pyridine (Chambers et al., 2001) with the expected changes upon protonation at the pyridine N atom. The short C—NH2 bond length and distortions exhibited in the ring distances indicate a substantial delocalization of the lone pair on the amine nitrogen into the π-system of the pyridine ring.

Ion-pairs of (1) form N—H···Br hydrogen bonded ribbons with adjacent pairs related by a b-glide operation. There is also a halogen bond within the ribbon structure between the bromide anion and the bromine substituent [Br1···Br2A = 3.5484 (13) Å and C—Br1···Br2A = 179.43 (19)°, where Br2A is related to Br2 by (x, 1/2 + y, 1/2 − z)]. Weak C—H···Br interactions link the ribbons in the c direction (Fig. 2). These layers stack to complete the structure with neighboring layers related by C-centering. The packing of (1) is quite similar to that of 2-bromopyridinium bromide (Freytag & Jones, 2001) with the only significant difference being the alternation of direction of the ribbons in (1) as opposed to the polar nature of the ribbon packing in the simpler analogue.

Experimental top

2-Amino-6-bromopyridinium bromide was synthesized using a literature method (Johnson et al., 1962) by slowly dissolving 3-hydroxypentanedinitrile in a 33 wt% solution of hydrogen bromide in glacial acetic acid with cooling and stirring. The resultant dark yellow precipitate was removed by filtration and allowed to air dry, affording a quantitative yield of the desired product. Diffraction quality crystals of 2-amino-6-bromopyridinium bromide were obtained by slow evaporation of an ethanol solution at room temperature.

