Download citation
Download citation
link to html
The transition-metal orthophosphate, β-Cd3(PO4)2, was synthesized by a solid-state reaction and characterized by single-crystal X-ray diffraction and EDS spectroscopy. It crystallizes in the monoclinic system, space group P21/n.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989023009775/oo2001sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989023009775/oo2001Isup2.hkl
Contains datablock I

CCDC reference: 2306650

Key indicators

Structure: I
  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](P-O) = 0.002 Å
  • R factor = 0.023
  • wR factor = 0.054
  • Data-to-parameter ratio = 28.0

checkCIF/PLATON results

No syntax errors found



Alert level A POWD001_ALERT_1_A _pd_proc_ls_prof_wR_factor (R_wp) and _refine_ls_goodness_of_fit_all are missing. These should be present for a powder diffraction study.
Alert level C PLAT042_ALERT_1_C Calc. and Reported MoietyFormula Strings Differ Please Check PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of O6 Check PLAT906_ALERT_3_C Large K Value in the Analysis of Variance ...... 2.624 Check PLAT971_ALERT_2_C Check Calcd Resid. Dens. 0.62Ang From Cd2 1.54 eA-3 PLAT972_ALERT_2_C Check Calcd Resid. Dens. 0.61Ang From Cd3 -1.73 eA-3 PLAT975_ALERT_2_C Check Calcd Resid. Dens. 0.88Ang From O8 . 0.82 eA-3
Alert level G PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimension 3 Info PLAT045_ALERT_1_G Calculated and Reported Z Differ by a Factor ... 0.333 Check PLAT794_ALERT_5_G Tentative Bond Valency for Cd1 (II) . 2.03 Info PLAT794_ALERT_5_G Tentative Bond Valency for Cd2 (II) . 2.13 Info PLAT794_ALERT_5_G Tentative Bond Valency for Cd3 (II) . 2.16 Info PLAT794_ALERT_5_G Tentative Bond Valency for Cd4 (II) . 2.15 Info PLAT794_ALERT_5_G Tentative Bond Valency for Cd5 (II) . 2.21 Info PLAT794_ALERT_5_G Tentative Bond Valency for Cd6 (II) . 2.16 Info PLAT794_ALERT_5_G Tentative Bond Valency for Cd7 (II) . 2.17 Info PLAT794_ALERT_5_G Tentative Bond Valency for Cd8 (II) . 2.20 Info PLAT794_ALERT_5_G Tentative Bond Valency for Cd9 (II) . 2.12 Info PLAT899_ALERT_4_G SHELXL2018 is Deprecated and Succeeded by SHELXL 2019/3 Note PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min). 1 Note PLAT933_ALERT_2_G Number of HKL-OMIT Records in Embedded .res File 1 Note
1 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 6 ALERT level C = Check. Ensure it is not caused by an omission or oversight 14 ALERT level G = General information/check it is not something unexpected 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 10 ALERT type 5 Informative message, check
# start Validation Reply Form _vrf_POWD001_I ; PROBLEM: _pd_proc_ls_prof_wR_factor (R_wp) and RESPONSE: ... ; # end Validation Reply Form

Reference check results

The following references were not checked in detail as they were not recognized as references to journal articles

Bruker, (2016). APEX3 (Version 5.054), SAINT (Version 6.36A), SADABS; Bruker AXS Inc.: Madison, WI, USA. [software reference?]

Rajasri, S., Krishnakumar, B., Abilio, J. F., Sobral, N., Balachandran, S., Swaminathan, M. & Muthuvel, I. (2019). Materials Today Proceedings, 15, 471--480.

Rong, J., Zhang, T., Qiu, F. & Zhu, Y. (2017). ACS Sustainable Chem. Eng. 5, 4468--4477. https://doi. org/10.1021/acssuschemeng. 8b01469

Stephens, J. S. (1967). Doctor of Philosophy, Thesis, McMaster University, Hamilton, Ontario, (May, 1967).

The following reference may be incorrectly formatted

Sugiyama, K. & Tokonami, M. (1990). Mineralogical Journal 15, 141-146. doi: 10.2465/minerj. 15.141
[Unrecognized journal title.]

All references appear to be cited unambiguously


Computing details top

Tricadmium bis(orthophosphate) top
Crystal data top
Cd3(PO4)2F(000) = 2856
Mr = 527.14Dx = 5.165 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.1895 (7) ÅCell parameters from 9851 reflections
b = 10.3507 (8) Åθ = 2.2–36.3°
c = 21.6887 (16) ŵ = 9.81 mm1
β = 99.644 (3)°T = 296 K
V = 2033.8 (3) Å3Parallelepiped, colourless
Z = 120.31 × 0.27 × 0.22 mm
Data collection top
Bruker X8 APEX Diffractometer9851 independent reflections
Radiation source: fine-focus sealed tube8280 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
φ and ω scansθmax = 36.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1515
Tmin = 0.544, Tmax = 0.747k = 1717
129694 measured reflectionsl = 3636
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: dual
R[F2 > 2σ(F2)] = 0.023Secondary atom site location: difference Fourier map
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0205P)2 + 4.3579P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.004
9851 reflectionsΔρmax = 1.60 e Å3
352 parametersΔρmin = 1.74 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The crystal structure of β-Cd3(PO4)2 was investigated using single-crystal X-ray diffraction data collected at room temperature with a Bruker D8 Venture Super DUO Diffractometer equipped with a PHOTON100 CMOS area-detector and monochromatic MoKα radiation (λ=0.71073 Å). APEX3 (Bruker, APEX3 (Version 5.054), SAINT (Version 6.36A), SADABS. (Bruker, 2016) software was used for data reduction and the absorption correction was performed by multi-scan semi-empirical method using SADABS program (Krause, et al. 2015). The crystal structure was solved using dual space algorithm as implemented in SHELXT program (Sheldrick, 2015a), completed by a Difference Fourier map and refined by least-squares using SHELXL program (Sheldrick 2015b) integrated into the WinGX interface (Farrugia, 2012).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.74691 (2)0.71080 (2)0.36476 (2)0.01178 (3)
Cd20.27909 (2)0.39633 (2)0.92293 (2)0.01251 (3)
Cd30.60228 (2)0.39417 (2)0.58439 (2)0.01124 (3)
Cd40.94569 (2)0.28838 (2)0.95686 (2)0.01149 (3)
Cd50.71202 (2)0.41020 (2)0.77990 (2)0.01002 (3)
Cd60.05148 (2)0.60385 (2)0.74786 (2)0.01157 (3)
Cd70.60491 (2)0.60229 (2)0.89221 (2)0.00988 (3)
Cd80.40399 (2)0.70425 (2)0.70409 (2)0.01088 (3)
Cd90.93970 (2)0.59251 (2)0.56014 (2)0.01049 (3)
P10.69824 (6)0.43486 (5)0.43995 (2)0.00739 (9)
P20.95135 (6)0.36168 (6)0.67096 (3)0.00825 (9)
P30.69971 (7)0.64250 (6)0.66858 (3)0.00801 (9)
P40.35072 (6)0.42713 (5)0.77938 (2)0.00705 (9)
P50.03383 (6)0.57903 (5)0.89456 (2)0.00714 (9)
P60.62768 (7)0.35381 (6)1.00079 (3)0.00835 (9)
O10.7195 (2)0.32411 (17)0.39518 (8)0.0153 (3)
O20.62835 (19)0.55464 (17)0.40326 (8)0.0120 (3)
O30.84808 (19)0.46875 (17)0.47901 (8)0.0132 (3)
O40.5870 (2)0.39020 (19)0.48128 (8)0.0158 (3)
O50.8179 (2)0.30534 (18)0.62739 (9)0.0161 (3)
O61.0338 (2)0.4652 (2)0.63983 (10)0.0255 (5)
O71.0579 (2)0.24766 (18)0.68907 (8)0.0166 (3)
O80.9105 (2)0.41803 (19)0.73139 (8)0.0175 (4)
O90.7346 (2)0.57633 (18)0.60939 (8)0.0153 (3)
O100.5947 (2)0.75733 (17)0.64955 (8)0.0149 (3)
O110.8400 (2)0.70048 (17)0.70769 (9)0.0154 (3)
O120.6177 (2)0.5506 (2)0.70596 (9)0.0204 (4)
O130.28310 (19)0.54515 (17)0.74156 (8)0.0117 (3)
O140.3730 (2)0.31593 (17)0.73519 (8)0.0138 (3)
O150.50013 (19)0.45790 (17)0.82041 (8)0.0125 (3)
O160.2369 (2)0.38617 (18)0.82065 (8)0.0138 (3)
O170.0602 (2)0.63773 (19)0.84925 (8)0.0163 (3)
O180.18533 (19)0.53473 (17)0.85947 (8)0.0128 (3)
O190.0598 (2)0.68256 (17)0.94219 (8)0.0136 (3)
O200.05089 (19)0.46386 (16)0.92864 (8)0.0117 (3)
O210.4881 (2)0.30043 (18)0.95967 (9)0.0168 (3)
O220.6649 (2)0.49060 (17)0.98153 (8)0.0156 (3)
O230.7475 (2)0.25479 (18)0.99447 (9)0.0186 (4)
O240.6119 (2)0.36004 (19)1.07107 (8)0.0167 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01169 (7)0.01256 (7)0.01087 (6)0.00280 (6)0.00125 (5)0.00014 (5)
Cd20.01060 (7)0.01629 (8)0.00983 (6)0.00050 (6)0.00060 (5)0.00269 (5)
Cd30.00935 (7)0.01100 (7)0.01280 (7)0.00021 (5)0.00021 (5)0.00116 (5)
Cd40.01258 (7)0.01305 (7)0.00873 (6)0.00046 (6)0.00142 (5)0.00123 (5)
Cd50.01194 (7)0.00914 (7)0.00902 (6)0.00021 (5)0.00187 (5)0.00066 (5)
Cd60.00914 (7)0.01060 (7)0.01430 (7)0.00063 (5)0.00009 (5)0.00122 (5)
Cd70.01032 (7)0.01008 (7)0.00935 (6)0.00014 (5)0.00200 (5)0.00078 (5)
Cd80.01204 (7)0.01262 (7)0.00817 (6)0.00067 (5)0.00220 (5)0.00167 (5)
Cd90.01215 (7)0.01086 (7)0.00841 (6)0.00036 (5)0.00158 (5)0.00089 (5)
P10.0078 (2)0.0074 (2)0.0064 (2)0.00011 (18)0.00040 (17)0.00001 (17)
P20.0080 (2)0.0090 (2)0.0074 (2)0.00023 (18)0.00032 (17)0.00032 (18)
P30.0085 (2)0.0079 (2)0.0072 (2)0.00045 (18)0.00022 (17)0.00030 (17)
P40.0076 (2)0.0069 (2)0.00626 (19)0.00028 (18)0.00013 (17)0.00019 (17)
P50.0077 (2)0.0068 (2)0.0065 (2)0.00028 (18)0.00001 (17)0.00010 (17)
P60.0090 (2)0.0093 (2)0.0066 (2)0.00031 (18)0.00063 (18)0.00027 (18)
O10.0210 (9)0.0105 (7)0.0122 (7)0.0037 (6)0.0040 (6)0.0047 (6)
O20.0108 (7)0.0113 (7)0.0139 (7)0.0031 (6)0.0018 (6)0.0041 (6)
O30.0094 (7)0.0163 (8)0.0127 (7)0.0006 (6)0.0016 (6)0.0052 (6)
O40.0163 (8)0.0198 (9)0.0118 (7)0.0071 (7)0.0042 (6)0.0019 (6)
O50.0124 (8)0.0132 (8)0.0194 (8)0.0010 (6)0.0070 (6)0.0054 (6)
O60.0160 (9)0.0360 (12)0.0225 (9)0.0078 (8)0.0023 (7)0.0188 (9)
O70.0176 (9)0.0154 (8)0.0157 (8)0.0064 (7)0.0010 (6)0.0020 (6)
O80.0161 (9)0.0231 (9)0.0145 (7)0.0024 (7)0.0060 (6)0.0087 (7)
O90.0155 (8)0.0166 (8)0.0145 (7)0.0019 (7)0.0048 (6)0.0060 (6)
O100.0162 (8)0.0117 (8)0.0157 (7)0.0051 (6)0.0004 (6)0.0013 (6)
O110.0124 (8)0.0102 (8)0.0203 (8)0.0006 (6)0.0066 (6)0.0037 (6)
O120.0143 (9)0.0254 (10)0.0212 (9)0.0013 (7)0.0022 (7)0.0144 (8)
O130.0094 (7)0.0108 (7)0.0144 (7)0.0015 (6)0.0002 (6)0.0046 (6)
O140.0175 (8)0.0109 (7)0.0116 (7)0.0043 (6)0.0020 (6)0.0042 (6)
O150.0095 (7)0.0145 (8)0.0122 (7)0.0004 (6)0.0019 (6)0.0030 (6)
O160.0138 (8)0.0177 (8)0.0103 (7)0.0043 (6)0.0034 (6)0.0015 (6)
O170.0179 (9)0.0194 (9)0.0122 (7)0.0069 (7)0.0045 (6)0.0041 (6)
O180.0080 (7)0.0155 (8)0.0141 (7)0.0006 (6)0.0004 (6)0.0058 (6)
O190.0199 (9)0.0095 (7)0.0098 (6)0.0042 (6)0.0025 (6)0.0026 (6)
O200.0115 (7)0.0093 (7)0.0141 (7)0.0022 (6)0.0015 (6)0.0029 (6)
O210.0134 (8)0.0153 (8)0.0185 (8)0.0015 (6)0.0065 (6)0.0026 (7)
O220.0207 (9)0.0112 (8)0.0133 (7)0.0040 (6)0.0017 (6)0.0036 (6)
O230.0153 (9)0.0152 (8)0.0272 (9)0.0027 (7)0.0092 (7)0.0004 (7)
O240.0165 (9)0.0258 (10)0.0080 (6)0.0053 (7)0.0030 (6)0.0029 (6)
Geometric parameters (Å, º) top
Cd1—O22.1913 (17)Cd8—O132.2156 (17)
Cd1—O14i2.2782 (17)Cd8—O1i2.2783 (17)
Cd1—O17ii2.3068 (18)Cd8—O16xii2.2973 (18)
Cd1—O24iii2.3243 (18)Cd8—O7iii2.3285 (18)
Cd1—O7iv2.338 (2)Cd8—O102.3381 (19)
Cd2—O162.1896 (17)Cd8—O122.522 (2)
Cd2—O212.1900 (19)Cd9—O32.2248 (17)
