
![[mu]](/logos/entities/mu_rmgif.gif)
![[kappa]](/logos/entities/kappa_rmgif.gif)
![[mu]](/logos/entities/mu_rmgif.gif)
![[kappa]](/logos/entities/kappa_rmgif.gif)
![[kappa]](/logos/entities/kappa_rmgif.gif)
![[eta]](/logos/entities/eta_rmgif.gif)
![[eta]](/logos/entities/eta_rmgif.gif)
![[mu]](/logos/entities/mu_rmgif.gif)


Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113031429/ov3037sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S0108270113031429/ov3037Isup2.hkl |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S0108270113031429/ov3037IIsup3.hkl |
CCDC references: 853464; 853465
The coordination chemistry of copper complexes involving carboxylate groups which show flexible coordination modes toward metal cations, such as monodentate, chelate and η1:η1:µ bridging ligands in syn–syn, syn–anti and anti–anti conformations, has been studied for a long time. Dinuclear copper(II) complexes with carboxylate O:O'-bridges are widely known for intramolecular magnetic exchange and magneto-structural correlation studies (Kato & Muto, 1988; Melnik, 1982; Sesto et al., 2000). In many examples, copper(II) carboxylates prefer the dinuclear paddle-wheel cage structure. Approximately 250 structures containing the Cu2(RCOO)4 core can be found in the Cambridge Structural Database (Allen, 2002), of which 186 are of the Cu2(RCOO)4(L)2 type, where L is an apical ligand with an O- or N-donor atom (Allen et al., 1983).
Ever since the first tetracarboxylate-bridged copper(II) dimer structure was reported for copper(II) acetate dihydrate [Cu2(MeCO2)4(H2O)2] (van Niekerk & Schoening, 1953), a variety of carboxylate groups have been used in the design of paddle-wheel cage compounds (Catterick & Thornton, 1977; Porter et al., 1986).
Dimeric copper(II) carboxylates and their adducts are good models for the design of anti-inflammatory drugs (Demertzi et al., 2004; Weder et al., 1999) and for magnetic exchange studies between paramagnetic molecules (Sundberg et al., 1996).
We report two copper dinuclear paddle-wheel complexes, namely tetrakis(µ2-4-hydroxybenzoato-κ2O:O')bis[aquacopper(II)] dimethylformamide disolvate dihydrate, (I), and tetrakis(µ2-4-methoxybenzoato-κ2O:O')bis[(dimethylformamide-κO)copper(II)], (II).
Complexes (I) and (II) were prepared by mixing hot aqueous solutions (10 ml) of copper nitrate hexahydrate (Loba; 73.9 mg, 0.25 mmol) with hot ethanolic solutions (10 ml) of 4-HBA (Loba; 34.5 mg, 0.5 mmol) or 4-MBA (Sisco; 38 mg, 0.5 mmol) in 1:2 ratios. In each case, the resulting reaction mixture was stirred for 20 min. To the hot reaction mixture, dimethylformamide (10 ml) was added and stirring was continued for another 30 min at 318 K. After a few weeks, green prismatic crystals of (I) and (II) were obtained from their mother solutions.
Crystal data, data collection and structure refinement details are summarized in Table 1. The water H atoms for (I) were located in difference Fourier maps and refined freely. Water H atoms were restrained to have O—H distances of 0.89 (2) Å and H···H distances of 1.36 (1) Å. All other H atoms were positioned geometrically and were refined using riding model. The O—H and C—H bond lengths are 0.82 Å for O—H, 0.93 Å for methine C—H and 0.96 Å for methyl C—H. The Uiso(H) values were set at 1.2Ueq(C) for aromatic and at 1.5Ueq(C,O) for methyl and hydroxy H atoms.
The asymmetric unit of (I) contains half a molecule of the dinuclear paddle-wheel unit [the molecules crystallize about an inversion center at (0, 0, 1)], one dimethylformamide (DMF) solvent molecule and one water molecule (Fig. 1). The asymmetric unit of (II) contains half a molecule of the dinuclear paddle-wheel unit; the molecules crystalize about an inversion center at (0.5, 0.5, 0) (Fig. 2). In both (I) and (II), the two CuII ions are bridged by four syn,syn-η1:η1:µ carboxylate groups, showing a paddle-wheel cage type with a square-pyramidal geometry (Reger et al.,2012). In each of (I) and (II), the dinuclear copper unit sits about an inversion centre, so that one half of the unit is related to the other.
In complex (I), each CuII ion is coordinated with four different O atoms from the carboxylate groups of 4-hydroxybenzoate (4HBA) ligands which occupy the equatorial positions; the axial position is occupied by a water O atom (O1w) to form a paddle-wheel building block. In complex (II), each CuII ion is coordinated with four different carboxylate O atoms of 4-methoxybenzoate (4MBA) ligands in the equatorial positions; the axial position is occupied by DMF atom O5 to form a paddle-wheel cage unit. As expected, the axial Cu—O(H2O) bond length in (I) and Cu—O(4DMF) bond length in (II) are notably longer than the basal distances between the Cu atoms and the carboxylate O atoms of 4HBA and 4MBA (Tables 2 and 3). This clearly indicates that there is a slight distortion from ideal square-pyramidal geometry which is due to Jahn–Teller distortion. In both (I) and (II), the central CuII atom moves above the equatorial (eq) O4 plane towards the axial (ax) H2O ligand in (I) and towards the DMF ligand in (II). The displacement distances of (I) and (II) are 0.149 and 0.158 Å, respectively. This displacement induces deviations from the ideal bond angles of 90 (α) and 180° (β) (where α = Oax—Cu—Oeq and β = Oeq—Cu—Oeq). The values of α and β are 91.59 (5)–99.17 (5) and 168.95 (5)–169.14 (5)° for (I), and 92.83 (9)–98.81 (9) and 168.35 (9)–168.57 (9)° for (II). The deviations of the Cu—Cu—Oax and Cu—Cu—Oeq bond angles from 180 and 90°, respectively, are also evidence for Jahn–Teller distortion. The corresponding values are 177.34 (4) and 83.00 (4)–86.28 (4)° for (I), and 173.20 (7) and 81.14 (7)–87.47 (6)° for (II), respectively. Jahn–Teller distortion is quite common for a series of copper(II) carboxylate-type complexes reported in the literature (reference?).
The Cu···Cu separations in the dinuclear copper units in (I) and (II) are 2.6047 (3) and 2.6279 (7) Å, respectively, and these values are in close agreement with reported values (Youngme et al., 2008; Luo et al., 2008; Burrows et al., 2008). There are some general trends that can be seen by comparison of several copper acetate-type complexes from the literature (Reinen & Friebel, 1984; Sundberg et al., 1996). Both (I) and (II) agree with this general trend. We have tabulated (Table 4) some copper acetate-type complexes and verified the generalization with complexes (I) and (II). From the table, we concluded that if the Cu···Cu distance decreases, the Cu—Oax distance increases and vice versa. For dimeric copper paddle-wheel complexes, a shortening or lengthening of the Cu···Cu distance is compensated by an elongation or compression of the Cu—Oax bond length. The Oax—Cu···Cu—Oax distance is almost the same as that of sum of the Cu···Cu and Cu—Oax distances. The nature of the substituent on the carboxylate ligand strongly influences the pKa value of the acid, the O—C—O angle in the bridge and the Cu···Cu distance. Electron-withdrawing groups lower the pKa value, increase the acidity (which enhances the Cu···Cu distance), widen the O—C—O angle and increase? the displacement of the CuII atom out of the mean O4 plane, or vice versa for electron-donating groups.
In (I), two centrosymmetric dinuclear paddle-wheel units in the same and adjacent planes are connected by three different R22(20) ring motifs formed via two pairs of Ow—Hw···O and a pair of O—H···O hydrogen bonds (Table 5). The first two R22(20) ring motifs link the coordinated water molecule (O1w) with atoms O6iii and O3iv of 4HBA in the same and adjacent planes, respectively, and the ring motifs extend along the b and c axes [symmetry codes: (iii) x, y+1, z; (iv) x+1, y, z-1]. The formation of the two R22(20) ring motifs are shown Fig. 3. The R22(20) ring motif shown in the middle connects two adjacent planes together. Further neighbouring paddle-wheel units interact via O—H···O hydrogen bonds by linking coordinated hydroxy atom O3 and carboxylate atom O4ii of two different 4HBA ligands which are nearly perpendicular to each other (86.43°) to form the third R22(20) ring motif [symmetry code: (ii) -x, -y, -z+3]. The lattice water molecule O2w links coordinated carboxylate atom O2vi of 4HBA and DMF atom O7 through Ow—Hw···O hydrogen bonds [symmetry code: (vi) -x, -y+1, -z+2]. Hydroxy atom O6 of 4HBA links the noncoordinated atom O2wv via an O—H···Ow hydrogen bond [symmetry code: (v) -x+1, -y, -z+2]. These hydrogen bonds link the symmetry-related coordinated water molecules and coordinated 4HBA ligands of four paddle-wheel units together to generate an R44(36) ring motif. Two centrosymmetric DMF solvent molecules are in the interstitial pockets [R44(36) ring motif]. The alternative occurrence of R22(20) and R44(36) motifs develop an extended three-dimensional supramolecular metal–organic framework (MOF).
In complex (II), as the hydrogen-bond acceptor sites are blocked by a methyl group, the molecular packing is not governed by standard hydrogen bonds. Complex (II) packs in a regular array of molecules.
For both compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and POVRay (Cason, 2004); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).
[Cu2(C7H5O3)4(H2O)2]·2C3H7NO·2H2O | Z = 1 |
Mr = 893.80 | F(000) = 462 |
Triclinic, P1 | Dx = 1.505 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.6946 (2) Å | Cell parameters from 7410 reflections |
b = 10.4874 (2) Å | θ = 2.0–34.2° |
c = 10.6819 (2) Å | µ = 1.16 mm−1 |
α = 82.458 (1)° | T = 296 K |
β = 66.951 (1)° | Prism, green |
γ = 81.904 (1)° | 0.07 × 0.06 × 0.05 mm |
V = 985.92 (3) Å3 |
Bruker SMART APEXII CCD area-detector diffractometer | 7410 independent reflections |
Radiation source: fine-focus sealed tube | 6012 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ϕ and ω scans | θmax = 34.2°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −14→14 |
Tmin = 0.923, Tmax = 0.944 | k = −16→15 |
25865 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0595P)2 + 0.1947P] where P = (Fo2 + 2Fc2)/3 |
7410 reflections | (Δ/σ)max = 0.001 |
269 parameters | Δρmax = 0.87 e Å−3 |
6 restraints | Δρmin = −0.46 e Å−3 |
[Cu2(C7H5O3)4(H2O)2]·2C3H7NO·2H2O | γ = 81.904 (1)° |
Mr = 893.80 | V = 985.92 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 9.6946 (2) Å | Mo Kα radiation |
b = 10.4874 (2) Å | µ = 1.16 mm−1 |
c = 10.6819 (2) Å | T = 296 K |
α = 82.458 (1)° | 0.07 × 0.06 × 0.05 mm |
β = 66.951 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 7410 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 6012 reflections with I > 2σ(I) |
Tmin = 0.923, Tmax = 0.944 | Rint = 0.033 |
25865 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 6 restraints |
wR(F2) = 0.112 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.87 e Å−3 |
7410 reflections | Δρmin = −0.46 e Å−3 |
269 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.12523 (2) | 0.04275 (2) | 0.98664 (2) | 0.0231 (1) | |
O1 | 0.02547 (14) | 0.07665 (14) | 1.17865 (12) | 0.0362 (4) | |
O1W | 0.32575 (15) | 0.12007 (15) | 0.97081 (15) | 0.0412 (4) | |
O2 | −0.19177 (14) | 0.00829 (14) | 1.19902 (12) | 0.0380 (4) | |
O3 | −0.35748 (14) | 0.10062 (16) | 1.81253 (12) | 0.0417 (4) | |
O4 | 0.18360 (14) | −0.13767 (12) | 1.04773 (14) | 0.0344 (4) | |
O5 | −0.02961 (15) | −0.20825 (12) | 1.06350 (15) | 0.0393 (4) | |
O6 | 0.2989 (2) | −0.74078 (13) | 1.19313 (19) | 0.0515 (5) | |
C1 | −0.10823 (18) | 0.05123 (15) | 1.24698 (15) | 0.0270 (4) | |
C2 | −0.17307 (18) | 0.07130 (16) | 1.39481 (16) | 0.0277 (4) | |
C3 | −0.3109 (2) | 0.0260 (2) | 1.47762 (18) | 0.0412 (6) | |
C4 | −0.3706 (2) | 0.0372 (2) | 1.61579 (19) | 0.0427 (6) | |
C5 | −0.29251 (18) | 0.09474 (18) | 1.67455 (16) | 0.0309 (4) | |
C6 | −0.15588 (19) | 0.14203 (18) | 1.59360 (17) | 0.0333 (5) | |
C7 | −0.09568 (19) | 0.12926 (18) | 1.45465 (17) | 0.0318 (4) | |
C8 | 0.09771 (18) | −0.22693 (16) | 1.07056 (16) | 0.0279 (4) | |
C9 | 0.15242 (19) | −0.36133 (16) | 1.10561 (17) | 0.0299 (4) | |
C10 | 0.2905 (2) | −0.38989 (18) | 1.1190 (2) | 0.0398 (6) | |
C11 | 0.3411 (2) | −0.51542 (18) | 1.1498 (2) | 0.0426 (6) | |
C12 | 0.2537 (2) | −0.61547 (17) | 1.1657 (2) | 0.0374 (5) | |
C13 | 0.1162 (2) | −0.58870 (19) | 1.1515 (2) | 0.0444 (6) | |
C14 | 0.0658 (2) | −0.46248 (18) | 1.1226 (2) | 0.0385 (5) | |
O7 | 0.3696 (5) | 0.5656 (5) | 0.7052 (6) | 0.192 (3) | |
N1 | 0.2926 (3) | 0.4283 (3) | 0.6114 (3) | 0.0798 (10) | |
C15 | 0.3065 (7) | 0.5469 (5) | 0.6250 (8) | 0.160 (3) | |
C16 | 0.2181 (10) | 0.3964 (13) | 0.5339 (8) | 0.326 (7) | |
C17 | 0.3537 (9) | 0.3237 (7) | 0.6676 (9) | 0.253 (5) | |
O2W | 0.4439 (2) | 0.76965 (19) | 0.7709 (2) | 0.0675 (7) | |
H1W | 0.314 (2) | 0.158 (2) | 1.0370 (18) | 0.0490* | |
H2W | 0.4217 (18) | 0.105 (2) | 0.927 (2) | 0.0490* | |
H3 | −0.36350 | −0.01250 | 1.43870 | 0.0490* | |
H3A | −0.29280 | 0.10840 | 1.84180 | 0.0630* | |
H4 | −0.46280 | 0.00650 | 1.66980 | 0.0510* | |
H6 | −0.10480 | 0.18230 | 1.63270 | 0.0400* | |
H6A | 0.38590 | −0.74670 | 1.18860 | 0.0770* | |
H7 | −0.00310 | 0.15950 | 1.40080 | 0.0380* | |
H10 | 0.35000 | −0.32350 | 1.10710 | 0.0480* | |
H11 | 0.43310 | −0.53300 | 1.15990 | 0.0510* | |
H13 | 0.05790 | −0.65540 | 1.16130 | 0.0530* | |
H14 | −0.02710 | −0.44490 | 1.11440 | 0.0460* | |
H15 | 0.27150 | 0.61600 | 0.57770 | 0.1920* | |
H16A | 0.29040 | 0.36400 | 0.45070 | 0.4910* | |
H16B | 0.16000 | 0.47200 | 0.51280 | 0.4910* | |
H16C | 0.15220 | 0.33130 | 0.58460 | 0.4910* | |
H17A | 0.34780 | 0.34150 | 0.75560 | 0.3800* | |
H17B | 0.29930 | 0.25080 | 0.67770 | 0.3800* | |
H17C | 0.45720 | 0.30470 | 0.60940 | 0.3800* | |
H3W | 0.406 (3) | 0.710 (2) | 0.751 (3) | 0.0810* | |
H4W | 0.378 (3) | 0.827 (2) | 0.801 (3) | 0.0810* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0228 (1) | 0.0257 (1) | 0.0224 (1) | −0.0018 (1) | −0.0099 (1) | −0.0036 (1) |
O1 | 0.0321 (6) | 0.0513 (8) | 0.0250 (6) | −0.0090 (5) | −0.0066 (5) | −0.0110 (5) |
O1W | 0.0288 (6) | 0.0579 (9) | 0.0393 (7) | −0.0110 (6) | −0.0098 (5) | −0.0148 (6) |
O2 | 0.0339 (6) | 0.0580 (8) | 0.0248 (6) | −0.0093 (6) | −0.0099 (5) | −0.0114 (5) |
O3 | 0.0312 (6) | 0.0736 (10) | 0.0229 (6) | −0.0083 (6) | −0.0101 (5) | −0.0101 (6) |
O4 | 0.0362 (6) | 0.0263 (6) | 0.0474 (7) | −0.0019 (5) | −0.0244 (6) | 0.0001 (5) |
O5 | 0.0341 (6) | 0.0306 (6) | 0.0572 (8) | −0.0021 (5) | −0.0243 (6) | 0.0037 (6) |
O6 | 0.0673 (10) | 0.0266 (7) | 0.0762 (11) | 0.0055 (6) | −0.0469 (9) | −0.0057 (7) |
C1 | 0.0307 (7) | 0.0277 (7) | 0.0232 (7) | 0.0010 (6) | −0.0118 (6) | −0.0038 (5) |
C2 | 0.0281 (7) | 0.0317 (8) | 0.0240 (7) | −0.0013 (6) | −0.0107 (6) | −0.0039 (6) |
C3 | 0.0334 (8) | 0.0682 (13) | 0.0279 (8) | −0.0167 (8) | −0.0125 (7) | −0.0091 (8) |
C4 | 0.0321 (8) | 0.0714 (14) | 0.0271 (8) | −0.0189 (9) | −0.0089 (7) | −0.0055 (8) |
C5 | 0.0285 (7) | 0.0420 (9) | 0.0235 (7) | −0.0001 (6) | −0.0119 (6) | −0.0046 (6) |
C6 | 0.0319 (8) | 0.0437 (9) | 0.0284 (8) | −0.0064 (7) | −0.0128 (6) | −0.0096 (7) |
C7 | 0.0296 (7) | 0.0394 (9) | 0.0274 (7) | −0.0070 (6) | −0.0101 (6) | −0.0049 (6) |
C8 | 0.0322 (7) | 0.0282 (7) | 0.0251 (7) | 0.0001 (6) | −0.0136 (6) | −0.0034 (6) |
C9 | 0.0336 (8) | 0.0261 (7) | 0.0316 (8) | 0.0009 (6) | −0.0157 (6) | −0.0019 (6) |
C10 | 0.0373 (9) | 0.0300 (8) | 0.0566 (12) | −0.0022 (7) | −0.0242 (8) | 0.0003 (8) |
C11 | 0.0409 (10) | 0.0319 (9) | 0.0615 (13) | 0.0027 (7) | −0.0294 (9) | −0.0013 (8) |
C12 | 0.0489 (10) | 0.0275 (8) | 0.0414 (9) | 0.0028 (7) | −0.0249 (8) | −0.0047 (7) |
C13 | 0.0510 (11) | 0.0290 (9) | 0.0638 (13) | −0.0043 (8) | −0.0335 (10) | −0.0023 (8) |
C14 | 0.0405 (9) | 0.0302 (8) | 0.0539 (11) | −0.0018 (7) | −0.0286 (8) | −0.0024 (8) |
O7 | 0.163 (4) | 0.183 (4) | 0.281 (6) | −0.025 (3) | −0.111 (4) | −0.104 (4) |
N1 | 0.0809 (18) | 0.0665 (16) | 0.0754 (17) | −0.0111 (14) | −0.0104 (14) | −0.0063 (13) |
C15 | 0.111 (4) | 0.091 (4) | 0.199 (7) | 0.005 (3) | 0.014 (4) | 0.008 (4) |
C16 | 0.173 (7) | 0.68 (2) | 0.157 (7) | −0.111 (11) | −0.020 (6) | −0.204 (11) |
C17 | 0.166 (7) | 0.162 (6) | 0.288 (10) | 0.013 (5) | 0.012 (6) | 0.127 (6) |
O2W | 0.0478 (9) | 0.0554 (11) | 0.0954 (15) | 0.0111 (8) | −0.0288 (10) | −0.0056 (10) |
Cu1—O1 | 1.9519 (12) | C4—C5 | 1.390 (3) |
Cu1—O1W | 2.1484 (16) | C5—C6 | 1.387 (3) |
Cu1—O4 | 1.9974 (13) | C6—C7 | 1.383 (2) |
Cu1—O2i | 1.9533 (12) | C8—C9 | 1.488 (2) |
Cu1—O5i | 1.9622 (14) | C9—C14 | 1.394 (3) |
O1—C1 | 1.261 (2) | C9—C10 | 1.389 (3) |
O2—C1 | 1.269 (2) | C10—C11 | 1.383 (3) |
O3—C5 | 1.363 (2) | C11—C12 | 1.392 (3) |
O4—C8 | 1.277 (2) | C12—C13 | 1.386 (3) |
O5—C8 | 1.252 (2) | C13—C14 | 1.384 (3) |
O6—C12 | 1.357 (2) | C3—H3 | 0.9300 |
O1W—H2W | 0.86 (2) | C4—H4 | 0.9300 |
O1W—H1W | 0.818 (19) | C6—H6 | 0.9300 |
O3—H3A | 0.8200 | C7—H7 | 0.9300 |
O6—H6A | 0.8200 | C10—H10 | 0.9300 |
O7—C15 | 1.279 (9) | C11—H11 | 0.9300 |
O2W—H3W | 0.86 (3) | C13—H13 | 0.9300 |
O2W—H4W | 0.81 (3) | C14—H14 | 0.9300 |
N1—C15 | 1.302 (6) | C15—H15 | 0.9300 |
N1—C16 | 1.389 (10) | C16—H16B | 0.9600 |
N1—C17 | 1.355 (9) | C16—H16C | 0.9600 |
C1—C2 | 1.485 (2) | C16—H16A | 0.9600 |
C2—C7 | 1.395 (3) | C17—H17C | 0.9600 |
C2—C3 | 1.392 (3) | C17—H17A | 0.9600 |
C3—C4 | 1.373 (3) | C17—H17B | 0.9600 |
Cu1···O2 | 3.0595 (14) | C10···O3ii | 3.416 (3) |
Cu1···O5 | 3.0720 (14) | C11···C11x | 3.482 (3) |
Cu1···O3ii | 3.7302 (14) | C11···O2Wvii | 3.376 (3) |
Cu1···O4i | 3.1647 (15) | C12···O2Wvii | 3.406 (3) |
Cu1···O1i | 3.1520 (14) | C14···C14xi | 3.542 (3) |
Cu1···H4Wiii | 3.30 (3) | C1···H4Wvi | 2.95 (3) |
Cu1···H17B | 3.6400 | C3···H3xii | 2.9400 |
Cu1···H3Aii | 3.0600 | C4···H3xii | 2.9100 |
O1···O1W | 2.943 (2) | C4···H17Cviii | 3.0600 |
O1···O4 | 2.7448 (19) | C5···H2Wviii | 3.02 (2) |
O1···C8 | 3.415 (2) | C7···H15vi | 3.0200 |
O1···Cu1i | 3.1520 (14) | C8···H3Aii | 2.8900 |
O1···O5i | 2.7558 (19) | C10···H3Aii | 3.0400 |
O1W···O2i | 3.126 (2) | C12···H1Wiii | 2.78 (2) |
O1W···O4 | 3.076 (2) | C14···H14xi | 3.0000 |
O1W···O6iv | 2.856 (2) | C15···H3W | 2.79 (3) |
O1W···O1 | 2.943 (2) | C15···H17Cxiii | 3.0700 |
O1W···O3v | 2.860 (2) | H1W···C12iv | 2.78 (2) |
O1W···O3ii | 3.124 (2) | H1W···H6Aiv | 2.3700 |
O1W···O5i | 3.036 (2) | H1W···O6iv | 2.040 (19) |
O2···O2Wvi | 3.079 (3) | H2W···C5v | 3.02 (2) |
O2···O5 | 2.7928 (19) | H2W···H3Av | 2.5600 |
O2···O1Wi | 3.126 (2) | H2W···O3v | 2.00 (2) |
O2···C8i | 3.344 (2) | H3···O2 | 2.4500 |
O2···Cu1 | 3.0595 (14) | H3···C3xii | 2.9400 |
O2···O4i | 2.7790 (18) | H3···H3xii | 2.4400 |
O2W···O2vi | 3.079 (3) | H3···C4xii | 2.9100 |
O2W···O6vii | 2.639 (3) | H3···H4xii | 2.3800 |
O2W···C11vii | 3.376 (3) | H3A···O1Wii | 2.8800 |
O2W···O4iv | 3.206 (2) | H3A···O4ii | 1.9400 |
O2W···C12vii | 3.406 (3) | H3A···H2Wviii | 2.5600 |
O2W···O7 | 2.611 (6) | H3A···H6 | 2.3800 |
O3···C10ii | 3.416 (3) | H3A···Cu1ii | 3.0600 |
O3···Cu1ii | 3.7302 (14) | H3A···C8ii | 2.8900 |
O3···O1Wviii | 2.860 (2) | H3A···C10ii | 3.0400 |
O3···O4ii | 2.744 (2) | H3A···H10ii | 2.3300 |
O3···O1Wii | 3.124 (2) | H3W···C15 | 2.79 (3) |
O4···O2i | 2.7790 (18) | H3W···H6Avii | 2.4400 |
O4···O3ii | 2.744 (2) | H3W···H11vii | 2.5800 |
O4···Cu1i | 3.1647 (15) | H3W···O7 | 1.77 (2) |
O4···C1 | 3.357 (2) | H4···O2Wxiv | 2.7100 |
O4···O1W | 3.076 (2) | H4···H4Wxiv | 2.5100 |
O4···O1 | 2.7448 (19) | H4···H3xii | 2.3800 |
O4···O2Wiii | 3.206 (2) | H4W···H6Avii | 2.3600 |
O5···O1Wi | 3.036 (2) | H4W···O4iv | 2.61 (3) |
O5···O1i | 2.7558 (19) | H4W···Cu1iv | 3.30 (3) |
O5···Cu1 | 3.0720 (14) | H4W···C1vi | 2.95 (3) |
O5···C1i | 3.349 (2) | H4W···H4ix | 2.5100 |
O5···O2 | 2.7928 (19) | H4W···O2vi | 2.32 (3) |
O5···C1 | 3.387 (2) | H6···H3A | 2.3800 |
O6···O1Wiii | 2.856 (2) | H6A···H11 | 2.3100 |
O6···O2Wvii | 2.639 (3) | H6A···H4Wvii | 2.3600 |
O7···O2W | 2.611 (6) | H6A···H1Wiii | 2.3700 |
O1···H7 | 2.5300 | H6A···H3Wvii | 2.4400 |
O1···H1W | 2.80 (2) | H6A···O2Wvii | 1.8400 |
O1···H13iv | 2.8500 | H7···O1 | 2.5300 |
O1W···H3Aii | 2.8800 | H10···H3Aii | 2.3300 |
O2···H3 | 2.4500 | H10···O3ii | 2.6100 |
O2···H4Wvi | 2.32 (3) | H10···O4 | 2.5300 |
O2W···H6Avii | 1.8400 | H11···H6A | 2.3100 |
O2W···H11vii | 2.7400 | H11···O2Wvii | 2.7400 |
O2W···H4ix | 2.7100 | H11···O7vii | 2.7700 |
O3···H10ii | 2.6100 | H11···H3Wvii | 2.5800 |
O3···H2Wviii | 2.00 (2) | H13···O1iii | 2.8500 |
O4···H3Aii | 1.9400 | H14···C14xi | 3.0000 |
O4···H4Wiii | 2.61 (3) | H14···O5 | 2.4700 |
O4···H10 | 2.5300 | H15···C7vi | 3.0200 |
O5···H14 | 2.4700 | H15···H16B | 2.2900 |
O6···H1Wiii | 2.040 (19) | H16A···H17B | 2.5800 |
O7···H17A | 2.3600 | H16B···H15 | 2.2900 |
O7···H11vii | 2.7700 | H16C···H17B | 2.0700 |
O7···H3W | 1.77 (2) | H17A···O7 | 2.3600 |
C1···C8 | 3.592 (2) | H17B···Cu1 | 3.6400 |
C6···C7ii | 3.429 (3) | H17B···H16C | 2.0700 |
C7···C7ii | 3.322 (3) | H17B···H16A | 2.5800 |
C7···C6ii | 3.429 (3) | H17C···C4v | 3.0600 |
C8···C1 | 3.592 (2) | H17C···C15xiii | 3.0700 |
O1—Cu1—O1W | 91.59 (6) | C8—C9—C10 | 121.59 (16) |
O1—Cu1—O4 | 88.05 (6) | C8—C9—C14 | 119.89 (17) |
O1—Cu1—O2i | 169.14 (6) | C9—C10—C11 | 121.08 (18) |
O1—Cu1—O5i | 89.51 (6) | C10—C11—C12 | 119.73 (19) |
O1W—Cu1—O4 | 95.72 (6) | O6—C12—C13 | 117.74 (18) |
O1W—Cu1—O2i | 99.17 (6) | C11—C12—C13 | 119.89 (17) |
O1W—Cu1—O5i | 95.12 (6) | O6—C12—C11 | 122.4 (2) |
O2i—Cu1—O4 | 89.40 (6) | C12—C13—C14 | 119.85 (19) |
O4—Cu1—O5i | 168.95 (6) | C9—C14—C13 | 120.94 (19) |
O2i—Cu1—O5i | 91.00 (6) | C2—C3—H3 | 119.00 |
Cu1—O1—C1 | 121.14 (12) | C4—C3—H3 | 119.00 |
Cu1i—O2—C1 | 124.61 (11) | C5—C4—H4 | 120.00 |
Cu1—O4—C8 | 120.84 (12) | C3—C4—H4 | 120.00 |
Cu1i—O5—C8 | 126.23 (12) | C7—C6—H6 | 120.00 |
H1W—O1W—H2W | 107 (2) | C5—C6—H6 | 120.00 |
Cu1—O1W—H1W | 113.1 (14) | C6—C7—H7 | 120.00 |
Cu1—O1W—H2W | 137.0 (13) | C2—C7—H7 | 120.00 |
C5—O3—H3A | 109.00 | C9—C10—H10 | 119.00 |
C12—O6—H6A | 110.00 | C11—C10—H10 | 119.00 |
H3W—O2W—H4W | 109 (3) | C10—C11—H11 | 120.00 |
C16—N1—C17 | 113.3 (7) | C12—C11—H11 | 120.00 |
C15—N1—C16 | 123.3 (7) | C14—C13—H13 | 120.00 |
C15—N1—C17 | 123.4 (5) | C12—C13—H13 | 120.00 |
O1—C1—O2 | 124.76 (14) | C9—C14—H14 | 120.00 |
O1—C1—C2 | 118.05 (16) | C13—C14—H14 | 120.00 |
O2—C1—C2 | 117.19 (15) | O7—C15—N1 | 118.1 (6) |
C3—C2—C7 | 118.76 (15) | N1—C15—H15 | 121.00 |
C1—C2—C3 | 119.62 (16) | O7—C15—H15 | 121.00 |
C1—C2—C7 | 121.55 (16) | N1—C16—H16A | 109.00 |
C2—C3—C4 | 121.17 (18) | N1—C16—H16B | 109.00 |
C3—C4—C5 | 119.67 (18) | H16A—C16—H16B | 109.00 |
C4—C5—C6 | 120.09 (16) | H16A—C16—H16C | 109.00 |
O3—C5—C4 | 116.40 (16) | N1—C16—H16C | 110.00 |
O3—C5—C6 | 123.52 (17) | H16B—C16—H16C | 109.00 |
C5—C6—C7 | 119.93 (17) | N1—C17—H17B | 109.00 |
C2—C7—C6 | 120.38 (17) | N1—C17—H17C | 109.00 |
O4—C8—O5 | 123.74 (16) | N1—C17—H17A | 109.00 |
O4—C8—C9 | 118.34 (17) | H17A—C17—H17C | 109.00 |
O5—C8—C9 | 117.91 (16) | H17B—C17—H17C | 109.00 |
C10—C9—C14 | 118.50 (17) | H17A—C17—H17B | 109.00 |
O1W—Cu1—O1—C1 | 178.42 (14) | C7—C2—C3—C4 | −0.2 (3) |
O4—Cu1—O1—C1 | −85.91 (14) | C1—C2—C3—C4 | 176.76 (18) |
O5i—Cu1—O1—C1 | 83.31 (14) | C3—C2—C7—C6 | −0.5 (3) |
O1—Cu1—O4—C8 | 89.64 (13) | C1—C2—C7—C6 | −177.35 (17) |
O1W—Cu1—O4—C8 | −178.96 (13) | C2—C3—C4—C5 | 0.0 (3) |
O2i—Cu1—O4—C8 | −79.80 (13) | C3—C4—C5—O3 | −178.97 (18) |
O1W—Cu1—O2i—C1i | −174.10 (14) | C3—C4—C5—C6 | 0.8 (3) |
O4—Cu1—O2i—C1i | 90.21 (14) | C4—C5—C6—C7 | −1.5 (3) |
O1—Cu1—O5i—C8i | −87.26 (15) | O3—C5—C6—C7 | 178.31 (18) |
O1W—Cu1—O5i—C8i | −178.81 (15) | C5—C6—C7—C2 | 1.3 (3) |
Cu1—O1—C1—O2 | −3.4 (2) | O5—C8—C9—C10 | −178.31 (17) |
Cu1—O1—C1—C2 | 175.91 (11) | O5—C8—C9—C14 | 3.2 (2) |
Cu1i—O2—C1—O1 | 6.0 (2) | O4—C8—C9—C14 | −175.90 (16) |
Cu1i—O2—C1—C2 | −173.29 (11) | O4—C8—C9—C10 | 2.6 (2) |
Cu1—O4—C8—O5 | −3.6 (2) | C8—C9—C14—C13 | 178.21 (17) |
Cu1—O4—C8—C9 | 175.43 (11) | C8—C9—C10—C11 | −179.12 (17) |
Cu1i—O5—C8—O4 | 1.3 (2) | C14—C9—C10—C11 | −0.6 (3) |
Cu1i—O5—C8—C9 | −177.75 (11) | C10—C9—C14—C13 | −0.3 (3) |
C17—N1—C15—O7 | −6.4 (10) | C9—C10—C11—C12 | 1.0 (3) |
C16—N1—C15—O7 | 176.0 (7) | C10—C11—C12—C13 | −0.4 (3) |
O1—C1—C2—C7 | 6.7 (2) | C10—C11—C12—O6 | 178.60 (19) |
O2—C1—C2—C3 | 9.2 (2) | O6—C12—C13—C14 | −179.57 (19) |
O1—C1—C2—C3 | −170.16 (17) | C11—C12—C13—C14 | −0.5 (3) |
O2—C1—C2—C7 | −173.97 (17) | C12—C13—C14—C9 | 0.9 (3) |
Symmetry codes: (i) −x, −y, −z+2; (ii) −x, −y, −z+3; (iii) x, y−1, z; (iv) x, y+1, z; (v) x+1, y, z−1; (vi) −x, −y+1, −z+2; (vii) −x+1, −y, −z+2; (viii) x−1, y, z+1; (ix) x+1, y+1, z−1; (x) −x+1, −y−1, −z+2; (xi) −x, −y−1, −z+2; (xii) −x−1, −y, −z+3; (xiii) −x+1, −y+1, −z+1; (xiv) x−1, y−1, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O6iv | 0.818 (19) | 2.040 (19) | 2.856 (2) | 175.7 (16) |
O1W—H2W···O3v | 0.86 (2) | 2.00 (2) | 2.860 (2) | 171 (2) |
O3—H3A···O4ii | 0.82 | 1.94 | 2.744 (2) | 165 |
O2W—H3W···O7 | 0.86 (3) | 1.77 (2) | 2.611 (6) | 166 (3) |
O2W—H4W···O2vi | 0.81 (3) | 2.32 (3) | 3.079 (3) | 157 (3) |
O6—H6A···O2Wvii | 0.82 | 1.84 | 2.639 (3) | 164 |
C3—H3···O2 | 0.93 | 2.45 | 2.760 (2) | 100 |
Symmetry codes: (ii) −x, −y, −z+3; (iv) x, y+1, z; (v) x+1, y, z−1; (vi) −x, −y+1, −z+2; (vii) −x+1, −y, −z+2. |
[Cu2(C8H7O3)4(C3H7NO)2] | F(000) = 908 |
Mr = 877.84 | Dx = 1.450 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3473 reflections |
a = 12.2001 (2) Å | θ = 1.7–24.9° |
b = 18.1548 (4) Å | µ = 1.13 mm−1 |
c = 9.2514 (2) Å | T = 296 K |
β = 101.042 (1)° | Prism, green |
V = 2011.16 (7) Å3 | 0.09 × 0.07 × 0.06 mm |
Z = 2 |
Bruker SMART APEXII CCD area-detector diffractometer | 3473 independent reflections |
Radiation source: fine-focus sealed tube | 2564 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
ϕ and ω scans | θmax = 24.9°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −13→14 |
Tmin = 0.905, Tmax = 0.936 | k = −21→21 |
32954 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0481P)2 + 1.0802P] where P = (Fo2 + 2Fc2)/3 |
3473 reflections | (Δ/σ)max = 0.001 |
257 parameters | Δρmax = 0.57 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
[Cu2(C8H7O3)4(C3H7NO)2] | V = 2011.16 (7) Å3 |
Mr = 877.84 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.2001 (2) Å | µ = 1.13 mm−1 |
b = 18.1548 (4) Å | T = 296 K |
c = 9.2514 (2) Å | 0.09 × 0.07 × 0.06 mm |
β = 101.042 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 3473 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2564 reflections with I > 2σ(I) |
Tmin = 0.905, Tmax = 0.936 | Rint = 0.045 |
32954 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.57 e Å−3 |
3473 reflections | Δρmin = −0.23 e Å−3 |
257 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.55072 (3) | 0.45201 (2) | 0.09644 (4) | 0.0597 (2) | |
O1 | 0.5703 (2) | 0.51884 (14) | −0.1977 (2) | 0.0779 (9) | |
O2 | 0.54988 (19) | 0.61824 (13) | 0.0277 (3) | 0.0739 (9) | |
O3 | 0.6394 (2) | 0.53650 (13) | 0.1882 (2) | 0.0736 (9) | |
O4 | 0.65873 (18) | 0.43842 (12) | −0.0319 (2) | 0.0668 (8) | |
O5 | 0.61516 (19) | 0.36784 (12) | 0.2586 (2) | 0.0666 (8) | |
O6 | 0.8945 (3) | 0.82733 (17) | 0.4535 (4) | 0.1168 (14) | |
O7 | 0.9425 (2) | 0.4022 (2) | −0.5281 (3) | 0.1168 (14) | |
N1 | 0.6014 (3) | 0.31144 (16) | 0.4744 (3) | 0.0726 (10) | |
C1 | 0.6227 (3) | 0.60117 (19) | 0.1390 (4) | 0.0640 (11) | |
C2 | 0.6927 (3) | 0.66211 (19) | 0.2184 (4) | 0.0644 (12) | |
C3 | 0.7845 (4) | 0.6489 (2) | 0.3284 (5) | 0.0927 (16) | |
C4 | 0.8480 (4) | 0.7046 (2) | 0.4012 (5) | 0.1026 (17) | |
C5 | 0.8221 (3) | 0.7752 (2) | 0.3684 (5) | 0.0856 (16) | |
C6 | 0.7328 (4) | 0.7916 (2) | 0.2640 (6) | 0.105 (2) | |
C7 | 0.6689 (4) | 0.7345 (2) | 0.1865 (5) | 0.1001 (19) | |
C8 | 0.8634 (4) | 0.8996 (3) | 0.4348 (6) | 0.123 (3) | |
C9 | 0.6465 (3) | 0.47266 (18) | −0.1526 (4) | 0.0614 (11) | |
C10 | 0.7268 (3) | 0.45676 (17) | −0.2509 (3) | 0.0575 (11) | |
C11 | 0.8200 (3) | 0.41320 (19) | −0.2048 (4) | 0.0687 (12) | |
C12 | 0.8919 (3) | 0.3972 (2) | −0.2976 (4) | 0.0830 (16) | |
C13 | 0.8694 (3) | 0.4237 (2) | −0.4419 (4) | 0.0761 (14) | |
C14 | 0.7777 (3) | 0.46720 (19) | −0.4891 (4) | 0.0673 (11) | |
C15 | 0.7082 (3) | 0.48357 (18) | −0.3941 (3) | 0.0633 (11) | |
C16 | 0.9174 (4) | 0.4211 (3) | −0.6809 (5) | 0.130 (2) | |
C17 | 0.5726 (3) | 0.35971 (18) | 0.3678 (3) | 0.0667 (11) | |
C18 | 0.6927 (4) | 0.2616 (2) | 0.4730 (4) | 0.0965 (19) | |
C19 | 0.5465 (4) | 0.3088 (2) | 0.6006 (4) | 0.1023 (18) | |
H3 | 0.80380 | 0.60040 | 0.35390 | 0.1110* | |
H4 | 0.90960 | 0.69340 | 0.47390 | 0.1230* | |
H6 | 0.71330 | 0.84050 | 0.24290 | 0.1260* | |
H7 | 0.60900 | 0.74640 | 0.11180 | 0.1210* | |
H8A | 0.91960 | 0.93020 | 0.49230 | 0.1840* | |
H8B | 0.79360 | 0.90690 | 0.46640 | 0.1840* | |
H8C | 0.85510 | 0.91250 | 0.33270 | 0.1840* | |
H11 | 0.83410 | 0.39450 | −0.10950 | 0.0820* | |
H12 | 0.95530 | 0.36890 | −0.26470 | 0.1000* | |
H14 | 0.76290 | 0.48540 | −0.58490 | 0.0810* | |
H15 | 0.64660 | 0.51360 | −0.42620 | 0.0760* | |
H16A | 0.97430 | 0.40170 | −0.72900 | 0.1950* | |
H16B | 0.91470 | 0.47370 | −0.69120 | 0.1950* | |
H16C | 0.84640 | 0.40050 | −0.72520 | 0.1950* | |
H17 | 0.51380 | 0.39100 | 0.37590 | 0.0800* | |
H18A | 0.74780 | 0.26810 | 0.56120 | 0.1450* | |
H18B | 0.72550 | 0.27170 | 0.38870 | 0.1450* | |
H18C | 0.66570 | 0.21180 | 0.46810 | 0.1450* | |
H19A | 0.51470 | 0.26080 | 0.60710 | 0.1540* | |
H19B | 0.48840 | 0.34520 | 0.58930 | 0.1540* | |
H19C | 0.60010 | 0.31860 | 0.68890 | 0.1540* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0766 (3) | 0.0623 (3) | 0.0426 (2) | 0.0156 (2) | 0.0175 (2) | 0.0121 (2) |
O1 | 0.0916 (17) | 0.0874 (17) | 0.0626 (14) | 0.0321 (15) | 0.0349 (13) | 0.0212 (13) |
O2 | 0.0820 (16) | 0.0734 (15) | 0.0649 (15) | 0.0057 (12) | 0.0104 (12) | 0.0175 (12) |
O3 | 0.0984 (17) | 0.0638 (15) | 0.0551 (14) | 0.0105 (12) | 0.0056 (12) | 0.0053 (11) |
O4 | 0.0788 (15) | 0.0724 (15) | 0.0524 (13) | 0.0143 (12) | 0.0205 (11) | 0.0101 (11) |
O5 | 0.0876 (16) | 0.0639 (14) | 0.0488 (13) | 0.0102 (12) | 0.0147 (11) | 0.0113 (11) |
O6 | 0.114 (2) | 0.078 (2) | 0.158 (3) | 0.0109 (18) | 0.025 (2) | −0.011 (2) |
O7 | 0.100 (2) | 0.171 (3) | 0.094 (2) | 0.042 (2) | 0.0551 (18) | 0.021 (2) |
N1 | 0.100 (2) | 0.0635 (18) | 0.0499 (16) | −0.0109 (16) | 0.0030 (15) | 0.0124 (14) |
C1 | 0.075 (2) | 0.069 (2) | 0.0538 (19) | 0.0150 (18) | 0.0268 (17) | 0.0077 (17) |
C2 | 0.068 (2) | 0.066 (2) | 0.065 (2) | 0.0118 (17) | 0.0276 (17) | 0.0068 (17) |
C3 | 0.111 (3) | 0.069 (2) | 0.090 (3) | 0.014 (2) | −0.001 (2) | −0.004 (2) |
C4 | 0.110 (3) | 0.080 (3) | 0.107 (3) | 0.018 (3) | −0.006 (3) | −0.009 (3) |
C5 | 0.073 (2) | 0.083 (3) | 0.102 (3) | 0.011 (2) | 0.020 (2) | −0.009 (2) |
C6 | 0.112 (4) | 0.058 (2) | 0.141 (4) | 0.005 (2) | 0.018 (3) | 0.017 (3) |
C7 | 0.091 (3) | 0.078 (3) | 0.123 (4) | 0.003 (2) | 0.000 (3) | 0.024 (3) |
C8 | 0.116 (4) | 0.110 (4) | 0.148 (5) | 0.013 (3) | 0.037 (3) | 0.014 (3) |
C9 | 0.070 (2) | 0.064 (2) | 0.0528 (19) | 0.0036 (17) | 0.0185 (16) | 0.0000 (16) |
C10 | 0.0631 (19) | 0.0606 (19) | 0.0503 (18) | −0.0012 (15) | 0.0150 (14) | −0.0030 (15) |
C11 | 0.073 (2) | 0.078 (2) | 0.056 (2) | 0.0074 (18) | 0.0145 (17) | 0.0075 (17) |
C12 | 0.068 (2) | 0.105 (3) | 0.080 (3) | 0.020 (2) | 0.024 (2) | 0.010 (2) |
C13 | 0.073 (2) | 0.094 (3) | 0.068 (2) | −0.001 (2) | 0.0306 (19) | 0.000 (2) |
C14 | 0.068 (2) | 0.084 (2) | 0.0511 (19) | −0.0009 (18) | 0.0147 (16) | 0.0056 (17) |
C15 | 0.066 (2) | 0.071 (2) | 0.0534 (19) | 0.0057 (17) | 0.0131 (16) | 0.0024 (16) |
C16 | 0.138 (4) | 0.184 (5) | 0.087 (3) | 0.035 (4) | 0.068 (3) | 0.014 (3) |
C17 | 0.086 (2) | 0.063 (2) | 0.0487 (19) | −0.0012 (17) | 0.0072 (17) | 0.0094 (16) |
C18 | 0.128 (4) | 0.072 (3) | 0.076 (3) | 0.009 (2) | −0.014 (2) | 0.012 (2) |
C19 | 0.155 (4) | 0.101 (3) | 0.052 (2) | −0.033 (3) | 0.023 (2) | 0.015 (2) |
Cu1—O3 | 1.973 (2) | C10—C15 | 1.389 (4) |
Cu1—O4 | 1.951 (2) | C11—C12 | 1.371 (5) |
Cu1—O5 | 2.180 (2) | C12—C13 | 1.396 (5) |
Cu1—O1i | 1.967 (2) | C13—C14 | 1.371 (5) |
Cu1—O2i | 1.978 (3) | C14—C15 | 1.366 (5) |
O1—C9 | 1.262 (4) | C3—H3 | 0.9300 |
O2—C1 | 1.263 (4) | C4—H4 | 0.9300 |
O3—C1 | 1.262 (4) | C6—H6 | 0.9300 |
O4—C9 | 1.262 (4) | C7—H7 | 0.9300 |
O5—C17 | 1.230 (4) | C8—H8A | 0.9600 |
O6—C5 | 1.425 (5) | C8—H8B | 0.9600 |
O6—C8 | 1.368 (6) | C8—H8C | 0.9600 |
O7—C13 | 1.362 (5) | C11—H11 | 0.9300 |
O7—C16 | 1.430 (5) | C12—H12 | 0.9300 |
N1—C17 | 1.316 (4) | C14—H14 | 0.9300 |
N1—C18 | 1.437 (6) | C15—H15 | 0.9300 |
N1—C19 | 1.454 (5) | C16—H16A | 0.9600 |
C1—C2 | 1.501 (5) | C16—H16B | 0.9600 |
C2—C3 | 1.382 (6) | C16—H16C | 0.9600 |
C2—C7 | 1.366 (5) | C17—H17 | 0.9300 |
C3—C4 | 1.370 (6) | C18—H18A | 0.9600 |
C4—C5 | 1.341 (5) | C18—H18B | 0.9600 |
C5—C6 | 1.344 (7) | C18—H18C | 0.9600 |
C6—C7 | 1.408 (6) | C19—H19A | 0.9600 |
C9—C10 | 1.487 (5) | C19—H19B | 0.9600 |
C10—C11 | 1.384 (5) | C19—H19C | 0.9600 |
Cu1···O1 | 3.030 (2) | C6···H8B | 2.8100 |
Cu1···O2 | 3.084 (2) | C8···H16Axi | 3.0000 |
Cu1···O3i | 3.165 (2) | C8···H6 | 2.5300 |
Cu1···O4i | 3.203 (2) | C9···H8Bviii | 2.9100 |
Cu1···H14ii | 3.5800 | C10···H19Cix | 2.9400 |
Cu1···H18Ciii | 3.5900 | C10···H8Cviii | 2.8700 |
O1···Cu1 | 3.030 (2) | C12···H18Aix | 3.0700 |
O1···O2 | 2.805 (3) | C14···H16B | 2.7400 |
O1···C1 | 3.403 (4) | C14···H3ix | 2.8700 |
O1···C1i | 3.328 (4) | C14···H16C | 2.7600 |
O1···O3i | 2.766 (3) | C16···H14 | 2.5200 |
O1···O5i | 3.030 (3) | C17···H7vi | 3.0600 |
O1···C17i | 3.054 (4) | C18···H19Ciii | 3.0300 |
O2···O1 | 2.805 (3) | C19···H7vi | 2.7000 |
O2···C9i | 3.295 (4) | H3···O3 | 2.5600 |
O2···Cu1 | 3.084 (2) | H3···C14ii | 2.8700 |
O2···O4i | 2.752 (3) | H3···H14ii | 2.2400 |
O2···O5i | 3.015 (3) | H4···O7iv | 2.4800 |
O3···C14ii | 3.378 (4) | H6···C8 | 2.5300 |
O3···C9 | 3.376 (4) | H6···H8B | 2.4300 |
O3···O5 | 3.156 (3) | H6···H8C | 2.2000 |
O3···O1i | 2.766 (3) | H7···O2 | 2.5100 |
O3···O4 | 2.749 (3) | H7···N1v | 2.8000 |
O3···Cu1i | 3.165 (2) | H7···C17v | 3.0600 |
O4···C1 | 3.419 (4) | H7···C19v | 2.7000 |
O4···O5 | 3.114 (3) | H7···H19Av | 2.3000 |
O4···O2i | 2.752 (3) | H8B···C6 | 2.8100 |
O4···Cu1i | 3.203 (2) | H8B···H6 | 2.4300 |
O4···O3 | 2.749 (3) | H8B···C1vii | 2.8600 |
O5···C14ii | 3.296 (4) | H8B···C9vii | 2.9100 |
O5···O2i | 3.015 (3) | H8C···C6 | 2.6600 |
O5···O1i | 3.030 (3) | H8C···H6 | 2.2000 |
O5···O4 | 3.114 (3) | H8C···H16Axi | 2.4600 |
O5···O3 | 3.156 (3) | H8C···C10vii | 2.8700 |
O7···C4iv | 3.244 (5) | H11···O4 | 2.5100 |
O1···H17i | 2.4100 | H14···Cu1ix | 3.5800 |
O1···H15 | 2.4700 | H14···O3ix | 2.5200 |
O2···H19Av | 2.9200 | H14···C3ix | 3.1000 |
O2···H7 | 2.5100 | H14···C16 | 2.5200 |
O3···H3 | 2.5600 | H14···H3ix | 2.2400 |
O3···H14ii | 2.5200 | H14···H16B | 2.2700 |
O4···H18Ciii | 2.7300 | H14···H16C | 2.3700 |
O4···H11 | 2.5100 | H15···O1 | 2.4700 |
O5···H18B | 2.3800 | H16A···C8xii | 3.0000 |
O5···H16Cii | 2.8600 | H16A···H8Cxii | 2.4600 |
O5···H19Aiii | 2.8700 | H16B···C14 | 2.7400 |
O7···H4iv | 2.4800 | H16B···H14 | 2.2700 |
N1···H7vi | 2.8000 | H16C···O5ix | 2.8600 |
C1···C9i | 3.572 (5) | H16C···C14 | 2.7600 |
C4···O7iv | 3.244 (5) | H16C···H14 | 2.3700 |
C8···C9vii | 3.495 (6) | H17···H19B | 2.2200 |
C8···C10vii | 3.381 (6) | H17···O1i | 2.4100 |
C9···C8viii | 3.495 (6) | H18A···C12ii | 3.0700 |
C9···C1i | 3.572 (5) | H18A···H19C | 2.5100 |
C10···C8viii | 3.381 (6) | H18B···O5 | 2.3800 |
C10···C19ix | 3.576 (5) | H18C···H19A | 2.6000 |
C14···C17ix | 3.249 (5) | H18C···Cu1xiii | 3.5900 |
C14···O5ix | 3.296 (4) | H18C···O4xiii | 2.7300 |
C14···O3ix | 3.378 (4) | H19A···H18C | 2.6000 |
C15···C17ix | 3.354 (4) | H19A···O2vi | 2.9200 |
C17···C14ii | 3.249 (5) | H19A···H7vi | 2.3000 |
C17···C15ii | 3.354 (4) | H19A···O5xiii | 2.8700 |
C19···C10ii | 3.576 (5) | H19B···H17 | 2.2200 |
C1···H8Bviii | 2.8600 | H19B···C2x | 3.0900 |
C2···H19Bx | 3.0900 | H19C···C10ii | 2.9400 |
C3···H14ii | 3.1000 | H19C···H18A | 2.5100 |
C6···H8C | 2.6600 | H19C···C18xiii | 3.0300 |
O3—Cu1—O4 | 88.94 (9) | C10—C15—C14 | 122.0 (3) |
O3—Cu1—O5 | 98.81 (8) | O5—C17—N1 | 127.0 (3) |
O1i—Cu1—O3 | 89.18 (10) | C2—C3—H3 | 119.00 |
O2i—Cu1—O3 | 168.34 (10) | C4—C3—H3 | 119.00 |
O4—Cu1—O5 | 97.68 (9) | C3—C4—H4 | 120.00 |
O1i—Cu1—O4 | 168.57 (9) | C5—C4—H4 | 120.00 |
O2i—Cu1—O4 | 88.94 (10) | C5—C6—H6 | 120.00 |
O1i—Cu1—O5 | 93.76 (9) | C7—C6—H6 | 120.00 |
O2i—Cu1—O5 | 92.84 (9) | C2—C7—H7 | 119.00 |
O1i—Cu1—O2i | 90.64 (10) | C6—C7—H7 | 119.00 |
Cu1i—O1—C9 | 126.4 (2) | O6—C8—H8A | 109.00 |
Cu1i—O2—C1 | 125.2 (2) | O6—C8—H8B | 110.00 |
Cu1—O3—C1 | 122.1 (2) | O6—C8—H8C | 109.00 |
Cu1—O4—C9 | 119.8 (2) | H8A—C8—H8B | 109.00 |
Cu1—O5—C17 | 119.7 (2) | H8A—C8—H8C | 109.00 |
C5—O6—C8 | 116.1 (4) | H8B—C8—H8C | 109.00 |
C13—O7—C16 | 118.0 (3) | C10—C11—H11 | 120.00 |
C17—N1—C18 | 120.6 (3) | C12—C11—H11 | 119.00 |
C17—N1—C19 | 121.7 (3) | C11—C12—H12 | 120.00 |
C18—N1—C19 | 117.6 (3) | C13—C12—H12 | 120.00 |
O2—C1—O3 | 124.2 (3) | C13—C14—H14 | 120.00 |
O2—C1—C2 | 117.6 (3) | C15—C14—H14 | 120.00 |
O3—C1—C2 | 118.2 (3) | C10—C15—H15 | 119.00 |
C1—C2—C3 | 122.5 (3) | C14—C15—H15 | 119.00 |
C1—C2—C7 | 121.7 (4) | O7—C16—H16A | 109.00 |
C3—C2—C7 | 115.8 (4) | O7—C16—H16B | 109.00 |
C2—C3—C4 | 122.4 (4) | O7—C16—H16C | 109.00 |
C3—C4—C5 | 120.5 (4) | H16A—C16—H16B | 109.00 |
O6—C5—C4 | 114.6 (4) | H16A—C16—H16C | 109.00 |
O6—C5—C6 | 125.6 (3) | H16B—C16—H16C | 110.00 |
C4—C5—C6 | 119.9 (4) | O5—C17—H17 | 117.00 |
C5—C6—C7 | 119.8 (4) | N1—C17—H17 | 116.00 |
C2—C7—C6 | 121.6 (4) | N1—C18—H18A | 109.00 |
O1—C9—O4 | 125.1 (3) | N1—C18—H18B | 109.00 |
O1—C9—C10 | 117.2 (3) | N1—C18—H18C | 109.00 |
O4—C9—C10 | 117.7 (3) | H18A—C18—H18B | 110.00 |
C9—C10—C11 | 121.4 (3) | H18A—C18—H18C | 110.00 |
C9—C10—C15 | 120.6 (3) | H18B—C18—H18C | 110.00 |
C11—C10—C15 | 118.0 (3) | N1—C19—H19A | 110.00 |
C10—C11—C12 | 121.0 (3) | N1—C19—H19B | 110.00 |
C11—C12—C13 | 119.6 (3) | N1—C19—H19C | 109.00 |
O7—C13—C12 | 115.5 (3) | H19A—C19—H19B | 109.00 |
O7—C13—C14 | 124.4 (3) | H19A—C19—H19C | 109.00 |
C12—C13—C14 | 120.2 (3) | H19B—C19—H19C | 109.00 |
C13—C14—C15 | 119.3 (3) | ||
O4—Cu1—O3—C1 | 89.3 (3) | O2—C1—C2—C3 | −170.9 (4) |
O5—Cu1—O3—C1 | −173.1 (3) | O2—C1—C2—C7 | 9.5 (6) |
O1i—Cu1—O3—C1 | −79.5 (3) | O3—C1—C2—C3 | 9.8 (6) |
O3—Cu1—O4—C9 | −88.0 (2) | O3—C1—C2—C7 | −169.8 (4) |
O5—Cu1—O4—C9 | 173.3 (2) | C1—C2—C3—C4 | −179.7 (4) |
O2i—Cu1—O4—C9 | 80.6 (2) | C7—C2—C3—C4 | 0.0 (7) |
O3—Cu1—O5—C17 | 86.5 (2) | C1—C2—C7—C6 | 178.2 (4) |
O4—Cu1—O5—C17 | 176.6 (2) | C3—C2—C7—C6 | −1.5 (7) |
O1i—Cu1—O5—C17 | −3.3 (2) | C2—C3—C4—C5 | 0.6 (7) |
O2i—Cu1—O5—C17 | −94.1 (2) | C3—C4—C5—O6 | 179.4 (4) |
O3—Cu1—O1i—C9i | 85.9 (3) | C3—C4—C5—C6 | 0.4 (7) |
O5—Cu1—O1i—C9i | −175.3 (3) | O6—C5—C6—C7 | 179.2 (4) |
O4—Cu1—O2i—C1i | −89.8 (3) | C4—C5—C6—C7 | −1.9 (7) |
O5—Cu1—O2i—C1i | 172.6 (3) | C5—C6—C7—C2 | 2.5 (7) |
Cu1i—O1—C9—O4 | −1.6 (5) | O1—C9—C10—C11 | 172.9 (3) |
Cu1i—O1—C9—C10 | 177.4 (2) | O1—C9—C10—C15 | −9.1 (5) |
Cu1i—O2—C1—O3 | −1.7 (5) | O4—C9—C10—C11 | −8.0 (5) |
Cu1i—O2—C1—C2 | 179.1 (2) | O4—C9—C10—C15 | 170.0 (3) |
Cu1—O3—C1—O2 | −0.6 (5) | C9—C10—C11—C12 | 178.2 (3) |
Cu1—O3—C1—C2 | 178.6 (2) | C15—C10—C11—C12 | 0.2 (5) |
Cu1—O4—C9—O1 | 2.9 (5) | C9—C10—C15—C14 | −177.0 (3) |
Cu1—O4—C9—C10 | −176.1 (2) | C11—C10—C15—C14 | 1.0 (5) |
Cu1—O5—C17—N1 | 179.6 (3) | C10—C11—C12—C13 | −1.6 (5) |
C8—O6—C5—C4 | −172.9 (4) | C11—C12—C13—O7 | −177.0 (3) |
C8—O6—C5—C6 | 6.1 (7) | C11—C12—C13—C14 | 1.9 (5) |
C16—O7—C13—C12 | 173.5 (4) | O7—C13—C14—C15 | 178.1 (3) |
C16—O7—C13—C14 | −5.3 (6) | C12—C13—C14—C15 | −0.7 (5) |
C18—N1—C17—O5 | 1.2 (6) | C13—C14—C15—C10 | −0.7 (5) |
C19—N1—C17—O5 | 178.1 (3) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, y, z+1; (iii) x, −y+1/2, z−1/2; (iv) −x+2, −y+1, −z; (v) −x+1, y+1/2, −z+1/2; (vi) −x+1, y−1/2, −z+1/2; (vii) x, −y+3/2, z+1/2; (viii) x, −y+3/2, z−1/2; (ix) x, y, z−1; (x) −x+1, −y+1, −z+1; (xi) −x+2, y+1/2, −z−1/2; (xii) −x+2, y−1/2, −z−1/2; (xiii) x, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O7iv | 0.93 | 2.48 | 3.244 (5) | 139 |
C14—H14···O3ix | 0.93 | 2.52 | 3.378 (4) | 154 |
C17—H17···O1i | 0.93 | 2.41 | 3.054 (4) | 126 |
C18—H18B···O5 | 0.96 | 2.38 | 2.798 (4) | 105 |
Symmetry codes: (i) −x+1, −y+1, −z; (iv) −x+2, −y+1, −z; (ix) x, y, z−1. |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | [Cu2(C7H5O3)4(H2O)2]·2C3H7NO·2H2O | [Cu2(C8H7O3)4(C3H7NO)2] |
Mr | 893.80 | 877.84 |
Crystal system, space group | Triclinic, P1 | Monoclinic, P21/c |
Temperature (K) | 296 | 296 |
a, b, c (Å) | 9.6946 (2), 10.4874 (2), 10.6819 (2) | 12.2001 (2), 18.1548 (4), 9.2514 (2) |
α, β, γ (°) | 82.458 (1), 66.951 (1), 81.904 (1) | 90, 101.042 (1), 90 |
V (Å3) | 985.92 (3) | 2011.16 (7) |
Z | 1 | 2 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 1.16 | 1.13 |
Crystal size (mm) | 0.07 × 0.06 × 0.05 | 0.09 × 0.07 × 0.06 |
Data collection | ||
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.923, 0.944 | 0.905, 0.936 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25865, 7410, 6012 | 32954, 3473, 2564 |
Rint | 0.033 | 0.045 |
(sin θ/λ)max (Å−1) | 0.791 | 0.593 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.112, 1.06 | 0.038, 0.105, 1.03 |
No. of reflections | 7410 | 3473 |
No. of parameters | 269 | 257 |
No. of restraints | 6 | 0 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.87, −0.46 | 0.57, −0.23 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and POVRay (Cason, 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Cu1—O1 | 1.9519 (12) | Cu1—O2i | 1.9533 (12) |
Cu1—O1W | 2.1484 (16) | Cu1—O5i | 1.9622 (14) |
Cu1—O4 | 1.9974 (13) | ||
O1—Cu1—O1W | 91.59 (6) | O1W—Cu1—O2i | 99.17 (6) |
O1—Cu1—O4 | 88.05 (6) | O1W—Cu1—O5i | 95.12 (6) |
O1—Cu1—O2i | 169.14 (6) | O2i—Cu1—O4 | 89.40 (6) |
O1—Cu1—O5i | 89.51 (6) | O4—Cu1—O5i | 168.95 (6) |
O1W—Cu1—O4 | 95.72 (6) | O2i—Cu1—O5i | 91.00 (6) |
Symmetry code: (i) −x, −y, −z+2. |
Cu1—O3 | 1.973 (2) | Cu1—O1i | 1.967 (2) |
Cu1—O4 | 1.951 (2) | Cu1—O2i | 1.978 (3) |
Cu1—O5 | 2.180 (2) | ||
O3—Cu1—O4 | 88.94 (9) | O1i—Cu1—O4 | 168.57 (9) |
O3—Cu1—O5 | 98.81 (8) | O2i—Cu1—O4 | 88.94 (10) |
O1i—Cu1—O3 | 89.18 (10) | O1i—Cu1—O5 | 93.76 (9) |
O2i—Cu1—O3 | 168.34 (10) | O2i—Cu1—O5 | 92.84 (9) |
O4—Cu1—O5 | 97.68 (9) | O1i—Cu1—O2i | 90.64 (10) |
Symmetry code: (i) −x+1, −y+1, −z. |
No | Complex | pKa | Cu···Cu | Cu—Oax | Average O—C—O | Average Oax—Cu—Oeq (α) | Average Oeq—Cu—Oeq (β) | Average Cu—Cu—Oeq | Cu—Cu—Oax | Reference | |
1 | [Cu2(2-NO2C6H4COO)4(H2O)2].2EtOH | 2.17 | 2.6543 (10) | 2.1331 (15) | 127.02 (13) | 95.76 (6) | 168.45 (5) | 84.28 (4) | 172.24 (4) | a | |
2 | [Cu2(3-OCH3C6H4COO)4(CH3CN)2] | 4.07 | 2.6433 (3) | 2.1703 (14) | 125.33 (14) | 95.94 (6) | 168.07 (5) | 84.05 (4) | 176.58 (5) | b | |
3 | [Cu2Fe4(C5H5)4(C5H4COO)4(CH3OH)2].2CH3OH | 4.2 | 2.5936 (14) | 2.154 (4) | 125.75 (5) | 95.04 (16) | 169.83 (16) | 84.92 (11) | 170.78 (12) | c | |
4 | [Cu2(C10H7CH2COO)4(DMF)2] | 4.24 | 2.6485 (6) | 2.1535 (19) | 126.05 (3) | 96.07 (8) | 167.82 (8) | 83.92 (6) | 169.88 (6) | d | |
5 | [Cu2(4-OCH3C6H4COO)4(DMF)2] | 4.48 | 2.6279 (7) | 2.810 (2) | 124.65 (3) | 95.77 (9) | 168.46 (9) | 84.27 (7) | 173.20 (7) | e | |
6 | [Cu2(4-OHC6H4COO)4(H2O)2].2DMF.2H2O | 4.59 | 2.6047 (3) | 2.1484 (13) | 124.25 (15) | 95.4 (6) | 169.05 (5) | 84.59 (4) | 177.34 (4) | f |
References: (a) Moncol et al. (2006); (b) Kar et al. (2011); (c) Artetxe et al. (2011); (d) Yin et al. (2012); (e) present work, (II); (f) present work, (I). |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O6ii | 0.818 (19) | 2.040 (19) | 2.856 (2) | 175.7 (16) |
O1W—H2W···O3iii | 0.86 (2) | 2.00 (2) | 2.860 (2) | 171 (2) |
O3—H3A···O4iv | 0.8200 | 1.9400 | 2.744 (2) | 165.00 |
O2W—H3W···O7 | 0.86 (3) | 1.77 (2) | 2.611 (6) | 166 (3) |
O2W—H4W···O2v | 0.81 (3) | 2.32 (3) | 3.079 (3) | 157 (3) |
O6—H6A···O2Wvi | 0.8200 | 1.8400 | 2.639 (3) | 164.00 |
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y, z−1; (iv) −x, −y, −z+3; (v) −x, −y+1, −z+2; (vi) −x+1, −y, −z+2. |