Computing details top

Data collection: AFC7 Diffractometer Control Software (Molecular Structure Corporation/Rigaku, 1997); cell refinement: AFC7 Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation/Rigaku, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (1). Displacement ellipsoids are shown at the 50% probability level and H atoms are of arbitrary radii.
[Figure 2] Fig. 2. Hydrogen-bonded layer of (1). Dashed lines represent N—H···Br and C—H···Br hydrogen-bonds. Filled dashed lines represent Br···Br halogen bonds.
2-amino-6-bromo-pyridinium bromide top
Crystal data top
C5H6BrN2+·BrDx = 2.161 Mg m3
Mr = 253.94Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmcaCell parameters from 25 reflections
a = 6.923 (1) Åθ = 2.5–25.0°
b = 11.616 (2) ŵ = 10.30 mm1
c = 19.413 (4) ÅT = 293 K
V = 1561.1 (5) Å3Plate, brown
Z = 80.24 × 0.21 × 0.12 mm
F(000) = 960
Data collection top
Rigaku AFC-7
diffractometer
580 reflections with I > 2σ(I)
Radiation source: 18 kW rotating anodeRint = 0.000
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ω/2θ scansh = 08
Absorption correction: ψ scan
(TEXSAN; Molecular Structure Corporation/Rigaku, 1997)
k = 013
Tmin = 0.082, Tmax = 0.291l = 023
750 measured reflections3 standard reflections every 100 reflections
750 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0873P)2 + 0.9155P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
750 reflectionsΔρmax = 0.80 e Å3
56 parametersΔρmin = 0.81 e Å3
0 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0020 (4)
Crystal data top
C5H6BrN2+·BrV = 1561.1 (5) Å3
Mr = 253.94Z = 8
Orthorhombic, CmcaMo Kα radiation
a = 6.923 (1) ŵ = 10.30 mm1
b = 11.616 (2) ÅT = 293 K
c = 19.413 (4) Å0.24 × 0.21 × 0.12 mm
Data collection top
Rigaku AFC-7
diffractometer
580 reflections with I > 2σ(I)
Absorption correction: ψ scan
(TEXSAN; Molecular Structure Corporation/Rigaku, 1997)
Rint = 0.000
Tmin = 0.082, Tmax = 0.2913 standard reflections every 100 reflections
750 measured reflections intensity decay: 1%
750 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.03Δρmax = 0.80 e Å3
750 reflectionsΔρmin = 0.81 e Å3
56 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.00000.49775 (7)0.37388 (4)0.0633 (4)
Br20.00000.29335 (7)0.17222 (3)0.0522 (4)
N10.00000.2665 (5)0.3446 (3)0.0436 (14)
H10.00000.29370.30340.052*
N20.00000.0845 (6)0.2980 (3)0.067 (2)
H20.00000.00810.30580.081*
H30.00000.09630.25220.081*
C10.00000.3411 (7)0.3973 (3)0.0467 (17)
C20.00000.3044 (8)0.4623 (4)0.062 (2)
H2A0.00000.35610.49890.074*
C30.00000.1852 (9)0.4736 (4)0.070 (3)
H3A0.00000.15720.51850.084*
C40.00000.1105 (7)0.4206 (4)0.060 (2)
H4A0.00000.03170.42890.071*
C50.00000.1523 (6)0.3526 (3)0.0471 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1028 (8)0.0406 (6)0.0463 (6)0.0000.0000.0061 (4)
Br20.0752 (6)0.0443 (5)0.0370 (5)0.0000.0000.0026 (3)
N10.063 (4)0.036 (3)0.031 (3)0.0000.0000.002 (3)
N20.129 (6)0.035 (4)0.038 (3)0.0000.0000.005 (3)
C10.066 (5)0.038 (4)0.036 (3)0.0000.0000.007 (3)
C20.096 (6)0.057 (5)0.032 (3)0.0000.0000.007 (4)
C30.105 (7)0.071 (6)0.034 (4)0.0000.0000.012 (4)
C40.098 (7)0.038 (4)0.042 (4)0.0000.0000.015 (4)
C50.059 (4)0.041 (5)0.041 (4)0.0000.0000.001 (3)
Geometric parameters (Å, º) top
Br1—C11.876 (8)C2—C31.402 (12)
N1—C51.336 (10)C2—H2A0.9300
N1—C11.341 (8)C3—C41.346 (11)
N1—H10.8600C3—H3A0.9300
N2—C51.320 (9)C4—C51.406 (9)
N2—H20.9000C4—H4A0.9300
N2—H30.9001Br1—Br2i3.5484 (13)
C1—C21.331 (10)
C5—N1—C1123.5 (6)C3—C2—H2A121.2
C5—N1—H1118.3C4—C3—C2121.1 (7)
C1—N1—H1118.3C4—C3—H3A119.4
C5—N2—H2117.0C2—C3—H3A119.4
C5—N2—H3134.6C3—C4—C5119.7 (8)
H2—N2—H3108.4C3—C4—H4A120.2
C2—C1—N1121.1 (7)C5—C4—H4A120.2
C2—C1—Br1122.7 (6)N2—C5—N1119.9 (6)
N1—C1—Br1116.2 (5)N2—C5—C4123.2 (7)
C1—C2—C3117.6 (7)N1—C5—C4116.9 (7)
C1—C2—H2A121.2C1—Br1—Br2i179.43 (19)
C5—N1—C1—C20.000 (3)C2—C3—C4—C50.000 (3)
C5—N1—C1—Br1180.0C1—N1—C5—N2180.000 (1)
N1—C1—C2—C30.000 (3)C1—N1—C5—C40.000 (2)
Br1—C1—C2—C3180.000 (2)C3—C4—C5—N2180.000 (2)
C1—C2—C3—C40.000 (3)C3—C4—C5—N10.000 (2)
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H3···Br1ii0.902.703.486 (7)146
N2—H2···Br2ii0.902.533.431 (7)180
N1—H1···Br20.862.553.360 (5)158
C2—H2A···Br1iii0.933.003.923 (8)174
C3—H3A···Br2iv0.933.043.864 (7)149
Symmetry codes: (ii) x, y1/2, z+1/2; (iii) x, y+1, z+1; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H6BrN2+·Br
Mr253.94
Crystal system, space groupOrthorhombic, Cmca
Temperature (K)293
a, b, c (Å)6.923 (1), 11.616 (2), 19.413 (4)
V3)1561.1 (5)
Z8
Radiation typeMo Kα
µ (mm1)10.30
Crystal size (mm)0.24 × 0.21 × 0.12
Data collection
DiffractometerRigaku AFC-7
diffractometer
Absorption correctionψ scan
(TEXSAN; Molecular Structure Corporation/Rigaku, 1997)
Tmin, Tmax0.082, 0.291
No. of measured, independent and
observed [I > 2σ(I)] reflections
750, 750, 580
Rint0.000
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.116, 1.03
No. of reflections750
No. of parameters56
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.81

Computer programs: AFC7 Diffractometer Control Software (Molecular Structure Corporation/Rigaku, 1997), AFC7 Diffractometer Control Software, TEXSAN (Molecular Structure Corporation/Rigaku, 1997), SHELXTL (Sheldrick, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
Br1—C11.876 (8)C2—C31.402 (12)
N1—C51.336 (10)C3—C41.346 (11)
N1—C11.341 (8)C4—C51.406 (9)
N2—C51.320 (9)Br1—Br2i3.5484 (13)
C1—C21.331 (10)
C5—N1—C1123.5 (6)C3—C4—C5119.7 (8)
C2—C1—N1121.1 (7)N2—C5—N1119.9 (6)
C2—C1—Br1122.7 (6)N2—C5—C4123.2 (7)
N1—C1—Br1116.2 (5)N1—C5—C4116.9 (7)
C1—C2—C3117.6 (7)C1—Br1—Br2i179.43 (19)
C4—C3—C2121.1 (7)
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H3···Br1ii0.902.703.486 (7)146
N2—H2···Br2ii0.902.533.431 (7)180
N1—H1···Br20.862.553.360 (5)158
C2—H2A···Br1iii0.933.003.923 (8)174
C3—H3A···Br2iv0.933.043.864 (7)149
Symmetry codes: (ii) x, y1/2, z+1/2; (iii) x, y+1, z+1; (iv) x, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds