Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101013282/os1140sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270101013282/os1140Isup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270101013282/os1140IIsup3.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270101013282/os1140IIIsup4.hkl |
Single crystals of the title compounds were grown with a tenfold excess eutectic flux of CaCl2, KCl and NaCl (all Fisher, reagent grade). Ca(OH)2 (Mallinckrodt, reagent grade), either MgO (Alfa, 99.998%) or ZnO (Alfa, 99.998%), for (II) and (III), respectively, and Ir (Engelhard, 99.95%) were used as reagents. The starting materials were placed in covered alumina crucibles and heated in air at 1198 K for 24 h, and then cooled to 873 K at a rate of 15 K h-1, at which point the furnace was shut off. The flux was dissolved with distilled water and dark rhombohedral crystals were isolated for analysis.
The patterns of systematic absences in the data confirmed a c glide operation, indicating the space groups R3c and R3c. Preliminary powder X-ray diffraction showed the compounds to be isostructural with K4CdCl6 (space group R3c). Therefore, the expected centrosymmetric space group was chosen and confirmed by the solution of the structures. Structure solution and refinement of compound (I) proceeded without incident, and all atomic positions were found to be fully occupied by the constituent atoms. However, refinement of compound (II) using a fully occupied Ca3MgIrO6 model resulted in an isotropic displacement parameter value of zero for the Mg atom in the trigonal prismatic site (Wyckoff symbol 6a). Previous reports of quaternary calcium iridium oxides have shown mixing of alkaline earth cations and the metal on the trigonal prismatic site (Claridge et al., 1998), and therefore this model was adopted for (II). The final refinement yielded site occupancy factors (SOF) of 0.662 (10) for Mg and 0.338 (10) for Ca on the 6a site. Both the SOF and anisotropic displacement parameters for these atoms could be refined simultaneously, subject to the constraints that the total SOF was equal to 1.0, and that the anisotropic displacement parameters for both atoms were set equal. Similar mixing on the trigonal prismatic site was also observed for compound (III). Values for the SOF of 50% Zn and 50% Ca on the trigonal prismatic site were obtained from refinement with isotropic displacement parameters. However, since even constrained simultaneous refinement of the SOF with the anisotropic displacement factors proved unstable, the SOF values were fixed at 0.5 Ca and 0.5 Zn before the final anisotropic refinement was completed. The largest difference peaks for the three compounds were 3.25 e Å-3 for (I), 2.19 e Å-3 for (II) and 4.57 e Å-3 for (III), all located less than 0.8 Å from Ir.
For all compounds, data collection: SMART (Bruker, 2000); cell refinement: SAINT+ (Bruker, 1998); data reduction: SAINT+; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL.
Fig. 1. The [001] projection of Ca4IrO6. | |
Fig. 2. The structure of a chain in Ca4IrO6 showing 80% probability displacement ellipsoids. |
Ca4IrO6 | Dx = 5.378 Mg m−3 |
Mr = 448.52 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3c | Cell parameters from 1993 reflections |
a = 9.3030 (5) Å | θ = 3.1–36.3° |
c = 11.0864 (8) Å | µ = 27.77 mm−1 |
V = 830.93 (9) Å3 | T = 293 K |
Z = 6 | Irregular, black |
F(000) = 1230 | 0.08 × 0.06 × 0.04 mm |
Bruker SMART APEX CCD area-detector diffractometer | 450 independent reflections |
Radiation source: fine-focus sealed tube | 408 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ω scans | θmax = 36.3°, θmin = 4.4° |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | h = −10→14 |
Tmin = 0.112, Tmax = 0.168 | k = −14→13 |
2592 measured reflections | l = −8→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | w = 1/[σ2(Fo2) + (0.0428P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.061 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 3.25 e Å−3 |
450 reflections | Δρmin = −3.59 e Å−3 |
20 parameters | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00062 (14) |
Ca4IrO6 | Z = 6 |
Mr = 448.52 | Mo Kα radiation |
Trigonal, R3c | µ = 27.77 mm−1 |
a = 9.3030 (5) Å | T = 293 K |
c = 11.0864 (8) Å | 0.08 × 0.06 × 0.04 mm |
V = 830.93 (9) Å3 |
Bruker SMART APEX CCD area-detector diffractometer | 450 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | 408 reflections with I > 2σ(I) |
Tmin = 0.112, Tmax = 0.168 | Rint = 0.026 |
2592 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 20 parameters |
wR(F2) = 0.061 | 0 restraints |
S = 1.07 | Δρmax = 3.25 e Å−3 |
450 reflections | Δρmin = −3.59 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ca1 | −0.36207 (10) | 0.0000 | 0.2500 | 0.00693 (17) | |
Ca2 | 1.0000 | 0.0000 | 0.2500 | 0.0122 (4) | |
Ir | 1.0000 | 0.0000 | 0.0000 | 0.00359 (12) | |
O1 | −0.1588 (3) | 0.0285 (3) | 0.1081 (2) | 0.0098 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ca1 | 0.0070 (3) | 0.0062 (3) | 0.0073 (3) | 0.00310 (17) | −0.00039 (13) | −0.0008 (3) |
Ca2 | 0.0134 (6) | 0.0134 (6) | 0.0098 (8) | 0.0067 (3) | 0.000 | 0.000 |
Ir | 0.00327 (13) | 0.00327 (13) | 0.00422 (16) | 0.00164 (7) | 0.000 | 0.000 |
O1 | 0.0090 (10) | 0.0100 (10) | 0.0119 (9) | 0.0060 (9) | 0.0053 (8) | −0.0003 (8) |
Ca1—O1i | 2.371 (2) | Ca2—Ca1xiv | 3.3683 (9) |
Ca1—O1 | 2.371 (2) | Ca2—Ca1xiii | 3.3683 (9) |
Ca1—O1ii | 2.493 (2) | Ca2—Ca1xv | 3.3683 (9) |
Ca1—O1iii | 2.493 (2) | Ca2—Ca1xix | 3.5032 (4) |
Ca1—O1iv | 2.519 (2) | Ir—O1xiv | 2.020 (2) |
Ca1—O1v | 2.519 (2) | Ir—O1xx | 2.020 (2) |
Ca1—O1vi | 2.699 (3) | Ir—O1xiii | 2.020 (2) |
Ca1—O1vii | 2.699 (3) | Ir—O1xv | 2.020 (2) |
Ca1—Irviii | 3.1164 (4) | Ir—O1xxi | 2.020 (2) |
Ca1—Irix | 3.1165 (4) | Ir—O1xxii | 2.020 (2) |
Ca1—Ca2x | 3.3683 (9) | Ir—Ca2xxiii | 2.7716 (2) |
Ca1—Ca1xi | 3.5032 (4) | Ir—Ca1xxiv | 3.1164 (4) |
Ca2—O1xii | 2.263 (2) | Ir—Ca1xxv | 3.1164 (4) |
Ca2—O1xiii | 2.263 (2) | Ir—Ca1xxvi | 3.1164 (4) |
Ca2—O1xiv | 2.263 (2) | Ir—Ca1xxvii | 3.1164 (4) |
Ca2—O1xv | 2.263 (2) | O1—Irx | 2.020 (2) |
Ca2—O1xvi | 2.263 (2) | O1—Ca2x | 2.263 (2) |
Ca2—O1xvii | 2.263 (2) | O1—Ca1ii | 2.493 (2) |
Ca2—Ir | 2.7716 (2) | O1—Ca1xxviii | 2.519 (2) |
Ca2—Irxviii | 2.7716 (2) | O1—Ca1xi | 2.699 (3) |
O1i—Ca1—O1 | 84.23 (12) | O1xvii—Ca2—Ca1xiii | 105.53 (6) |
O1i—Ca1—O1ii | 94.09 (8) | Ir—Ca2—Ca1xiii | 90.0 |
O1—Ca1—O1ii | 74.60 (9) | Irxviii—Ca2—Ca1xiii | 90.0 |
O1i—Ca1—O1iii | 74.59 (9) | Ca1xiv—Ca2—Ca1xiii | 120.0 |
O1—Ca1—O1iii | 94.09 (8) | O1xii—Ca2—Ca1xv | 105.53 (6) |
O1ii—Ca1—O1iii | 164.95 (12) | O1xiii—Ca2—Ca1xv | 105.53 (6) |
O1i—Ca1—O1iv | 135.49 (5) | O1xiv—Ca2—Ca1xv | 116.34 (6) |
O1—Ca1—O1iv | 71.68 (10) | O1xv—Ca2—Ca1xv | 44.65 (6) |
O1ii—Ca1—O1iv | 113.75 (8) | O1xvi—Ca2—Ca1xv | 116.34 (6) |
O1iii—Ca1—O1iv | 70.59 (9) | O1xvii—Ca2—Ca1xv | 44.65 (6) |
O1i—Ca1—O1v | 71.69 (10) | Ir—Ca2—Ca1xv | 90.0 |
O1—Ca1—O1v | 135.49 (5) | Irxviii—Ca2—Ca1xv | 90.0 |
O1ii—Ca1—O1v | 70.59 (9) | Ca1xiv—Ca2—Ca1xv | 120.0 |
O1iii—Ca1—O1v | 113.75 (8) | Ca1xiii—Ca2—Ca1xv | 120.0 |
O1iv—Ca1—O1v | 148.80 (12) | O1xii—Ca2—Ca1xix | 45.15 (6) |
O1i—Ca1—O1vi | 120.71 (4) | O1xiii—Ca2—Ca1xix | 164.29 (6) |
O1—Ca1—O1vi | 138.29 (8) | O1xiv—Ca2—Ca1xix | 100.61 (6) |
O1ii—Ca1—O1vi | 129.47 (3) | O1xv—Ca2—Ca1xix | 87.34 (6) |
O1iii—Ca1—O1vi | 65.56 (11) | O1xvi—Ca2—Ca1xix | 104.03 (6) |
O1iv—Ca1—O1vi | 67.31 (9) | O1xvii—Ca2—Ca1xix | 50.38 (6) |
O1v—Ca1—O1vi | 85.99 (7) | Ir—Ca2—Ca1xix | 121.832 (4) |
O1i—Ca1—O1vii | 138.29 (8) | Irxviii—Ca2—Ca1xix | 58.168 (4) |
O1—Ca1—O1vii | 120.71 (4) | Ca1xiv—Ca2—Ca1xix | 68.513 (14) |
O1ii—Ca1—O1vii | 65.56 (11) | Ca1xiii—Ca2—Ca1xix | 147.889 (6) |
O1iii—Ca1—O1vii | 129.47 (3) | Ca1xv—Ca2—Ca1xix | 61.266 (11) |
O1iv—Ca1—O1vii | 85.99 (7) | O1xiv—Ir—O1xx | 180.00 (16) |
O1v—Ca1—O1vii | 67.31 (9) | O1xiv—Ir—O1xiii | 88.40 (10) |
O1vi—Ca1—O1vii | 64.15 (11) | O1xx—Ir—O1xiii | 91.60 (10) |
O1i—Ca1—Irviii | 114.75 (6) | O1xiv—Ir—O1xv | 88.40 (10) |
O1—Ca1—Irviii | 101.08 (6) | O1xx—Ir—O1xv | 91.60 (10) |
O1ii—Ca1—Irviii | 150.50 (6) | O1xiii—Ir—O1xv | 88.40 (10) |
O1iii—Ca1—Irviii | 40.31 (5) | O1xiv—Ir—O1xxi | 91.60 (10) |
O1iv—Ca1—Irviii | 40.28 (5) | O1xx—Ir—O1xxi | 88.40 (10) |
O1v—Ca1—Irviii | 122.79 (6) | O1xiii—Ir—O1xxi | 180.00 (17) |
O1vi—Ca1—Irviii | 39.84 (5) | O1xv—Ir—O1xxi | 91.60 (10) |
O1vii—Ca1—Irviii | 94.02 (6) | O1xiv—Ir—O1xxii | 91.60 (10) |
O1i—Ca1—Irix | 101.08 (6) | O1xx—Ir—O1xxii | 88.40 (10) |
O1—Ca1—Irix | 114.75 (6) | O1xiii—Ir—O1xxii | 91.60 (10) |
O1ii—Ca1—Irix | 40.31 (5) | O1xv—Ir—O1xxii | 180.00 (14) |
O1iii—Ca1—Irix | 150.50 (6) | O1xxi—Ir—O1xxii | 88.40 (10) |
O1iv—Ca1—Irix | 122.79 (6) | O1xiv—Ir—Ca2 | 53.61 (7) |
O1v—Ca1—Irix | 40.28 (5) | O1xx—Ir—Ca2 | 126.39 (7) |
O1vi—Ca1—Irix | 94.02 (6) | O1xiii—Ir—Ca2 | 53.61 (7) |
O1vii—Ca1—Irix | 39.84 (5) | O1xv—Ir—Ca2 | 53.61 (7) |
Irviii—Ca1—Irix | 131.37 (3) | O1xxi—Ir—Ca2 | 126.39 (7) |
O1i—Ca1—Ca2x | 42.12 (6) | O1xxii—Ir—Ca2 | 126.39 (7) |
O1—Ca1—Ca2x | 42.12 (6) | O1xiv—Ir—Ca2xxiii | 126.39 (7) |
O1ii—Ca1—Ca2x | 82.48 (6) | O1xx—Ir—Ca2xxiii | 53.61 (7) |
O1iii—Ca1—Ca2x | 82.48 (6) | O1xiii—Ir—Ca2xxiii | 126.39 (7) |
O1iv—Ca1—Ca2x | 105.60 (6) | O1xv—Ir—Ca2xxiii | 126.39 (7) |
O1v—Ca1—Ca2x | 105.60 (6) | O1xxi—Ir—Ca2xxiii | 53.61 (7) |
O1vi—Ca1—Ca2x | 147.93 (5) | O1xxii—Ir—Ca2xxiii | 53.61 (7) |
O1vii—Ca1—Ca2x | 147.93 (5) | Ca2—Ir—Ca2xxiii | 180.0 |
Irviii—Ca1—Ca2x | 114.313 (15) | O1xiv—Ir—Ca1xxiv | 52.98 (7) |
Irix—Ca1—Ca2x | 114.315 (15) | O1xx—Ir—Ca1xxiv | 127.02 (7) |
O1i—Ca1—Ca1xi | 85.73 (6) | O1xiii—Ir—Ca1xxiv | 58.87 (7) |
O1—Ca1—Ca1xi | 50.30 (6) | O1xv—Ir—Ca1xxiv | 126.25 (7) |
O1ii—Ca1—Ca1xi | 124.69 (6) | O1xxi—Ir—Ca1xxiv | 121.13 (7) |
O1iii—Ca1—Ca1xi | 45.97 (6) | O1xxii—Ir—Ca1xxiv | 53.75 (7) |
O1iv—Ca1—Ca1xi | 50.04 (6) | Ca2—Ir—Ca1xxiv | 72.755 (3) |
O1v—Ca1—Ca1xi | 154.26 (5) | Ca2xxiii—Ir—Ca1xxiv | 107.245 (3) |
O1vi—Ca1—Ca1xi | 95.50 (5) | O1xiv—Ir—Ca1xxv | 127.02 (7) |
O1vii—Ca1—Ca1xi | 135.96 (5) | O1xx—Ir—Ca1xxv | 52.98 (7) |
Irviii—Ca1—Ca1xi | 55.800 (1) | O1xiii—Ir—Ca1xxv | 121.13 (7) |
Irix—Ca1—Ca1xi | 163.325 (15) | O1xv—Ir—Ca1xxv | 53.75 (7) |
Ca2x—Ca1—Ca1xi | 61.266 (11) | O1xxi—Ir—Ca1xxv | 58.87 (7) |
O1xii—Ca2—O1xiii | 148.94 (12) | O1xxii—Ir—Ca1xxv | 126.25 (7) |
O1xii—Ca2—O1xiv | 89.31 (12) | Ca2—Ir—Ca1xxv | 107.245 (3) |
O1xiii—Ca2—O1xiv | 76.97 (9) | Ca2xxiii—Ir—Ca1xxv | 72.755 (3) |
O1xii—Ca2—O1xv | 127.33 (12) | Ca1xxiv—Ir—Ca1xxv | 180.00 (3) |
O1xiii—Ca2—O1xv | 76.97 (9) | O1xiv—Ir—Ca1xxvi | 53.75 (7) |
O1xiv—Ca2—O1xv | 76.97 (9) | O1xx—Ir—Ca1xxvi | 126.25 (7) |
O1xii—Ca2—O1xvi | 76.97 (9) | O1xiii—Ir—Ca1xxvi | 127.02 (7) |
O1xiii—Ca2—O1xvi | 89.31 (12) | O1xv—Ir—Ca1xxvi | 121.13 (7) |
O1xiv—Ca2—O1xvi | 127.33 (12) | O1xxi—Ir—Ca1xxvi | 52.98 (7) |
O1xv—Ca2—O1xvi | 148.94 (12) | O1xxii—Ir—Ca1xxvi | 58.87 (7) |
O1xii—Ca2—O1xvii | 76.97 (9) | Ca2—Ir—Ca1xxvi | 107.245 (3) |
O1xiii—Ca2—O1xvii | 127.33 (12) | Ca2xxiii—Ir—Ca1xxvi | 72.755 (3) |
O1xiv—Ca2—O1xvii | 148.94 (12) | Ca1xxiv—Ir—Ca1xxvi | 68.396 (2) |
O1xv—Ca2—O1xvii | 89.31 (12) | Ca1xxv—Ir—Ca1xxvi | 111.604 (2) |
O1xvi—Ca2—O1xvii | 76.97 (9) | O1xiv—Ir—Ca1xxvii | 126.25 (7) |
O1xii—Ca2—Ir | 134.06 (6) | O1xx—Ir—Ca1xxvii | 53.75 (7) |
O1xiii—Ca2—Ir | 45.94 (6) | O1xiii—Ir—Ca1xxvii | 52.98 (7) |
O1xiv—Ca2—Ir | 45.94 (6) | O1xv—Ir—Ca1xxvii | 58.87 (7) |
O1xv—Ca2—Ir | 45.94 (6) | O1xxi—Ir—Ca1xxvii | 127.02 (7) |
O1xvi—Ca2—Ir | 134.06 (6) | O1xxii—Ir—Ca1xxvii | 121.13 (7) |
O1xvii—Ca2—Ir | 134.06 (6) | Ca2—Ir—Ca1xxvii | 72.755 (3) |
O1xii—Ca2—Irxviii | 45.94 (6) | Ca2xxiii—Ir—Ca1xxvii | 107.245 (3) |
O1xiii—Ca2—Irxviii | 134.06 (6) | Ca1xxiv—Ir—Ca1xxvii | 111.604 (2) |
O1xiv—Ca2—Irxviii | 134.06 (6) | Ca1xxv—Ir—Ca1xxvii | 68.396 (2) |
O1xv—Ca2—Irxviii | 134.06 (6) | Ca1xxvi—Ir—Ca1xxvii | 180.00 (3) |
O1xvi—Ca2—Irxviii | 45.94 (6) | Irx—O1—Ca2x | 80.45 (9) |
O1xvii—Ca2—Irxviii | 45.94 (6) | Irx—O1—Ca1 | 166.86 (12) |
Ir—Ca2—Irxviii | 180.0 | Ca2x—O1—Ca1 | 93.23 (8) |
O1xii—Ca2—Ca1xiv | 44.65 (6) | Irx—O1—Ca1ii | 86.70 (9) |
O1xiii—Ca2—Ca1xiv | 116.34 (6) | Ca2x—O1—Ca1ii | 94.79 (9) |
O1xiv—Ca2—Ca1xiv | 44.65 (6) | Ca1—O1—Ca1ii | 105.40 (9) |
O1xv—Ca2—Ca1xiv | 105.53 (6) | Irx—O1—Ca1xxviii | 85.98 (8) |
O1xvi—Ca2—Ca1xiv | 105.53 (6) | Ca2x—O1—Ca1xxviii | 165.76 (11) |
O1xvii—Ca2—Ca1xiv | 116.34 (6) | Ca1—O1—Ca1xxviii | 99.16 (9) |
Ir—Ca2—Ca1xiv | 90.0 | Ca1ii—O1—Ca1xxviii | 88.69 (8) |
Irxviii—Ca2—Ca1xiv | 90.0 | Irx—O1—Ca1xi | 81.29 (8) |
O1xii—Ca2—Ca1xiii | 116.34 (6) | Ca2x—O1—Ca1xi | 89.39 (8) |
O1xiii—Ca2—Ca1xiii | 44.65 (6) | Ca1—O1—Ca1xi | 87.16 (8) |
O1xiv—Ca2—Ca1xiii | 105.53 (6) | Ca1ii—O1—Ca1xi | 166.46 (10) |
O1xv—Ca2—Ca1xiii | 116.34 (6) | Ca1xxviii—O1—Ca1xi | 84.27 (7) |
O1xvi—Ca2—Ca1xiii | 44.65 (6) |
Symmetry codes: (i) x−y, −y, −z+1/2; (ii) −x−1/3, −y+1/3, −z+1/3; (iii) −x+y−2/3, y−1/3, z+1/6; (iv) −x−2/3, −x+y−1/3, −z+1/6; (v) −y−1/3, x−y+1/3, z+1/3; (vi) −y−2/3, −x−1/3, z+1/6; (vii) x−y−1/3, x+1/3, −z+1/3; (viii) y−2/3, x−4/3, −z+1/6; (ix) x−4/3, y+1/3, z+1/3; (x) x−1, y, z; (xi) y−1/3, −x+y−2/3, −z+1/3; (xii) −x+1, −x+y, −z+1/2; (xiii) −y+1, x−y, z; (xiv) −x+y+1, −x, z; (xv) x+1, y, z; (xvi) y+1, x, −z+1/2; (xvii) x−y+1, −y, −z+1/2; (xviii) y+1, x−1, −z+1/2; (xix) x−y+4/3, x+2/3, −z+2/3; (xx) x−y+1, x, −z; (xxi) y+1, −x+y, −z; (xxii) −x+1, −y, −z; (xxiii) −x+2, −y, −z; (xxiv) x−y+5/3, x+1/3, −z+1/3; (xxv) −x+y+1/3, −x−1/3, z−1/3; (xxvi) −y+4/3, x−y+2/3, z−1/3; (xxvii) y+2/3, −x+y−2/3, −z+1/3; (xxviii) −x+y−2/3, −x−1/3, z−1/3. |
Ca3.34Mg0.66IrO6 | Dx = 5.303 Mg m−3 |
Mr = 438.16 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3c | Cell parameters from 1830 reflections |
a = 9.2876 (4) Å | θ = 3.1–33.1° |
c = 11.0200 (8) Å | µ = 27.49 mm−1 |
V = 823.23 (8) Å3 | T = 293 K |
Z = 6 | Rhombohedron, black |
F(000) = 1198 | 0.10 × 0.06 × 0.05 mm |
Bruker SMART APEX CCD area-detector diffractometer | 350 independent reflections |
Radiation source: fine-focus sealed tube | 326 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ω scans | θmax = 33.1°, θmin = 4.4° |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | h = −9→14 |
Tmin = 0.104, Tmax = 0.137 | k = −13→12 |
2382 measured reflections | l = −16→16 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.015 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.034 | w = 1/[σ2(Fo2) + (0.0203P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
350 reflections | Δρmax = 2.19 e Å−3 |
20 parameters | Δρmin = −1.13 e Å−3 |
Ca3.34Mg0.66IrO6 | Z = 6 |
Mr = 438.16 | Mo Kα radiation |
Trigonal, R3c | µ = 27.49 mm−1 |
a = 9.2876 (4) Å | T = 293 K |
c = 11.0200 (8) Å | 0.10 × 0.06 × 0.05 mm |
V = 823.23 (8) Å3 |
Bruker SMART APEX CCD area-detector diffractometer | 350 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | 326 reflections with I > 2σ(I) |
Tmin = 0.104, Tmax = 0.137 | Rint = 0.023 |
2382 measured reflections |
R[F2 > 2σ(F2)] = 0.015 | 20 parameters |
wR(F2) = 0.034 | 0 restraints |
S = 1.09 | Δρmax = 2.19 e Å−3 |
350 reflections | Δρmin = −1.13 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ca1 | 0.30466 (7) | 0.3333 | 0.0833 | 0.00731 (13) | |
Ca2 | 0.0000 | 0.0000 | 0.7500 | 0.0047 (6) | 0.338 (10) |
Mg | 0.0000 | 0.0000 | 0.7500 | 0.0047 (6) | 0.66 |
Ir | 0.0000 | 0.0000 | 1.0000 | 0.00436 (8) | |
O | 0.1853 (2) | 0.0275 (2) | 1.10975 (16) | 0.0110 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ca1 | 0.0065 (2) | 0.0058 (3) | 0.0094 (3) | 0.00292 (15) | −0.00044 (11) | −0.0009 (2) |
Ca2 | 0.0045 (7) | 0.0045 (7) | 0.0050 (9) | 0.0023 (4) | 0.000 | 0.000 |
Mg | 0.0045 (7) | 0.0045 (7) | 0.0050 (9) | 0.0023 (4) | 0.000 | 0.000 |
Ir | 0.00302 (9) | 0.00302 (9) | 0.00705 (11) | 0.00151 (4) | 0.000 | 0.000 |
O | 0.0075 (9) | 0.0114 (9) | 0.0146 (8) | 0.0051 (8) | −0.0058 (7) | −0.0012 (6) |
Ca1—Oi | 2.3590 (19) | Mg—Oxiii | 2.2310 (19) |
Ca1—Oii | 2.3591 (19) | Mg—Oxiv | 2.231 (2) |
Ca1—Oiii | 2.4967 (19) | Mg—Oxv | 2.2310 (19) |
Ca1—Oiv | 2.4967 (19) | Mg—Oxvi | 2.2310 (19) |
Ca1—Ov | 2.5301 (19) | Mg—Ir | 2.7550 (2) |
Ca1—Ovi | 2.5302 (19) | Mg—Irxvii | 2.7550 (2) |
Ca1—Ovii | 2.689 (2) | Mg—Ca1xviii | 3.3621 (7) |
Ca1—Oviii | 2.689 (2) | Mg—Ca1xix | 3.3622 (7) |
Ca1—Irix | 3.1103 (3) | Mg—Ca1xx | 3.3622 (7) |
Ca1—Iriv | 3.1103 (3) | Mg—Ca1xxi | 3.4934 (3) |
Ca1—Ca2x | 3.3621 (7) | Ir—Oxv | 2.0128 (18) |
Ca1—Mgx | 3.3621 (7) | Ir—O | 2.0128 (18) |
Ca2—Oxi | 2.2310 (19) | Ir—Oxvi | 2.0128 (18) |
Ca2—Oxii | 2.231 (2) | Ir—Oxii | 2.0128 (18) |
Ca2—Oxiii | 2.2310 (19) | Ir—Oxxii | 2.0128 (18) |
Ca2—Oxiv | 2.231 (2) | Ir—Oxxiii | 2.0128 (18) |
Ca2—Oxv | 2.2310 (19) | Ir—Mgxv | 2.7550 (2) |
Ca2—Oxvi | 2.2310 (19) | Ir—Ca2xv | 2.7550 (2) |
Ca2—Ir | 2.7550 (2) | Ir—Ca1xxiv | 3.1103 (3) |
Ca2—Irxvii | 2.7550 (2) | Ir—Ca1xxv | 3.1103 (3) |
Ca2—Ca1xviii | 3.3621 (7) | O—Mgxv | 2.2310 (19) |
Ca2—Ca1xix | 3.3622 (7) | O—Ca2xv | 2.2310 (19) |
Ca2—Ca1xx | 3.3622 (7) | O—Ca1ii | 2.3591 (19) |
Ca2—Ca1xxi | 3.4934 (3) | O—Ca1xxiv | 2.4967 (19) |
Mg—Oxi | 2.2310 (19) | O—Ca1xxvi | 2.5302 (19) |
Mg—Oxii | 2.231 (2) | O—Ca1xxvii | 2.6888 (19) |
Oi—Ca1—Oii | 82.88 (10) | Oxii—Mg—Oxvi | 77.30 (7) |
Oi—Ca1—Oiii | 74.78 (7) | Oxiii—Mg—Oxvi | 148.51 (10) |
Oii—Ca1—Oiii | 94.30 (6) | Oxiv—Mg—Oxvi | 127.41 (9) |
Oi—Ca1—Oiv | 94.31 (6) | Oxv—Mg—Oxvi | 77.30 (7) |
Oii—Ca1—Oiv | 74.78 (7) | Oxi—Mg—Ir | 133.85 (4) |
Oiii—Ca1—Oiv | 165.64 (9) | Oxii—Mg—Ir | 46.15 (5) |
Oi—Ca1—Ov | 135.01 (4) | Oxiii—Mg—Ir | 133.85 (4) |
Oii—Ca1—Ov | 72.15 (8) | Oxiv—Mg—Ir | 133.85 (4) |
Oiii—Ca1—Ov | 70.61 (7) | Oxv—Mg—Ir | 46.15 (4) |
Oiv—Ca1—Ov | 113.51 (6) | Oxvi—Mg—Ir | 46.15 (4) |
Oi—Ca1—Ovi | 72.15 (8) | Oxi—Mg—Irxvii | 46.15 (4) |
Oii—Ca1—Ovi | 135.01 (4) | Oxii—Mg—Irxvii | 133.85 (5) |
Oiii—Ca1—Ovi | 113.51 (6) | Oxiii—Mg—Irxvii | 46.15 (4) |
Oiv—Ca1—Ovi | 70.61 (7) | Oxiv—Mg—Irxvii | 46.15 (4) |
Ov—Ca1—Ovi | 148.99 (9) | Oxv—Mg—Irxvii | 133.85 (4) |
Oi—Ca1—Ovii | 120.85 (3) | Oxvi—Mg—Irxvii | 133.85 (4) |
Oii—Ca1—Ovii | 138.85 (6) | Ir—Mg—Irxvii | 180.0 |
Oiii—Ca1—Ovii | 64.89 (9) | Oxi—Mg—Ca1xviii | 105.74 (5) |
Oiv—Ca1—Ovii | 129.45 (2) | Oxii—Mg—Ca1xviii | 105.74 (5) |
Ov—Ca1—Ovii | 67.57 (7) | Oxiii—Mg—Ca1xviii | 44.41 (5) |
Ovi—Ca1—Ovii | 86.00 (6) | Oxiv—Mg—Ca1xviii | 116.30 (5) |
Oi—Ca1—Oviii | 138.85 (6) | Oxv—Mg—Ca1xviii | 44.41 (5) |
Oii—Ca1—Oviii | 120.85 (3) | Oxvi—Mg—Ca1xviii | 116.30 (5) |
Oiii—Ca1—Oviii | 129.45 (2) | Ir—Mg—Ca1xviii | 90.0 |
Oiv—Ca1—Oviii | 64.89 (9) | Irxvii—Mg—Ca1xviii | 90.0 |
Ov—Ca1—Oviii | 86.00 (6) | Oxi—Mg—Ca1xix | 116.30 (5) |
Ovi—Ca1—Oviii | 67.57 (7) | Oxii—Mg—Ca1xix | 44.41 (5) |
Ovii—Ca1—Oviii | 64.82 (9) | Oxiii—Mg—Ca1xix | 105.74 (5) |
Oi—Ca1—Irix | 114.93 (5) | Oxiv—Mg—Ca1xix | 44.41 (5) |
Oii—Ca1—Irix | 101.32 (5) | Oxv—Mg—Ca1xix | 116.30 (5) |
Oiii—Ca1—Irix | 40.24 (4) | Oxvi—Mg—Ca1xix | 105.74 (5) |
Oiv—Ca1—Irix | 150.04 (5) | Ir—Mg—Ca1xix | 90.0 |
Ov—Ca1—Irix | 40.18 (4) | Irxvii—Mg—Ca1xix | 90.0 |
Ovi—Ca1—Irix | 122.94 (4) | Ca1xviii—Mg—Ca1xix | 120.0 |
Ovii—Ca1—Irix | 39.79 (4) | Oxi—Mg—Ca1xx | 44.41 (5) |
Oviii—Ca1—Irix | 94.17 (5) | Oxii—Mg—Ca1xx | 116.30 (5) |
Oi—Ca1—Iriv | 101.32 (5) | Oxiii—Mg—Ca1xx | 116.30 (5) |
Oii—Ca1—Iriv | 114.93 (5) | Oxiv—Mg—Ca1xx | 105.74 (5) |
Oiii—Ca1—Iriv | 150.04 (5) | Oxv—Mg—Ca1xx | 105.74 (5) |
Oiv—Ca1—Iriv | 40.24 (4) | Oxvi—Mg—Ca1xx | 44.41 (5) |
Ov—Ca1—Iriv | 122.94 (4) | Ir—Mg—Ca1xx | 90.0 |
Ovi—Ca1—Iriv | 40.18 (4) | Irxvii—Mg—Ca1xx | 90.0 |
Ovii—Ca1—Iriv | 94.17 (5) | Ca1xviii—Mg—Ca1xx | 120.0 |
Oviii—Ca1—Iriv | 39.79 (4) | Ca1xix—Mg—Ca1xx | 120.0 |
Irix—Ca1—Iriv | 131.33 (2) | Oxi—Mg—Ca1xxi | 104.37 (5) |
Oi—Ca1—Ca2x | 41.44 (5) | Oxii—Mg—Ca1xxi | 87.19 (4) |
Oii—Ca1—Ca2x | 41.44 (5) | Oxiii—Mg—Ca1xxi | 45.38 (5) |
Oiii—Ca1—Ca2x | 82.82 (5) | Oxiv—Mg—Ca1xxi | 50.32 (5) |
Oiv—Ca1—Ca2x | 82.82 (5) | Oxv—Mg—Ca1xxi | 100.27 (5) |
Ov—Ca1—Ca2x | 105.50 (5) | Oxvi—Mg—Ca1xxi | 164.47 (5) |
Ovi—Ca1—Ca2x | 105.50 (5) | Ir—Mg—Ca1xxi | 121.719 (3) |
Ovii—Ca1—Ca2x | 147.59 (4) | Irxvii—Mg—Ca1xxi | 58.281 (3) |
Oviii—Ca1—Ca2x | 147.59 (4) | Ca1xviii—Mg—Ca1xxi | 68.478 (11) |
Irix—Ca1—Ca2x | 114.333 (12) | Ca1xix—Mg—Ca1xxi | 61.236 (9) |
Iriv—Ca1—Ca2x | 114.334 (12) | Ca1xx—Mg—Ca1xxi | 148.002 (5) |
Oi—Ca1—Mgx | 41.44 (5) | Oxv—Ir—O | 180.000 (1) |
Oii—Ca1—Mgx | 41.44 (5) | Oxv—Ir—Oxvi | 87.62 (8) |
Oiii—Ca1—Mgx | 82.82 (5) | O—Ir—Oxvi | 92.38 (8) |
Oiv—Ca1—Mgx | 82.82 (5) | Oxv—Ir—Oxii | 87.62 (8) |
Ov—Ca1—Mgx | 105.50 (5) | O—Ir—Oxii | 92.38 (8) |
Ovi—Ca1—Mgx | 105.50 (5) | Oxvi—Ir—Oxii | 87.62 (8) |
Ovii—Ca1—Mgx | 147.59 (4) | Oxv—Ir—Oxxii | 92.38 (8) |
Oviii—Ca1—Mgx | 147.59 (4) | O—Ir—Oxxii | 87.62 (8) |
Irix—Ca1—Mgx | 114.333 (12) | Oxvi—Ir—Oxxii | 180.000 (1) |
Iriv—Ca1—Mgx | 114.334 (12) | Oxii—Ir—Oxxii | 92.38 (8) |
Ca2x—Ca1—Mgx | 0.0 | Oxv—Ir—Oxxiii | 92.38 (8) |
Oxi—Ca2—Oxii | 148.51 (10) | O—Ir—Oxxiii | 87.62 (8) |
Oxi—Ca2—Oxiii | 77.30 (7) | Oxvi—Ir—Oxxiii | 92.38 (8) |
Oxii—Ca2—Oxiii | 127.41 (9) | Oxii—Ir—Oxxiii | 180.0 |
Oxi—Ca2—Oxiv | 77.30 (7) | Oxxii—Ir—Oxxiii | 87.62 (8) |
Oxii—Ca2—Oxiv | 88.82 (9) | Oxv—Ir—Mg | 53.07 (5) |
Oxiii—Ca2—Oxiv | 77.30 (7) | O—Ir—Mg | 126.93 (5) |
Oxi—Ca2—Oxv | 127.41 (9) | Oxvi—Ir—Mg | 53.07 (5) |
Oxii—Ca2—Oxv | 77.30 (7) | Oxii—Ir—Mg | 53.07 (5) |
Oxiii—Ca2—Oxv | 88.82 (9) | Oxxii—Ir—Mg | 126.93 (5) |
Oxiv—Ca2—Oxv | 148.51 (10) | Oxxiii—Ir—Mg | 126.93 (5) |
Oxi—Ca2—Oxvi | 88.82 (9) | Oxv—Ir—Ca2 | 53.07 (5) |
Oxii—Ca2—Oxvi | 77.30 (7) | O—Ir—Ca2 | 126.93 (5) |
Oxiii—Ca2—Oxvi | 148.51 (10) | Oxvi—Ir—Ca2 | 53.07 (5) |
Oxiv—Ca2—Oxvi | 127.41 (9) | Oxii—Ir—Ca2 | 53.07 (5) |
Oxv—Ca2—Oxvi | 77.30 (7) | Oxxii—Ir—Ca2 | 126.93 (5) |
Oxi—Ca2—Ir | 133.85 (4) | Oxxiii—Ir—Ca2 | 126.93 (5) |
Oxii—Ca2—Ir | 46.15 (5) | Mg—Ir—Ca2 | 0.0 |
Oxiii—Ca2—Ir | 133.85 (4) | Oxv—Ir—Mgxv | 126.93 (5) |
Oxiv—Ca2—Ir | 133.85 (4) | O—Ir—Mgxv | 53.07 (5) |
Oxv—Ca2—Ir | 46.15 (4) | Oxvi—Ir—Mgxv | 126.93 (5) |
Oxvi—Ca2—Ir | 46.15 (4) | Oxii—Ir—Mgxv | 126.93 (5) |
Oxi—Ca2—Irxvii | 46.15 (4) | Oxxii—Ir—Mgxv | 53.07 (5) |
Oxii—Ca2—Irxvii | 133.85 (5) | Oxxiii—Ir—Mgxv | 53.07 (5) |
Oxiii—Ca2—Irxvii | 46.15 (4) | Mg—Ir—Mgxv | 180.0 |
Oxiv—Ca2—Irxvii | 46.15 (4) | Ca2—Ir—Mgxv | 180.0 |
Oxv—Ca2—Irxvii | 133.85 (4) | Oxv—Ir—Ca2xv | 126.93 (5) |
Oxvi—Ca2—Irxvii | 133.85 (4) | O—Ir—Ca2xv | 53.07 (5) |
Ir—Ca2—Irxvii | 180.0 | Oxvi—Ir—Ca2xv | 126.93 (5) |
Oxi—Ca2—Ca1xviii | 105.74 (5) | Oxii—Ir—Ca2xv | 126.93 (5) |
Oxii—Ca2—Ca1xviii | 105.74 (5) | Oxxii—Ir—Ca2xv | 53.07 (5) |
Oxiii—Ca2—Ca1xviii | 44.41 (5) | Oxxiii—Ir—Ca2xv | 53.07 (5) |
Oxiv—Ca2—Ca1xviii | 116.30 (5) | Mg—Ir—Ca2xv | 180.0 |
Oxv—Ca2—Ca1xviii | 44.41 (5) | Ca2—Ir—Ca2xv | 180.0 |
Oxvi—Ca2—Ca1xviii | 116.30 (5) | Mgxv—Ir—Ca2xv | 0.0 |
Ir—Ca2—Ca1xviii | 90.0 | Oxv—Ir—Ca1xxiv | 126.75 (5) |
Irxvii—Ca2—Ca1xviii | 90.0 | O—Ir—Ca1xxiv | 53.25 (5) |
Oxi—Ca2—Ca1xix | 116.30 (5) | Oxvi—Ir—Ca1xxiv | 121.25 (6) |
Oxii—Ca2—Ca1xix | 44.41 (5) | Oxii—Ir—Ca1xxiv | 54.20 (6) |
Oxiii—Ca2—Ca1xix | 105.74 (5) | Oxxii—Ir—Ca1xxiv | 58.75 (6) |
Oxiv—Ca2—Ca1xix | 44.41 (5) | Oxxiii—Ir—Ca1xxiv | 125.80 (6) |
Oxv—Ca2—Ca1xix | 116.30 (5) | Mg—Ir—Ca1xxiv | 107.173 (2) |
Oxvi—Ca2—Ca1xix | 105.74 (5) | Ca2—Ir—Ca1xxiv | 107.173 (2) |
Ir—Ca2—Ca1xix | 90.0 | Mgxv—Ir—Ca1xxiv | 72.827 (2) |
Irxvii—Ca2—Ca1xix | 90.0 | Ca2xv—Ir—Ca1xxiv | 72.827 (2) |
Ca1xviii—Ca2—Ca1xix | 120.0 | Oxv—Ir—Ca1xxv | 53.25 (5) |
Oxi—Ca2—Ca1xx | 44.41 (5) | O—Ir—Ca1xxv | 126.75 (5) |
Oxii—Ca2—Ca1xx | 116.30 (5) | Oxvi—Ir—Ca1xxv | 58.75 (6) |
Oxiii—Ca2—Ca1xx | 116.30 (5) | Oxii—Ir—Ca1xxv | 125.80 (6) |
Oxiv—Ca2—Ca1xx | 105.74 (5) | Oxxii—Ir—Ca1xxv | 121.25 (6) |
Oxv—Ca2—Ca1xx | 105.74 (5) | Oxxiii—Ir—Ca1xxv | 54.20 (6) |
Oxvi—Ca2—Ca1xx | 44.41 (5) | Mg—Ir—Ca1xxv | 72.827 (2) |
Ir—Ca2—Ca1xx | 90.0 | Ca2—Ir—Ca1xxv | 72.827 (2) |
Irxvii—Ca2—Ca1xx | 90.0 | Mgxv—Ir—Ca1xxv | 107.173 (2) |
Ca1xviii—Ca2—Ca1xx | 120.0 | Ca2xv—Ir—Ca1xxv | 107.173 (2) |
Ca1xix—Ca2—Ca1xx | 120.0 | Ca1xxiv—Ir—Ca1xxv | 180.0 |
Oxi—Ca2—Ca1xxi | 104.37 (5) | Ir—O—Mgxv | 80.78 (7) |
Oxii—Ca2—Ca1xxi | 87.19 (4) | Ir—O—Ca2xv | 80.78 (7) |
Oxiii—Ca2—Ca1xxi | 45.38 (5) | Mgxv—O—Ca2xv | 0.0 |
Oxiv—Ca2—Ca1xxi | 50.32 (5) | Ir—O—Ca1ii | 167.66 (10) |
Oxv—Ca2—Ca1xxi | 100.27 (5) | Mgxv—O—Ca1ii | 94.15 (6) |
Oxvi—Ca2—Ca1xxi | 164.47 (5) | Ca2xv—O—Ca1ii | 94.15 (6) |
Ir—Ca2—Ca1xxi | 121.719 (3) | Ir—O—Ca1xxiv | 86.52 (7) |
Irxvii—Ca2—Ca1xxi | 58.281 (3) | Mgxv—O—Ca1xxiv | 95.12 (7) |
Ca1xviii—Ca2—Ca1xxi | 68.478 (11) | Ca2xv—O—Ca1xxiv | 95.12 (7) |
Ca1xix—Ca2—Ca1xxi | 61.236 (9) | Ca1ii—O—Ca1xxiv | 105.22 (7) |
Ca1xx—Ca2—Ca1xxi | 148.002 (5) | Ir—O—Ca1xxvi | 85.61 (6) |
Oxi—Mg—Oxii | 148.51 (10) | Mgxv—O—Ca1xxvi | 165.80 (8) |
Oxi—Mg—Oxiii | 77.30 (7) | Ca2xv—O—Ca1xxvi | 165.80 (8) |
Oxii—Mg—Oxiii | 127.41 (9) | Ca1ii—O—Ca1xxvi | 98.38 (7) |
Oxi—Mg—Oxiv | 77.30 (7) | Ca1xxiv—O—Ca1xxvi | 88.04 (6) |
Oxii—Mg—Oxiv | 88.82 (9) | Ir—O—Ca1xxvii | 81.46 (6) |
Oxiii—Mg—Oxiv | 77.30 (7) | Mgxv—O—Ca1xxvii | 89.99 (6) |
Oxi—Mg—Oxv | 127.41 (9) | Ca2xv—O—Ca1xxvii | 89.99 (6) |
Oxii—Mg—Oxv | 77.30 (7) | Ca1ii—O—Ca1xxvii | 87.33 (6) |
Oxiii—Mg—Oxv | 88.82 (9) | Ca1xxiv—O—Ca1xxvii | 166.03 (7) |
Oxiv—Mg—Oxv | 148.51 (10) | Ca1xxvi—O—Ca1xxvii | 83.98 (6) |
Oxi—Mg—Oxvi | 88.82 (9) |
Symmetry codes: (i) −x+y+2/3, y+1/3, z−7/6; (ii) −x+2/3, −y+1/3, −z+4/3; (iii) x−y+1/3, −y+2/3, −z+7/6; (iv) x, y, z−1; (v) −y+1/3, −x+2/3, z−5/6; (vi) x−y, x, −z+1; (vii) −x+1/3, −x+y+2/3, −z+7/6; (viii) −y, x−y, z−1; (ix) y+1/3, x+2/3, −z+7/6; (x) x+2/3, y+1/3, z−2/3; (xi) −y, −x, z−1/2; (xii) x−y, x, −z+2; (xiii) −x+y, y, z−1/2; (xiv) x, x−y, z−1/2; (xv) −x, −y, −z+2; (xvi) y, −x+y, −z+2; (xvii) y, x, −z+3/2; (xviii) x−2/3, y−1/3, z+2/3; (xix) −x+y+1/3, −x+2/3, z+2/3; (xx) −y+1/3, x−y−1/3, z+2/3; (xxi) −x+1/3, −y+2/3, −z+2/3; (xxii) −y, x−y, z; (xxiii) −x+y, −x, z; (xxiv) x, y, z+1; (xxv) −x, −y, −z+1; (xxvi) y, −x+y, −z+1; (xxvii) −x+y, −x, z+1. |
Ca3.50Zn0.50IrO6 | Dx = 5.605 Mg m−3 |
Mr = 461.17 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3c | Cell parameters from 1927 reflections |
a = 9.2641 (3) Å | θ = 4.4–36.3° |
c = 11.0298 (5) Å | µ = 29.82 mm−1 |
V = 819.79 (5) Å3 | T = 293 K |
Z = 6 | Block, black |
F(000) = 1260 | 0.10 × 0.06 × 0.05 mm |
Bruker SMART APEX CCD are-detector diffractometer | 448 independent reflections |
Radiation source: fine-focus sealed tube | 398 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
ω scans | θmax = 36.3°, θmin = 4.4° |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | h = −14→7 |
Tmin = 0.171, Tmax = 0.344 | k = −10→15 |
2889 measured reflections | l = −10→18 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.031 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.077 | w = 1/[σ2(Fo2) + (0.0496P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
448 reflections | Δρmax = 4.57 e Å−3 |
19 parameters | Δρmin = −3.54 e Å−3 |
Ca3.50Zn0.50IrO6 | Z = 6 |
Mr = 461.17 | Mo Kα radiation |
Trigonal, R3c | µ = 29.82 mm−1 |
a = 9.2641 (3) Å | T = 293 K |
c = 11.0298 (5) Å | 0.10 × 0.06 × 0.05 mm |
V = 819.79 (5) Å3 |
Bruker SMART APEX CCD are-detector diffractometer | 448 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | 398 reflections with I > 2σ(I) |
Tmin = 0.171, Tmax = 0.344 | Rint = 0.034 |
2889 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 19 parameters |
wR(F2) = 0.077 | 0 restraints |
S = 1.13 | Δρmax = 4.57 e Å−3 |
448 reflections | Δρmin = −3.54 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O | 0.1585 (4) | 0.9738 (4) | 0.3897 (3) | 0.0115 (6) | |
Ir | 0.0000 | 1.0000 | 0.5000 | 0.00439 (13) | |
Ca1 | 0.97173 (12) | 0.6667 | 0.4167 | 0.0073 (2) | |
Zn | 0.0000 | 1.0000 | 0.2500 | 0.0087 (3) | 0.50 |
Ca2 | 0.0000 | 1.0000 | 0.2500 | 0.0087 (3) | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
O | 0.0103 (13) | 0.0126 (13) | 0.0137 (13) | 0.0073 (12) | 0.0054 (11) | −0.0016 (10) |
Ir | 0.00377 (14) | 0.00377 (14) | 0.00563 (19) | 0.00188 (7) | 0.000 | 0.000 |
Ca1 | 0.0066 (3) | 0.0065 (4) | 0.0088 (4) | 0.0033 (2) | −0.00040 (18) | −0.0008 (4) |
Zn | 0.0099 (5) | 0.0099 (5) | 0.0064 (6) | 0.0050 (2) | 0.000 | 0.000 |
Ca2 | 0.0099 (5) | 0.0099 (5) | 0.0064 (6) | 0.0050 (2) | 0.000 | 0.000 |
O—Ir | 2.012 (3) | Ca1—Oxvii | 2.675 (3) |
O—Ca2 | 2.223 (3) | Ca1—Irxvii | 3.1049 (5) |
O—Zn | 2.223 (3) | Ca1—Irxiii | 3.1049 (5) |
O—Ca1i | 2.349 (3) | Ca1—Ca2i | 3.3499 (11) |
O—Ca1ii | 2.501 (3) | Ca1—Zni | 3.3499 (11) |
O—Ca1iii | 2.536 (3) | Zn—Oxviii | 2.223 (3) |
O—Ca1iv | 2.675 (3) | Zn—Oix | 2.223 (3) |
Ir—Ov | 2.012 (3) | Zn—Ov | 2.223 (3) |
Ir—Ovi | 2.012 (3) | Zn—Oxix | 2.223 (3) |
Ir—Ovii | 2.012 (3) | Zn—Oxx | 2.223 (3) |
Ir—Oviii | 2.012 (3) | Zn—Irxx | 2.7575 (1) |
Ir—Oix | 2.012 (3) | Zn—Ca1xxi | 3.3499 (11) |
Ir—Ca2viii | 2.7575 (1) | Zn—Ca1xxii | 3.3499 (11) |
Ir—Ca2 | 2.7575 (1) | Zn—Ca1i | 3.3499 (11) |
Ir—Zn | 2.7575 (1) | Zn—Ca1xxiii | 3.4893 (4) |
Ir—Znviii | 2.7575 (1) | Ca2—Oxviii | 2.223 (3) |
Ir—Ca1x | 3.1049 (5) | Ca2—Oix | 2.223 (3) |
Ir—Ca1iv | 3.1049 (5) | Ca2—Ov | 2.223 (3) |
Ca1—Oxi | 2.349 (3) | Ca2—Oxix | 2.223 (3) |
Ca1—Oi | 2.349 (3) | Ca2—Oxx | 2.223 (3) |
Ca1—Oxii | 2.501 (3) | Ca2—Irxx | 2.7575 (1) |
Ca1—Oxiii | 2.501 (3) | Ca2—Ca1xxi | 3.3499 (11) |
Ca1—Oxiv | 2.536 (3) | Ca2—Ca1xxii | 3.3499 (11) |
Ca1—Oxv | 2.536 (3) | Ca2—Ca1i | 3.3499 (11) |
Ca1—Oxvi | 2.675 (3) | Ca2—Ca1xxiii | 3.4893 (4) |
Ir—O—Ca2 | 81.07 (11) | Oi—Ca1—Zni | 41.45 (8) |
Ir—O—Zn | 81.07 (11) | Oxii—Ca1—Zni | 82.95 (8) |
Ca2—O—Zn | 0.0 | Oxiii—Ca1—Zni | 82.95 (8) |
Ir—O—Ca1i | 168.27 (17) | Oxiv—Ca1—Zni | 105.30 (8) |
Ca2—O—Ca1i | 94.17 (12) | Oxv—Ca1—Zni | 105.30 (8) |
Zn—O—Ca1i | 94.17 (12) | Oxvi—Ca1—Zni | 147.58 (7) |
Ir—O—Ca1ii | 86.22 (11) | Oxvii—Ca1—Zni | 147.58 (7) |
Ca2—O—Ca1ii | 95.03 (12) | Irxvii—Ca1—Zni | 114.390 (19) |
Zn—O—Ca1ii | 95.03 (12) | Irxiii—Ca1—Zni | 114.390 (19) |
Ca1i—O—Ca1ii | 104.95 (11) | Ca2i—Ca1—Zni | 0.0 |
Ir—O—Ca1iii | 85.27 (11) | Oxviii—Zn—Oix | 148.01 (17) |
Ca2—O—Ca1iii | 165.85 (14) | Oxviii—Zn—O | 127.90 (16) |
Zn—O—Ca1iii | 165.85 (14) | Oix—Zn—O | 77.27 (12) |
Ca1i—O—Ca1iii | 98.55 (12) | Oxviii—Zn—Ov | 88.76 (16) |
Ca1ii—O—Ca1iii | 87.68 (10) | Oix—Zn—Ov | 77.27 (12) |
Ir—O—Ca1iv | 81.63 (10) | O—Zn—Ov | 77.27 (12) |
Ca2—O—Ca1iv | 90.35 (11) | Oxviii—Zn—Oxix | 77.27 (12) |
Zn—O—Ca1iv | 90.35 (11) | Oix—Zn—Oxix | 127.90 (16) |
Ca1i—O—Ca1iv | 87.71 (10) | O—Zn—Oxix | 88.76 (16) |
Ca1ii—O—Ca1iv | 165.79 (13) | Ov—Zn—Oxix | 148.01 (17) |
Ca1iii—O—Ca1iv | 84.01 (10) | Oxviii—Zn—Oxx | 77.27 (12) |
Ov—Ir—Ovi | 180.000 (1) | Oix—Zn—Oxx | 88.76 (16) |
Ov—Ir—O | 87.24 (14) | O—Zn—Oxx | 148.01 (17) |
Ovi—Ir—O | 92.76 (14) | Ov—Zn—Oxx | 127.90 (16) |
Ov—Ir—Ovii | 92.76 (14) | Oxix—Zn—Oxx | 77.27 (12) |
Ovi—Ir—Ovii | 87.24 (14) | Oxviii—Zn—Irxx | 46.13 (8) |
O—Ir—Ovii | 92.76 (14) | Oix—Zn—Irxx | 133.87 (8) |
Ov—Ir—Oviii | 92.76 (14) | O—Zn—Irxx | 133.87 (8) |
Ovi—Ir—Oviii | 87.24 (14) | Ov—Zn—Irxx | 133.87 (8) |
O—Ir—Oviii | 180.000 (1) | Oxix—Zn—Irxx | 46.13 (8) |
Ovii—Ir—Oviii | 87.24 (14) | Oxx—Zn—Irxx | 46.13 (8) |
Ov—Ir—Oix | 87.24 (14) | Oxviii—Zn—Ir | 133.87 (8) |
Ovi—Ir—Oix | 92.76 (14) | Oix—Zn—Ir | 46.13 (8) |
O—Ir—Oix | 87.24 (14) | O—Zn—Ir | 46.13 (8) |
Ovii—Ir—Oix | 180.000 (1) | Ov—Zn—Ir | 46.13 (8) |
Oviii—Ir—Oix | 92.76 (14) | Oxix—Zn—Ir | 133.87 (8) |
Ov—Ir—Ca2viii | 127.20 (9) | Oxx—Zn—Ir | 133.87 (8) |
Ovi—Ir—Ca2viii | 52.80 (10) | Irxx—Zn—Ir | 180.0 |
O—Ir—Ca2viii | 127.20 (9) | Oxviii—Zn—Ca1xxi | 116.05 (8) |
Ovii—Ir—Ca2viii | 52.80 (9) | Oix—Zn—Ca1xxi | 44.38 (8) |
Oviii—Ir—Ca2viii | 52.80 (9) | O—Zn—Ca1xxi | 116.05 (8) |
Oix—Ir—Ca2viii | 127.20 (9) | Ov—Zn—Ca1xxi | 106.00 (8) |
Ov—Ir—Ca2 | 52.80 (9) | Oxix—Zn—Ca1xxi | 106.00 (8) |
Ovi—Ir—Ca2 | 127.20 (10) | Oxx—Zn—Ca1xxi | 44.38 (8) |
O—Ir—Ca2 | 52.80 (9) | Irxx—Zn—Ca1xxi | 90.0 |
Ovii—Ir—Ca2 | 127.20 (9) | Ir—Zn—Ca1xxi | 90.0 |
Oviii—Ir—Ca2 | 127.20 (9) | Oxviii—Zn—Ca1xxii | 44.38 (8) |
Oix—Ir—Ca2 | 52.80 (9) | Oix—Zn—Ca1xxii | 116.05 (8) |
Ca2viii—Ir—Ca2 | 180.0 | O—Zn—Ca1xxii | 106.00 (8) |
Ov—Ir—Zn | 52.80 (9) | Ov—Zn—Ca1xxii | 44.38 (8) |
Ovi—Ir—Zn | 127.20 (10) | Oxix—Zn—Ca1xxii | 116.05 (8) |
O—Ir—Zn | 52.80 (9) | Oxx—Zn—Ca1xxii | 106.00 (8) |
Ovii—Ir—Zn | 127.20 (9) | Irxx—Zn—Ca1xxii | 90.0 |
Oviii—Ir—Zn | 127.20 (9) | Ir—Zn—Ca1xxii | 90.0 |
Oix—Ir—Zn | 52.80 (9) | Ca1xxi—Zn—Ca1xxii | 120.0 |
Ca2viii—Ir—Zn | 180.0 | Oxviii—Zn—Ca1i | 106.00 (8) |
Ca2—Ir—Zn | 0.0 | Oix—Zn—Ca1i | 106.00 (8) |
Ov—Ir—Znviii | 127.20 (9) | O—Zn—Ca1i | 44.38 (8) |
Ovi—Ir—Znviii | 52.80 (10) | Ov—Zn—Ca1i | 116.05 (8) |
O—Ir—Znviii | 127.20 (9) | Oxix—Zn—Ca1i | 44.38 (8) |
Ovii—Ir—Znviii | 52.80 (9) | Oxx—Zn—Ca1i | 116.05 (8) |
Oviii—Ir—Znviii | 52.80 (9) | Irxx—Zn—Ca1i | 90.0 |
Oix—Ir—Znviii | 127.20 (9) | Ir—Zn—Ca1i | 90.0 |
Ca2viii—Ir—Znviii | 0.0 | Ca1xxi—Zn—Ca1i | 120.0 |
Ca2—Ir—Znviii | 180.0 | Ca1xxii—Zn—Ca1i | 120.0 |
Zn—Ir—Znviii | 180.0 | Oxviii—Zn—Ca1xxiii | 50.06 (8) |
Ov—Ir—Ca1x | 54.50 (10) | Oix—Zn—Ca1xxiii | 100.07 (8) |
Ovi—Ir—Ca1x | 125.50 (10) | O—Zn—Ca1xxiii | 164.73 (8) |
O—Ir—Ca1x | 121.52 (9) | Ov—Zn—Ca1xxiii | 87.47 (8) |
Ovii—Ir—Ca1x | 53.49 (9) | Oxix—Zn—Ca1xxiii | 104.28 (8) |
Oviii—Ir—Ca1x | 58.48 (9) | Oxx—Zn—Ca1xxiii | 45.57 (8) |
Oix—Ir—Ca1x | 126.51 (9) | Irxx—Zn—Ca1xxiii | 58.207 (4) |
Ca2viii—Ir—Ca1x | 72.781 (3) | Ir—Zn—Ca1xxiii | 121.793 (5) |
Ca2—Ir—Ca1x | 107.219 (3) | Ca1xxi—Zn—Ca1xxiii | 68.442 (17) |
Zn—Ir—Ca1x | 107.219 (3) | Ca1xxii—Zn—Ca1xxiii | 61.313 (14) |
Znviii—Ir—Ca1x | 72.781 (3) | Ca1i—Zn—Ca1xxiii | 147.937 (7) |
Ov—Ir—Ca1iv | 125.50 (10) | Oxviii—Ca2—Oix | 148.01 (17) |
Ovi—Ir—Ca1iv | 54.50 (10) | Oxviii—Ca2—O | 127.90 (16) |
O—Ir—Ca1iv | 58.48 (9) | Oix—Ca2—O | 77.27 (12) |
Ovii—Ir—Ca1iv | 126.51 (9) | Oxviii—Ca2—Ov | 88.76 (16) |
Oviii—Ir—Ca1iv | 121.52 (9) | Oix—Ca2—Ov | 77.27 (12) |
Oix—Ir—Ca1iv | 53.49 (9) | O—Ca2—Ov | 77.27 (12) |
Ca2viii—Ir—Ca1iv | 107.219 (3) | Oxviii—Ca2—Oxix | 77.27 (12) |
Ca2—Ir—Ca1iv | 72.781 (3) | Oix—Ca2—Oxix | 127.90 (16) |
Zn—Ir—Ca1iv | 72.781 (3) | O—Ca2—Oxix | 88.76 (16) |
Znviii—Ir—Ca1iv | 107.219 (3) | Ov—Ca2—Oxix | 148.01 (17) |
Ca1x—Ir—Ca1iv | 180.0 | Oxviii—Ca2—Oxx | 77.27 (12) |
Oxi—Ca1—Oi | 82.90 (17) | Oix—Ca2—Oxx | 88.76 (16) |
Oxi—Ca1—Oxii | 75.05 (11) | O—Ca2—Oxx | 148.01 (17) |
Oi—Ca1—Oxii | 94.25 (10) | Ov—Ca2—Oxx | 127.90 (16) |
Oxi—Ca1—Oxiii | 94.25 (10) | Oxix—Ca2—Oxx | 77.27 (12) |
Oi—Ca1—Oxiii | 75.05 (11) | Oxviii—Ca2—Irxx | 46.13 (8) |
Oxii—Ca1—Oxiii | 165.90 (15) | Oix—Ca2—Irxx | 133.87 (8) |
Oxi—Ca1—Oxiv | 135.08 (6) | O—Ca2—Irxx | 133.87 (8) |
Oi—Ca1—Oxiv | 71.79 (13) | Ov—Ca2—Irxx | 133.87 (8) |
Oxii—Ca1—Oxiv | 70.67 (12) | Oxix—Ca2—Irxx | 46.13 (8) |
Oxiii—Ca1—Oxiv | 113.31 (11) | Oxx—Ca2—Irxx | 46.13 (8) |
Oxi—Ca1—Oxv | 71.79 (13) | Oxviii—Ca2—Ir | 133.87 (8) |
Oi—Ca1—Oxv | 135.08 (6) | Oix—Ca2—Ir | 46.13 (8) |
Oxii—Ca1—Oxv | 113.31 (11) | O—Ca2—Ir | 46.13 (8) |
Oxiii—Ca1—Oxv | 70.67 (12) | Ov—Ca2—Ir | 46.13 (8) |
Oxiv—Ca1—Oxv | 149.39 (15) | Oxix—Ca2—Ir | 133.87 (8) |
Oxi—Ca1—Oxvi | 138.81 (11) | Oxx—Ca2—Ir | 133.87 (8) |
Oi—Ca1—Oxvi | 120.86 (5) | Irxx—Ca2—Ir | 180.0 |
Oxii—Ca1—Oxvi | 129.31 (4) | Oxviii—Ca2—Ca1xxi | 116.05 (8) |
Oxiii—Ca1—Oxvi | 64.77 (14) | Oix—Ca2—Ca1xxi | 44.38 (8) |
Oxiv—Ca1—Oxvi | 86.00 (10) | O—Ca2—Ca1xxi | 116.05 (8) |
Oxv—Ca1—Oxvi | 67.92 (12) | Ov—Ca2—Ca1xxi | 106.00 (8) |
Oxi—Ca1—Oxvii | 120.86 (5) | Oxix—Ca2—Ca1xxi | 106.00 (8) |
Oi—Ca1—Oxvii | 138.81 (11) | Oxx—Ca2—Ca1xxi | 44.38 (8) |
Oxii—Ca1—Oxvii | 64.77 (14) | Irxx—Ca2—Ca1xxi | 90.0 |
Oxiii—Ca1—Oxvii | 129.31 (4) | Ir—Ca2—Ca1xxi | 90.0 |
Oxiv—Ca1—Oxvii | 67.92 (13) | Oxviii—Ca2—Ca1xxii | 44.38 (8) |
Oxv—Ca1—Oxvii | 86.00 (10) | Oix—Ca2—Ca1xxii | 116.05 (8) |
Oxvi—Ca1—Oxvii | 64.83 (14) | O—Ca2—Ca1xxii | 106.00 (8) |
Oxi—Ca1—Irxvii | 115.26 (8) | Ov—Ca2—Ca1xxii | 44.38 (8) |
Oi—Ca1—Irxvii | 101.09 (8) | Oxix—Ca2—Ca1xxii | 116.05 (8) |
Oxii—Ca1—Irxvii | 40.29 (7) | Oxx—Ca2—Ca1xxii | 106.00 (8) |
Oxiii—Ca1—Irxvii | 149.78 (8) | Irxx—Ca2—Ca1xxii | 90.0 |
Oxiv—Ca1—Irxvii | 40.23 (7) | Ir—Ca2—Ca1xxii | 90.0 |
Oxv—Ca1—Irxvii | 123.06 (8) | Ca1xxi—Ca2—Ca1xxii | 120.0 |
Oxvi—Ca1—Irxvii | 94.02 (8) | Oxviii—Ca2—Ca1i | 106.00 (8) |
Oxvii—Ca1—Irxvii | 39.88 (7) | Oix—Ca2—Ca1i | 106.00 (8) |
Oxi—Ca1—Irxiii | 101.09 (8) | O—Ca2—Ca1i | 44.38 (8) |
Oi—Ca1—Irxiii | 115.26 (8) | Ov—Ca2—Ca1i | 116.05 (8) |
Oxii—Ca1—Irxiii | 149.78 (8) | Oxix—Ca2—Ca1i | 44.38 (8) |
Oxiii—Ca1—Irxiii | 40.29 (7) | Oxx—Ca2—Ca1i | 116.05 (8) |
Oxiv—Ca1—Irxiii | 123.06 (8) | Irxx—Ca2—Ca1i | 90.0 |
Oxv—Ca1—Irxiii | 40.23 (7) | Ir—Ca2—Ca1i | 90.0 |
Oxvi—Ca1—Irxiii | 39.88 (7) | Ca1xxi—Ca2—Ca1i | 120.0 |
Oxvii—Ca1—Irxiii | 94.02 (7) | Ca1xxii—Ca2—Ca1i | 120.0 |
Irxvii—Ca1—Irxiii | 131.22 (4) | Oxviii—Ca2—Ca1xxiii | 50.06 (8) |
Oxi—Ca1—Ca2i | 41.45 (8) | Oix—Ca2—Ca1xxiii | 100.07 (8) |
Oi—Ca1—Ca2i | 41.45 (8) | O—Ca2—Ca1xxiii | 164.73 (8) |
Oxii—Ca1—Ca2i | 82.95 (8) | Ov—Ca2—Ca1xxiii | 87.47 (8) |
Oxiii—Ca1—Ca2i | 82.95 (8) | Oxix—Ca2—Ca1xxiii | 104.28 (8) |
Oxiv—Ca1—Ca2i | 105.30 (8) | Oxx—Ca2—Ca1xxiii | 45.57 (8) |
Oxv—Ca1—Ca2i | 105.30 (8) | Irxx—Ca2—Ca1xxiii | 58.207 (4) |
Oxvi—Ca1—Ca2i | 147.58 (7) | Ir—Ca2—Ca1xxiii | 121.793 (5) |
Oxvii—Ca1—Ca2i | 147.58 (7) | Ca1xxi—Ca2—Ca1xxiii | 68.442 (17) |
Irxvii—Ca1—Ca2i | 114.390 (19) | Ca1xxii—Ca2—Ca1xxiii | 61.313 (14) |
Irxiii—Ca1—Ca2i | 114.390 (19) | Ca1i—Ca2—Ca1xxiii | 147.937 (7) |
Oxi—Ca1—Zni | 41.45 (8) |
Symmetry codes: (i) −x+4/3, −y+5/3, −z+2/3; (ii) x−1, y, z; (iii) x−y, x, −z+1; (iv) −y+1, x−y+1, z; (v) −x+y−1, −x+1, z; (vi) x−y+1, x+1, −z+1; (vii) y−1, −x+y, −z+1; (viii) −x, −y+2, −z+1; (ix) −y+1, x−y+2, z; (x) y−1, −x+y+1, −z+1; (xi) −x+y+1/3, y−1/3, z+1/6; (xii) x−y+5/3, −y+4/3, −z+5/6; (xiii) x+1, y, z; (xiv) x+2/3, x−y+4/3, z−1/6; (xv) y, −x+y, −z+1; (xvi) −x+y, −x+1, z; (xvii) y−1/3, x+1/3, −z+5/6; (xviii) −x, −x+y, −z+1/2; (xix) x−y+1, −y+2, −z+1/2; (xx) y−1, x+1, −z+1/2; (xxi) y−2/3, −x+y+5/3, −z+2/3; (xxii) x−y−2/3, x−1/3, −z+2/3; (xxiii) −y+1/3, x−y+2/3, z−1/3. |
Experimental details
(I) | (II) | (III) | |
Crystal data | |||
Chemical formula | Ca4IrO6 | Ca3.34Mg0.66IrO6 | Ca3.50Zn0.50IrO6 |
Mr | 448.52 | 438.16 | 461.17 |
Crystal system, space group | Trigonal, R3c | Trigonal, R3c | Trigonal, R3c |
Temperature (K) | 293 | 293 | 293 |
a, c (Å) | 9.3030 (5), 11.0864 (8) | 9.2876 (4), 11.0200 (8) | 9.2641 (3), 11.0298 (5) |
V (Å3) | 830.93 (9) | 823.23 (8) | 819.79 (5) |
Z | 6 | 6 | 6 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 27.77 | 27.49 | 29.82 |
Crystal size (mm) | 0.08 × 0.06 × 0.04 | 0.10 × 0.06 × 0.05 | 0.10 × 0.06 × 0.05 |
Data collection | |||
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer | Bruker SMART APEX CCD area-detector diffractometer | Bruker SMART APEX CCD are-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1997) | Multi-scan (SADABS; Bruker, 1997) | Multi-scan (SADABS; Bruker, 1997) |
Tmin, Tmax | 0.112, 0.168 | 0.104, 0.137 | 0.171, 0.344 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2592, 450, 408 | 2382, 350, 326 | 2889, 448, 398 |
Rint | 0.026 | 0.023 | 0.034 |
(sin θ/λ)max (Å−1) | 0.832 | 0.767 | 0.833 |
Refinement | |||
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.061, 1.07 | 0.015, 0.034, 1.09 | 0.031, 0.077, 1.13 |
No. of reflections | 450 | 350 | 448 |
No. of parameters | 20 | 20 | 19 |
Δρmax, Δρmin (e Å−3) | 3.25, −3.59 | 2.19, −1.13 | 4.57, −3.54 |
Computer programs: SMART (Bruker, 2000), SAINT+ (Bruker, 1998), SAINT+, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1997), SHELXTL.
Ca1—O1 | 2.371 (2) | Ca2—O1iv | 2.263 (2) |
Ca1—O1i | 2.493 (2) | Ca2—Ir | 2.7716 (2) |
Ca1—O1ii | 2.519 (2) | Ir—O1v | 2.020 (2) |
Ca1—O1iii | 2.699 (3) |
Symmetry codes: (i) −x−1/3, −y+1/3, −z+1/3; (ii) −y−1/3, x−y+1/3, z+1/3; (iii) x−y−1/3, x+1/3, −z+1/3; (iv) −x+1, −x+y, −z+1/2; (v) −x+y+1, −x, z. |
Ca1—Oi | 2.3590 (19) | Mg—Ov | 2.2310 (19) |
Ca1—Oii | 2.4967 (19) | Mg—Ir | 2.7550 (2) |
Ca1—Oiii | 2.5301 (19) | Ir—O | 2.0128 (18) |
Ca1—Oiv | 2.689 (2) |
Symmetry codes: (i) −x+y+2/3, y+1/3, z−7/6; (ii) x−y+1/3, −y+2/3, −z+7/6; (iii) −y+1/3, −x+2/3, z−5/6; (iv) −x+1/3, −x+y+2/3, −z+7/6; (v) −y, −x, z−1/2. |
Ir—Oi | 2.012 (3) | Ca1—Oiv | 2.536 (3) |
Ir—Zn | 2.7575 (1) | Ca1—Ov | 2.675 (3) |
Ca1—Oii | 2.349 (3) | Zn—Ovi | 2.223 (3) |
Ca1—Oiii | 2.501 (3) |
Symmetry codes: (i) −y+1, x−y+2, z; (ii) −x+4/3, −y+5/3, −z+2/3; (iii) x+1, y, z; (iv) y, −x+y, −z+1; (v) −x+y, −x+1, z; (vi) −x, −x+y, −z+1/2. |
Ternary and quaternary transition metal oxides belonging to a family of pseudo-one-dimensional oxides derived from the K4CdCl6 structure type (Bergerhoff & Schmitz-Dumont, 1959), with the general formula A3A'BO6, have attracted widespread attention in recent years. This interest can be attributed to their compositional flexibility (Smith & zur Loye, 2000), their low dimensionality, the intriguing magnetic properties exhibited by members of this family of oxides (Nguyen & zur Loye, 1995) and their ability to stabilize high oxidation states (Carlson & Stacy, 1992). While there are several powder X-ray diffraction studies for these materials, only a few calcium iridates with this structure type, for example Ca3CuIrO6 (Tomaszewska & Müller-Buschbaum, 1993), Ca3NaIrO6 (Claridge et al., 1997), and Ca3.75Ni0.25IrO6 (Claridge et al., 1998), have been characterized by single-crystal X-ray diffraction.
In an effort to synthesize novel compounds with the general formula A3A'BO6, exploratory work has been carried out in the calcium-(metal)-iridium-oxygen phase space, which has resulted in the preparation of single crystals of Ca4IrO6, (I), Ca3MgIrO6, (II) and Ca3ZnIrO6, (III) (nominal compositions). Small dark rhombohedral-shaped crystals of (I), (II) and (III) were grown from a eutectic halide flux of CaCl2, KCl and NaCl at high temperatures. While the structure of (I) has previously been determined by powder X-ray diffraction (Sarkozy et al., 1974; Segal et al., 1996), (II) and (III) have not been structurally characterized prior to the present work. The occurrence of zinc in the trigonal prismatic coordination is notable in (III), since the common coordination environment in oxides is tetrahedral (Greenwood & Earnshaw, 1989). \sch
The structure of the title compounds consists of infinite one-dimensional chains of alternating face-shared [A'O6] trigonal prisms and rhombohedrally elongated [BO6] octahedra running parallel to the c axis (Fig. 1). These chains are surrounded by six spiral columns of distorted square [CaO8] antiprisms, and these Ca2+ columns are in turn surrounded by three one-dimensional chains (Fig. 2). Located just off the threefold axis, the Ca—O square antiprisms are highly distorted [Ca—O 2.371 (2)–2.699 (3) Å for (I), 2.359 (2)–2.689 (2) Å for (II) and 2.349 (3)–2.675 (3) Å for (III)].
The [IrO6] octahedra are regular, with Ir—O distances ranging from 2.012 (3) to 2.020 (2) Å, in agreement with other octahedral Ir4+ compounds, e.g. 1.98 (1) Å in Ca3SrIrO6 (Segal et al., 1996) and 2.024 (3) Å in Ca3.5Ni0.5IrO6 (Claridge et al., 1998). The CaO6 [in (I)], MgO6 [in (II)] or ZnO6 [in (III)] trigonal prisms are also regular (Tables 1–3), although they exhibit a significant twisting distortion from an ideal eclipsed conformation [ϕ = 19.4 (2), 15.8 (2) and 17.7 (2)° for (I)-(III), respectively]. These distances are also typical for M—O bond lengths for elements in trigonal prismatic coordination in this structure type, e.g. 2.20 (1) Å in Sr3MgIrO6 (Nguyen & zur Loye, 1995) and 2.199 (4) Å in Sr3ZnPtO6 (Lampe-Önnerud & zur Loye, 1996).
One would expect that the substitution of either Mg or Zn for Ca would affect the lattice parameters and the unit cell size. Since the ionic radii for these elements in sixfold coordination are 0.72 Å for Mg2+, 0.74 Å for Zn2+ and 1.00 Å for Ca2+ (Shannon, 1976), we would expect a decrease in the overall unit cell volume. Two recent studies of the size effect of the A' cation using a series of rare earths (Layland et al., 1998; Smith & zur Loye, 2000) indicated that both the unit cell volume and the ratio of c/a tend to decrease when smaller cations are substituted for larger ones. In this particular case, we find that indeed the unit cell volume decreases, as expected, and the c/a ratio also decreases. The unit cell volume change, however, is not the same for Mg and Zn, as one might have expected from their very similar ionic radii. Sr analogues of this structure type exhibit a similar trend (Segal et al., 1996; Núñez et al., 1997). There seems to be a difference between main group (filled d shell) elements and either transition metals or alkaline earth metals. In the study by Layland et al. (1998), In also did not follow the expected trend.