The title compound, C
5H
6BrN
2+·Br
−, crystallizes in the centrosymmetric space group
Cmca with all atoms lying on a crystallographic mirror plane at (0,
y, z). The ion pairs pack as ribbons through N—H
Br hydrogen bonds and Br
Br halogen interactions. The ribbons are linked through weak C—H
Br interactions to form layers which stack perpendicular to the
a axis.
Supporting information
CCDC reference: 214849
Key indicators
- Single-crystal X-ray study
- T = 293 K
- Mean (C-C) = 0.012 Å
- R factor = 0.040
- wR factor = 0.116
- Data-to-parameter ratio = 13.4
checkCIF results
No syntax errors found
ADDSYM reports no extra symmetry
2-Amino-6-bromopyridinium bromide was synthesized using a literature method (Johnson et al., 1962) by slowly dissolving 3-hydroxypentanedinitrile in a 33 wt% solution of hydrogen bromide in glacial acetic acid with cooling and stirring. The resultant dark yellow precipitate was removed by filtration and allowed to air dry, affording a quantitative yield of the desired product. Diffraction quality crystals of 2-amino-6-bromopyridinium bromide were obtained by slow evaporation of an ethanol solution at room temperature.
Data collection: AFC7 Diffractometer Control Software
(Molecular Structure Corporation/Rigaku, 1997); cell refinement: AFC7 Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation/Rigaku, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
2-amino-6-bromo-pyridinium bromide
top
Crystal data top
C5H6BrN2+·Br− | Dx = 2.161 Mg m−3 |
Mr = 253.94 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Cmca | Cell parameters from 25 reflections |
a = 6.923 (1) Å | θ = 2.5–25.0° |
b = 11.616 (2) Å | µ = 10.30 mm−1 |
c = 19.413 (4) Å | T = 293 K |
V = 1561.1 (5) Å3 | Plate, brown |
Z = 8 | 0.24 × 0.21 × 0.12 mm |
F(000) = 960 | |
Data collection top
Rigaku AFC-7 diffractometer | 580 reflections with I > 2σ(I) |
Radiation source: 18 kW rotating anode | Rint = 0.000 |
Graphite monochromator | θmax = 25.0°, θmin = 2.1° |
ω/2θ scans | h = 0→8 |
Absorption correction: ψ scan (TEXSAN; Molecular Structure Corporation/Rigaku, 1997) | k = 0→13 |
Tmin = 0.082, Tmax = 0.291 | l = 0→23 |
750 measured reflections | 3 standard reflections every 100 reflections |
750 independent reflections | intensity decay: 1% |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.116 | w = 1/[σ2(Fo2) + (0.0873P)2 + 0.9155P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
750 reflections | Δρmax = 0.80 e Å−3 |
56 parameters | Δρmin = −0.81 e Å−3 |
0 restraints | Extinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0020 (4) |
Crystal data top
C5H6BrN2+·Br− | V = 1561.1 (5) Å3 |
Mr = 253.94 | Z = 8 |
Orthorhombic, Cmca | Mo Kα radiation |
a = 6.923 (1) Å | µ = 10.30 mm−1 |
b = 11.616 (2) Å | T = 293 K |
c = 19.413 (4) Å | 0.24 × 0.21 × 0.12 mm |
Data collection top
Rigaku AFC-7 diffractometer | 580 reflections with I > 2σ(I) |
Absorption correction: ψ scan (TEXSAN; Molecular Structure Corporation/Rigaku, 1997) | Rint = 0.000 |
Tmin = 0.082, Tmax = 0.291 | 3 standard reflections every 100 reflections |
750 measured reflections | intensity decay: 1% |
750 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.80 e Å−3 |
750 reflections | Δρmin = −0.81 e Å−3 |
56 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Br1 | 0.0000 | 0.49775 (7) | 0.37388 (4) | 0.0633 (4) | |
Br2 | 0.0000 | 0.29335 (7) | 0.17222 (3) | 0.0522 (4) | |
N1 | 0.0000 | 0.2665 (5) | 0.3446 (3) | 0.0436 (14) | |
H1 | 0.0000 | 0.2937 | 0.3034 | 0.052* | |
N2 | 0.0000 | 0.0845 (6) | 0.2980 (3) | 0.067 (2) | |
H2 | 0.0000 | 0.0081 | 0.3058 | 0.081* | |
H3 | 0.0000 | 0.0963 | 0.2522 | 0.081* | |
C1 | 0.0000 | 0.3411 (7) | 0.3973 (3) | 0.0467 (17) | |
C2 | 0.0000 | 0.3044 (8) | 0.4623 (4) | 0.062 (2) | |
H2A | 0.0000 | 0.3561 | 0.4989 | 0.074* | |
C3 | 0.0000 | 0.1852 (9) | 0.4736 (4) | 0.070 (3) | |
H3A | 0.0000 | 0.1572 | 0.5185 | 0.084* | |
C4 | 0.0000 | 0.1105 (7) | 0.4206 (4) | 0.060 (2) | |
H4A | 0.0000 | 0.0317 | 0.4289 | 0.071* | |
C5 | 0.0000 | 0.1523 (6) | 0.3526 (3) | 0.0471 (18) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Br1 | 0.1028 (8) | 0.0406 (6) | 0.0463 (6) | 0.000 | 0.000 | −0.0061 (4) |
Br2 | 0.0752 (6) | 0.0443 (5) | 0.0370 (5) | 0.000 | 0.000 | 0.0026 (3) |
N1 | 0.063 (4) | 0.036 (3) | 0.031 (3) | 0.000 | 0.000 | 0.002 (3) |
N2 | 0.129 (6) | 0.035 (4) | 0.038 (3) | 0.000 | 0.000 | −0.005 (3) |
C1 | 0.066 (5) | 0.038 (4) | 0.036 (3) | 0.000 | 0.000 | −0.007 (3) |
C2 | 0.096 (6) | 0.057 (5) | 0.032 (3) | 0.000 | 0.000 | −0.007 (4) |
C3 | 0.105 (7) | 0.071 (6) | 0.034 (4) | 0.000 | 0.000 | 0.012 (4) |
C4 | 0.098 (7) | 0.038 (4) | 0.042 (4) | 0.000 | 0.000 | 0.015 (4) |
C5 | 0.059 (4) | 0.041 (5) | 0.041 (4) | 0.000 | 0.000 | −0.001 (3) |
Geometric parameters (Å, º) top
Br1—C1 | 1.876 (8) | C2—C3 | 1.402 (12) |
N1—C5 | 1.336 (10) | C2—H2A | 0.9300 |
N1—C1 | 1.341 (8) | C3—C4 | 1.346 (11) |
N1—H1 | 0.8600 | C3—H3A | 0.9300 |
N2—C5 | 1.320 (9) | C4—C5 | 1.406 (9) |
N2—H2 | 0.9000 | C4—H4A | 0.9300 |
N2—H3 | 0.9001 | Br1—Br2i | 3.5484 (13) |
C1—C2 | 1.331 (10) | | |
| | | |
C5—N1—C1 | 123.5 (6) | C3—C2—H2A | 121.2 |
C5—N1—H1 | 118.3 | C4—C3—C2 | 121.1 (7) |
C1—N1—H1 | 118.3 | C4—C3—H3A | 119.4 |
C5—N2—H2 | 117.0 | C2—C3—H3A | 119.4 |
C5—N2—H3 | 134.6 | C3—C4—C5 | 119.7 (8) |
H2—N2—H3 | 108.4 | C3—C4—H4A | 120.2 |
C2—C1—N1 | 121.1 (7) | C5—C4—H4A | 120.2 |
C2—C1—Br1 | 122.7 (6) | N2—C5—N1 | 119.9 (6) |
N1—C1—Br1 | 116.2 (5) | N2—C5—C4 | 123.2 (7) |
C1—C2—C3 | 117.6 (7) | N1—C5—C4 | 116.9 (7) |
C1—C2—H2A | 121.2 | C1—Br1—Br2i | 179.43 (19) |
| | | |
C5—N1—C1—C2 | 0.000 (3) | C2—C3—C4—C5 | 0.000 (3) |
C5—N1—C1—Br1 | 180.0 | C1—N1—C5—N2 | 180.000 (1) |
N1—C1—C2—C3 | 0.000 (3) | C1—N1—C5—C4 | 0.000 (2) |
Br1—C1—C2—C3 | 180.000 (2) | C3—C4—C5—N2 | 180.000 (2) |
C1—C2—C3—C4 | 0.000 (3) | C3—C4—C5—N1 | 0.000 (2) |
Symmetry code: (i) x, y+1/2, −z+1/2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H3···Br1ii | 0.90 | 2.70 | 3.486 (7) | 146 |
N2—H2···Br2ii | 0.90 | 2.53 | 3.431 (7) | 180 |
N1—H1···Br2 | 0.86 | 2.55 | 3.360 (5) | 158 |
C2—H2A···Br1iii | 0.93 | 3.00 | 3.923 (8) | 174 |
C3—H3A···Br2iv | 0.93 | 3.04 | 3.864 (7) | 149 |
Symmetry codes: (ii) x, y−1/2, −z+1/2; (iii) −x, −y+1, −z+1; (iv) −x, −y+1/2, z+1/2. |
Experimental details
Crystal data |
Chemical formula | C5H6BrN2+·Br− |
Mr | 253.94 |
Crystal system, space group | Orthorhombic, Cmca |
Temperature (K) | 293 |
a, b, c (Å) | 6.923 (1), 11.616 (2), 19.413 (4) |
V (Å3) | 1561.1 (5) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 10.30 |
Crystal size (mm) | 0.24 × 0.21 × 0.12 |
|
Data collection |
Diffractometer | Rigaku AFC-7 diffractometer |
Absorption correction | ψ scan (TEXSAN; Molecular Structure Corporation/Rigaku, 1997) |
Tmin, Tmax | 0.082, 0.291 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 750, 750, 580 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.595 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.116, 1.03 |
No. of reflections | 750 |
No. of parameters | 56 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.80, −0.81 |
Selected geometric parameters (Å, º) topBr1—C1 | 1.876 (8) | C2—C3 | 1.402 (12) |
N1—C5 | 1.336 (10) | C3—C4 | 1.346 (11) |
N1—C1 | 1.341 (8) | C4—C5 | 1.406 (9) |
N2—C5 | 1.320 (9) | Br1—Br2i | 3.5484 (13) |
C1—C2 | 1.331 (10) | | |
| | | |
C5—N1—C1 | 123.5 (6) | C3—C4—C5 | 119.7 (8) |
C2—C1—N1 | 121.1 (7) | N2—C5—N1 | 119.9 (6) |
C2—C1—Br1 | 122.7 (6) | N2—C5—C4 | 123.2 (7) |
N1—C1—Br1 | 116.2 (5) | N1—C5—C4 | 116.9 (7) |
C1—C2—C3 | 117.6 (7) | C1—Br1—Br2i | 179.43 (19) |
C4—C3—C2 | 121.1 (7) | | |
Symmetry code: (i) x, y+1/2, −z+1/2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H3···Br1ii | 0.90 | 2.70 | 3.486 (7) | 146 |
N2—H2···Br2ii | 0.90 | 2.53 | 3.431 (7) | 180 |
N1—H1···Br2 | 0.86 | 2.55 | 3.360 (5) | 158 |
C2—H2A···Br1iii | 0.93 | 3.00 | 3.923 (8) | 174 |
C3—H3A···Br2iv | 0.93 | 3.04 | 3.864 (7) | 149 |
Symmetry codes: (ii) x, y−1/2, −z+1/2; (iii) −x, −y+1, −z+1; (iv) −x, −y+1/2, z+1/2. |
The title compound, 2-amino-6-bromopyridinium bromide, (1), a precursor for 2-bromo-6-iodopyridine (Holmes et al., 2002), was also of interest to us for comparison of weak N—H···Br hydrogen bonding with Br−···Br—C halogen bonding. The conversion of commercially and synthetically abundant amino derivatives to halogens has traditionally been accomplished using Sandmeyer-type conditions and is very useful in organic synthesis (Lavastre et al., 1997; Smith & Ho, 1990). The salt crystallizes in space group Cmca with all non-H atoms lying on a crystallographic mirror plane at (0, y, z) (Fig. 1). The geometric parameters for (1) are generally comparable to those found in related derivatives, such as 2-bromopyridinium bromide (Freytag & Jones, 2001), 2-chloro-6-dimethylamino-3,5-pyridinedicarbaldehyde (Lai et al., 1995), 7-amino-5-bromo-4-methyl-2-oxo-1,2,3,4-tetrahydro-1,6-naphthyridine- 8-carbonitrile monohydrate (De Anderez et al., 1992), and 6-bromo-3,5-difluoro-2-piperidyl-4-(1,2,2,2-tetrafluoro-1- trifluoromethylethyl)pyridine (Chambers et al., 2001) with the expected changes upon protonation at the pyridine N atom. The short C—NH2 bond length and distortions exhibited in the ring distances indicate a substantial delocalization of the lone pair on the amine nitrogen into the π-system of the pyridine ring.
Ion-pairs of (1) form N—H···Br hydrogen bonded ribbons with adjacent pairs related by a b-glide operation. There is also a halogen bond within the ribbon structure between the bromide anion and the bromine substituent [Br1···Br2A = 3.5484 (13) Å and C—Br1···Br2A = 179.43 (19)°, where Br2A is related to Br2 by (x, 1/2 + y, 1/2 − z)]. Weak C—H···Br interactions link the ribbons in the c direction (Fig. 2). These layers stack to complete the structure with neighboring layers related by C-centering. The packing of (1) is quite similar to that of 2-bromopyridinium bromide (Freytag & Jones, 2001) with the only significant difference being the alternation of direction of the ribbons in (1) as opposed to the polar nature of the ribbon packing in the simpler analogue.