Cd2—O202.2336 (18)Cd9—O62.2297 (19)
Cd2—O22v2.3602 (18)Cd9—O21iii2.3135 (19)
Cd2—O1vi2.3996 (18)Cd9—O92.3230 (18)
Cd3—O42.2176 (17)Cd9—O3iv2.3411 (18)
Cd3—O52.2409 (18)Cd9—O23iii2.550 (2)
Cd3—O2i2.2437 (17)P1—O31.5316 (18)
Cd3—O92.2598 (18)P1—O11.5358 (18)
Cd3—O19vii2.2818 (18)P1—O41.5388 (18)
Cd4—O232.1454 (19)P1—O21.5529 (17)
Cd4—O20viii2.1924 (17)P2—O61.533 (2)
Cd4—O4ix2.2702 (18)P2—O51.5327 (18)
Cd4—O19v2.2836 (17)P2—O81.5376 (18)
Cd4—O10x2.2978 (18)P2—O71.5417 (19)
Cd5—O122.2292 (18)P3—O121.5283 (19)
Cd5—O18viii2.2326 (17)P3—O91.5354 (18)
Cd5—O11x2.2486 (18)P3—O111.5409 (18)
Cd5—O82.2543 (18)P3—O101.5430 (18)
Cd5—O152.3196 (18)P4—O141.5334 (18)
Cd6—O172.2150 (18)P4—O151.5391 (18)
Cd6—O11xi2.2293 (18)P4—O131.5430 (17)
Cd6—O132.2396 (17)P4—O161.5451 (18)
Cd6—O14xii2.3131 (18)P5—O191.5348 (18)
Cd6—O8xi2.313 (2)P5—O171.5383 (18)
Cd7—O222.2441 (17)P5—O181.5404 (18)
Cd7—O152.2547 (17)P5—O201.5429 (17)
Cd7—O18viii2.2732 (17)P6—O231.527 (2)
Cd7—O5iii2.2808 (18)P6—O221.5311 (19)
Cd7—O24v2.2990 (19)P6—O211.5372 (19)
Cd7—O7iii2.5935 (19)P6—O241.5566 (18)
O2—Cd1—O14i94.64 (7)O15—Cd7—O7iii77.53 (6)
O2—Cd1—O17ii98.73 (7)O18viii—Cd7—O7iii112.89 (6)
O14i—Cd1—O17ii73.41 (6)O5iii—Cd7—O7iii60.05 (6)
O2—Cd1—O24iii121.70 (6)O24v—Cd7—O7iii72.69 (6)
O14i—Cd1—O24iii141.54 (7)O13—Cd8—O1i92.86 (7)
O17ii—Cd1—O24iii87.86 (7)O13—Cd8—O16xii113.40 (7)
O2—Cd1—O7iv142.93 (6)O1i—Cd8—O16xii73.32 (6)
O14i—Cd1—O7iv80.58 (7)O13—Cd8—O7iii77.26 (6)
O17ii—Cd1—O7iv114.60 (7)O1i—Cd8—O7iii158.96 (7)
O24iii—Cd1—O7iv77.21 (6)O16xii—Cd8—O7iii93.39 (6)
O16—Cd2—O21110.02 (7)O13—Cd8—O10145.55 (6)
O16—Cd2—O2093.60 (7)O1i—Cd8—O1081.31 (7)
O21—Cd2—O20153.63 (7)O16xii—Cd8—O1097.48 (6)
O16—Cd2—O22v152.72 (7)O7iii—Cd8—O10117.23 (7)
O21—Cd2—O22v81.75 (7)O13—Cd8—O1287.84 (6)
O20—Cd2—O22v82.22 (7)O1i—Cd8—O12101.36 (7)
O16—Cd2—O1vi72.91 (6)O16xii—Cd8—O12158.06 (6)
O21—Cd2—O1vi79.03 (7)O7iii—Cd8—O1296.82 (7)
O20—Cd2—O1vi97.73 (7)O10—Cd8—O1260.58 (6)
O22v—Cd2—O1vi134.32 (6)O3—Cd9—O6108.60 (8)
O4—Cd3—O5108.31 (7)O3—Cd9—O21iii118.11 (7)
O4—Cd3—O2i102.91 (7)O6—Cd9—O21iii127.43 (7)
O5—Cd3—O2i146.53 (7)O3—Cd9—O995.37 (6)
O4—Cd3—O9101.42 (7)O6—Cd9—O980.79 (7)
O5—Cd3—O980.78 (7)O21iii—Cd9—O9115.63 (7)
O2i—Cd3—O9104.80 (7)O3—Cd9—O3iv77.59 (7)
O4—Cd3—O19vii75.41 (6)O6—Cd9—O3iv83.26 (7)
O5—Cd3—O19vii79.23 (6)O21iii—Cd9—O3iv84.39 (7)
O2i—Cd3—O19vii97.58 (7)O9—Cd9—O3iv159.49 (7)
O9—Cd3—O19vii157.50 (7)O3—Cd9—O23iii82.85 (6)
O23—Cd4—O20viii133.04 (7)O6—Cd9—O23iii153.31 (7)
O23—Cd4—O4ix105.57 (7)O21iii—Cd9—O23iii59.54 (6)
O20viii—Cd4—O4ix118.55 (7)O9—Cd9—O23iii74.04 (6)
O23—Cd4—O19v86.54 (7)O3iv—Cd9—O23iii123.24 (6)
O20viii—Cd4—O19v90.31 (7)O3—P1—O1108.84 (10)
O4ix—Cd4—O19v74.37 (6)O3—P1—O4111.71 (10)
O23—Cd4—O10x110.78 (8)O1—P1—O4108.13 (11)
O20viii—Cd4—O10x80.80 (6)O3—P1—O2110.91 (10)
O4ix—Cd4—O10x96.33 (6)O1—P1—O2110.94 (10)
O19v—Cd4—O10x162.23 (7)O4—P1—O2106.28 (10)
O12—Cd5—O18viii104.06 (7)O6—P2—O5113.44 (11)
O12—Cd5—O11x130.59 (7)O6—P2—O8108.65 (12)
O18viii—Cd5—O11x122.38 (7)O5—P2—O8112.67 (11)
O12—Cd5—O883.60 (7)O6—P2—O7107.92 (12)
O18viii—Cd5—O894.01 (7)O5—P2—O7105.92 (10)
O11x—Cd5—O8107.18 (7)O8—P2—O7107.98 (11)
O12—Cd5—O1583.32 (7)O12—P3—O9110.88 (12)
O18viii—Cd5—O1581.78 (6)O12—P3—O11113.07 (11)
O11x—Cd5—O1587.22 (7)O9—P3—O11111.18 (11)
O8—Cd5—O15164.84 (7)O12—P3—O10106.22 (11)
O17—Cd6—O11xi101.60 (7)O9—P3—O10109.20 (10)
O17—Cd6—O13103.11 (7)O11—P3—O10105.98 (10)
O11xi—Cd6—O13150.83 (7)O14—P4—O15108.48 (10)
O17—Cd6—O14xii74.45 (6)O14—P4—O13110.24 (10)
O11xi—Cd6—O14xii81.67 (6)O15—P4—O13112.60 (10)
O13—Cd6—O14xii90.24 (7)O14—P4—O16109.29 (11)
O17—Cd6—O8xi102.19 (6)O15—P4—O16110.29 (10)
O11xi—Cd6—O8xi83.31 (7)O13—P4—O16105.89 (10)
O13—Cd6—O8xi106.17 (7)O19—P5—O17108.76 (11)
O14xii—Cd6—O8xi163.55 (7)O19—P5—O18108.10 (10)
O22—Cd7—O15105.64 (7)O17—P5—O18111.09 (10)
O22—Cd7—O18viii90.72 (7)O19—P5—O20109.87 (9)
O15—Cd7—O18viii82.34 (6)O17—P5—O20108.60 (11)
O22—Cd7—O5iii126.62 (7)O18—P5—O20110.39 (10)
O15—Cd7—O5iii126.31 (7)O23—P6—O22113.50 (11)
O18viii—Cd7—O5iii85.34 (7)O23—P6—O21104.52 (11)
O22—Cd7—O24v83.70 (7)O22—P6—O21112.15 (10)
O15—Cd7—O24v93.27 (7)O23—P6—O24107.62 (11)
O18viii—Cd7—O24v171.73 (7)O22—P6—O24106.90 (11)
O5iii—Cd7—O24v102.88 (7)O21—P6—O24112.17 (11)
O22—Cd7—O7iii156.36 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+3/2, z1/2; (iii) x+3/2, y+1/2, z+3/2; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+2; (vi) x1/2, y+1/2, z+1/2; (vii) x+1/2, y1/2, z+3/2; (viii) x+1, y, z; (ix) x+1/2, y+1/2, z+1/2; (x) x+3/2, y1/2, z+3/2; (xi) x1, y, z; (xii) x+1/2, y+1/2, z+3/2.
Infrared bands of β-Cd3(PO4)2 and their assignments top
BandAssignment
431PO4 v2 out of plane bending modes
531PO4 v4 out of plane bending modes
544PO4 v4 out of plane bending modes
558PO4 v4 out of plane bending modes
570PO4 v4 out of plane bending modes
597PO4 v4 out of plane bending modes
624PO4 v4 out of plane bending modes
936The symmetric P—O stretching corresponds to the fundamental vibrational mode v1
971The symmetric P—O stretching corresponds to the fundamental vibrational mode v1
1026The triple-degenerate asymmetric P—O stretching mode corresponds to the v3 fundamental vibrational mode
1051The triple-degenerate asymmetric P—O stretching mode corresponds to the v3 fundamental vibrational mode
Divalent cation-based orthophosphates [M3(PO4)2] summary crystallographic data (Å, °, Å3) top
CompoundSpace groupabcβZVReference
Ca3(PO4)2P21/a12.89 (6)27.28 (5)15.22 (3)126.2 (9)244317.5Mathew et al. (1977)
Cd3(PO4)2P21/c9.22 (4)10.34 (9)24.90 (2)120.7 (1)122030.0Stephens (1967)
P21/n9.19 (7)10.35 (1)21.69 (9)99.6 (2)122033.8Present work
Co3(PO4)2P21/n5.06 (8)8.36 (2)8.79 (4)121.0 (1)2319.4Anderson et al. (1975)
Cr3(PO4)2P21/n4.97 (9)9.50 (3)6.48 (2)91.4 (3)2305.6Glaum et al. (2011)
Fe3(PO4)2P21/a10.44 (3)4.79 (2)6.03 (2)91.0 (5)2301.3Ericsson & Khangi (1988)
P21/n8.88 (2)11.17 (3)6.15 (8)99.4 (8)4601.0Kostiner & Rea (1974)
Mg3(PO4)2P21/n7.60 (7)8.23 (1)5.08 (1)94.1 (5)2316.6Nord & Kierkegaard (1968)
P21/m7.605 (2)8.233 (3)5.080 (1)94.19 (3)2317.2Baykal et al. (1997)
P21/n10.25 (9)4.72 (2)5.92 (4)90.9 (1)2287.0Nord & Stefanidis (1983)
Mn3(PO4)2P21/c8.94 (3)10.04 (1)24.12 (8)120.8 (3)121861.1Stephens & Calvo (1969)
P21/c8.80 (4)11.45 (1)6.25 (5)99.0 (2)4621.9Volkova et al. (2016)
P21/c8.92 (1)9.15 (9)8.66 (9)111.7 (1)4657.2Neher & Salguero (2017)
Ni3(PO4)2P21/n5.82 (6)4.69 (2)10.10 (5)91.1 (3)2276.1Escobal et al. (2005)
P21/c8.70 (2)11.12 (1)6.11 (2)100.0 (8)4581.7Nord & Stefanidis (1983)
Pb3(PO4)2C2/c13.81 (8)5.69 (8)9.43 (3)102.4 (3)4723.5Brixner et al. (1973)
Sr3(PO4)2R3m5.3901 (8)5.3901 (8)19.785 (5)4497.8Sugiyama & Tokonami (1990)
Ba3(PO4)2R3m5.6038 (7)5.6038 (7)21.000 (5)4571.1Sugiyama & Tokonami (1990)
Zn3(PO4)2P21/c5.07 (2)8.47 (3)8.77 (2)120.5 (5)2323.1Calvo (1963); Stephens & Calvo (1967)
C2/c8.14 (7)5.63 (3)15.04 (9)105.1 (8)4665.4Calvo (1965)
P21/n9.39 (8)9.17 (1)8.69 (3)125.7 (3)4607.3Stephens & Calvo (1969)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds