Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615015612/ov3061sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229615015612/ov3061Isup2.hkl |
CCDC reference: 1019815
In the past few decades, coordination polymers (CPs) have received a great deal of interest, not only for their potential applications in gas separation/storage (Li et al., 2009), catalysis (Liu et al., 2014), magnetism (Kurmoo, 2009) and luminescence (Cui et al., 2012), but also for their fascinating architectures and topologies. From the viewpoint of crystal engineering, the judicious selection of well designed organic bridging ligands containing modifiable backbones and known connective geometries, together with metal centres with different coordination preferences, has proven to be an efficient approach for the formation of target CPs. In this context, pyridylcarboxylate ligands have been documented as a very important type of organic ligand for the construction of CPs. For example, isonicotinate (Zhang et al., 2005), (pyridin-4-yl)acetate (Du et al., 2006), 3-(pyridin-3-yl)benzoate (Zhong et al., 2008), 3-(pyridin-4-yl)benzoate (Li et al., 2010) and 3-methyl-5-(pyridin-4-yl)benzoic acid (Zhang, Hu, Zhang et al., 2012) have been used widely to prepare numerous CPs. More recently, an elongated pyridinyl–dicarboxylate ligand, i.e. deprotonated 5-(pyridin-4-yl)isophthalic acid (H2L), has attracted much attention (Xiang et al., 2011; Liu et al., 2012; Zhang, Hu, Wang et al., 2012; Zhang et al., 2014). 5-(Pyridin-4-yl)isophthalate (L2-) has some remarkable features as a ligand: (i) it contains pyridine and carboxylate groups which can provide multiple coordination sites to construct CPs; (ii) it is a rigid ligand with a large backbone which may lead to the formation of large voids; and (iii) it has many N/O-atom donors which can regulate supramolecular architectures through hydrogen-bonding interactions.
In our previous work, we have also prepared three luminescent LnIII CPs (Zhang, Hu, Wang et al., 2012) and a nanotubular ZnII CP (Zhang et al., 2014) by the reactions of 5-(pyridin-4-yl)isophthalic acid with LnIII cations and ZnII cations, respectively. In a continuation of our research in this area, we chose the Period 5 element cadmium as the metal centre because the d10 CdII cations can produce a variety of compounds with intriguing structures and properties (Wang et al., 2012; Deng et al., 2013; Haldar et al., 2014). Herein, we report the synthesis, crystal structure and photoluminescence properties of the two-dimensional cadmium(II) coordination polymer {[Cd2(L)2(H2O)4]·5H2O}n, (I).
All chemicals were of reagent grade, were obtained from commercial sources and were used without further purification. For the synthesis of (I), a mixture of H2L (0.0243 g, 0.1 mmol) and Cd(NO3)2·4H2O (0.0308 g, 0.1 mmol) in H2O (5 ml) was placed in a Teflon-lined stainless steel vessel, which was heated to 393 K for 3 d, and then cooled to room temperature at a rate of 5 K h-1. Colourless block-shaped crystals of (I) were obtained after filtration (yield 59.5%, based on H2L). Elemental analysis, calculated for C26H32Cd2N2O17: C 35.92, H 3.71, N 3.22%; found: C 35.96, H 3.64, N 3.26%. Spectroscopic analysis: IR (KBr, ν, cm-1): 3374 (s), 1612 (s), 1558 (vs), 1448 (s), 1364 (vs), 1070 (w), 842 (w), 777 (w), 740 (m), 634 (m), 565 (w), 506 (w).
Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms attached to C atoms were placed in geometrically idealized positions and included as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms. Water H atoms were either located in difference Fourier maps or placed in calculated positions so as to yield favourable hydrogen-bond interactions, as far as possible. They were then constrained to ride on their parent O atoms, with O—H = 0.85 (2) Å and Uiso(H) = 1.2Ueq(O).
Coordination polymer (I) crystallizes in the triclinic space group P1 and the asymmetric unit contains two crystallographically independent CdII cations, two deprotonated L2- ligands, four coordinated water molecules and five isolated water molecules. As shown in Fig. 1, ion Cd1 adopts a six-coordinated octahedral geometry involving three O atoms (O1, O2 and O5) from one bidentate chelate and one monodentate carboxylate group of two different L2- ligands, one N atom [N2i; symmetry code: (i) x, y + 1, z] of another L2- ligand and two coordinated water molecules (O9 and O10). Ion Cd2 adopts a seven-coordinated pentagonal–bipyramidal geometry involving four O atoms [O3, O4, O7ii and O8ii; symmetry code: (ii) x - 1, y, z + 1] from two bidentate chelate carboxylate groups of two different L2- ligands, one N atom [N1iii; symmetry code: (iii) x, y - 1, z] of another L2- ligand and two coordinated water molecules (O11 and O12). The Cd—O and Cd—N bond lengths (Table 2) are in the ranges 2.282 (9)–2.583 (9) and 2.317 (8)–2.336 (10) Å, respectively, which are comparable with other CdII–carboxylate compounds (Yang et al., 2013). In (I), the L2- ligands exhibit two kinds of coordination mode. One is a µ3-κ5N:O1,O1':O3,O3' coordination mode and the other is a µ3-κ4N:O1,O1':O3 coordination mode.
As shown in Fig. 2(a), each L2- ligand bridges three CdII cations and, likewise, each CdII cation is connected to three L2- ligands, giving rise to an extended two-dimensional coplanar layer structure with hexagonal windows. From a topological viewpoint, the CdII cations and L2- ligands in (I) can both be regarded as 3-connected nodes and the layer can thus be simplified as a two-dimensional graphite-like 63 topological network (Fig. 2a). Interestingly, these neighbouring two-dimensional layers are further linked by O—H···O hydrogen bonds between the coordinated water molecules and the carboxylate O atoms (O9—H9A···O8iv, O10—H10A···O5v, O11—H11A···O1vi and O12—H12A···O4viii; see Table 3 for hydrogen-bond geometry and symmetry codes), to form a three-dimensional supramolecular architecture with one-dimensional channels along the a axis (Fig. 2b). A particularly striking feature of this compound is that adjacent isolated water molecules are connected to each other by O—H···O hydrogen bonds (O13—H13B···O17, O14—H14B···O16, O14—H14A···O17, O15—H15A···O16 and O15—H15B···O13x; Table 3) to form one-dimensional water chains within each one-dimensional channel of this framework. Similar one-dimensional water chains penetrating channels are found in other transition metal coordination polymers (Sang & Xu, 2010; Zhang et al., 2011; Liu et al., 2012). In addition, strong O—H···O hydrogen bonds are observed between the one-dimensional water chains and the host three-dimensional supramolecular framework (O9—H9B···O14i, O10—H10B···O15iv, O11—H11B···O15vii, O12—H12B···O14ix, O13—H13A···O2iii, O16—H16A···O6iv, O16—H16B···O3x and O17—H17A···O7iv; Table 3 and Fig. 2c), which can be considered to consolidate the three-dimensional supramolecular framework structure of (I) further. After isolated water molecules have been removed, the effective free volume of the channels is 16.9% (calculated using PLATON; Spek, 2009) of the crystal volume (266 Å3 of the 1574.5 Å3 per unit-cell volume).
Powder X-ray diffraction (PXRD) experiments were carried out on (I) in order to establish the crystalline phase purity for bulk sample preparation. As shown in Fig. 3, the PXRD pattern of the as-synthesized sample matches well with the simulated one derived from the single-crystal diffraction data, demonstrating the good phase purity of the crystalline product of (I).
The solid-state luminescent properties of (I) and free H2L were investigated at room temperature. As shown in Fig. 4, upon excitation at 330 nm, (I) exhibits a strong purple luminescence with a maximum emission band around 390 nm. It should be pointed out that the emission of (I) is neither metal-to-ligand charge transfer (MLCT) nor ligand-to-metal charge transfer (LMCT) in nature, since CdII cations are difficult to oxidize or reduce because of their d10 electron configuration. The emission can probably be assigned to intraligand (π–π*) luminescence emission, because a similar emission is observed for free H2L at 415 nm upon excitation at 330 nm. The small blue shift (25 nm) for the emission of (I) compared with that of the free H2L molecule should result from the change in the ligand conformation according to Perkovic's hypothesis (Perkovic, 2000).
Data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
[Cd2(C13H7NO4)2(H2O)4]·5H2O | Z = 2 |
Mr = 869.34 | F(000) = 868 |
Triclinic, P1 | Dx = 1.834 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 11.144 Å | Cell parameters from 1092 reflections |
b = 11.599 Å | θ = 2.6–28.5° |
c = 13.529 Å | µ = 1.43 mm−1 |
α = 104.05° | T = 173 K |
β = 97.18° | Block, colourless |
γ = 108.05° | 0.20 × 0.20 × 0.18 mm |
V = 1574.4 Å3 |
Bruker SMART CCD area-detector diffractometer | 5540 independent reflections |
Radiation source: fine-focus sealed tube | 2771 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.097 |
Detector resolution: 8.33 pixels mm-1 | θmax = 25.0°, θmin = 2.6° |
φ and ω scans | h = −13→13 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −11→13 |
Tmin = 0.763, Tmax = 0.783 | l = −16→15 |
9462 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.074 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.195 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0572P)2] where P = (Fo2 + 2Fc2)/3 |
5540 reflections | (Δ/σ)max < 0.001 |
424 parameters | Δρmax = 1.14 e Å−3 |
6 restraints | Δρmin = −1.91 e Å−3 |
[Cd2(C13H7NO4)2(H2O)4]·5H2O | γ = 108.05° |
Mr = 869.34 | V = 1574.4 Å3 |
Triclinic, P1 | Z = 2 |
a = 11.144 Å | Mo Kα radiation |
b = 11.599 Å | µ = 1.43 mm−1 |
c = 13.529 Å | T = 173 K |
α = 104.05° | 0.20 × 0.20 × 0.18 mm |
β = 97.18° |
Bruker SMART CCD area-detector diffractometer | 5540 independent reflections |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | 2771 reflections with I > 2σ(I) |
Tmin = 0.763, Tmax = 0.783 | Rint = 0.097 |
9462 measured reflections |
R[F2 > 2σ(F2)] = 0.074 | 6 restraints |
wR(F2) = 0.195 | H-atom parameters constrained |
S = 1.00 | Δρmax = 1.14 e Å−3 |
5540 reflections | Δρmin = −1.91 e Å−3 |
424 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.17676 (9) | 0.74890 (8) | 0.57963 (7) | 0.0381 (3) | |
Cd2 | −0.32999 (9) | 0.40072 (8) | 1.07387 (7) | 0.0377 (3) | |
O1 | 0.0531 (9) | 0.6701 (8) | 0.6975 (7) | 0.046 (2) | |
O2 | 0.0628 (9) | 0.8611 (8) | 0.6910 (7) | 0.049 (3) | |
O3 | −0.2154 (9) | 0.4730 (8) | 0.9333 (7) | 0.047 (2) | |
O4 | −0.2811 (9) | 0.5978 (8) | 1.0465 (7) | 0.046 (2) | |
O5 | 0.2172 (9) | 0.5631 (7) | 0.5468 (7) | 0.046 (2) | |
O6 | 0.3052 (9) | 0.6722 (8) | 0.4458 (7) | 0.049 (3) | |
O7 | 0.5395 (9) | 0.4799 (8) | 0.1864 (7) | 0.047 (2) | |
O8 | 0.5500 (8) | 0.2921 (8) | 0.1834 (7) | 0.044 (2) | |
O9 | 0.3618 (9) | 0.8525 (8) | 0.7080 (7) | 0.056 (3) | |
H9A | 0.3949 | 0.8154 | 0.7447 | 0.084* | |
H9B | 0.4066 | 0.9313 | 0.7291 | 0.084* | |
O10 | −0.0155 (8) | 0.6610 (9) | 0.4538 (7) | 0.057 (3) | |
H10A | −0.0694 | 0.5985 | 0.4692 | 0.085* | |
H10B | 0.0004 | 0.6319 | 0.3928 | 0.085* | |
O11 | −0.1434 (9) | 0.4759 (8) | 1.1984 (8) | 0.067 (3) | |
H11A | −0.1155 | 0.4317 | 1.2306 | 0.100* | |
H11B | −0.0907 | 0.5521 | 1.2210 | 0.100* | |
O12 | −0.5138 (9) | 0.3169 (10) | 0.9411 (9) | 0.085 (4) | |
H12A | −0.5816 | 0.3360 | 0.9369 | 0.127* | |
H12B | −0.5233 | 0.2482 | 0.8951 | 0.127* | |
O13 | 0.1128 (12) | 0.1285 (11) | 0.7709 (9) | 0.098 (4) | |
H13A | 0.0982 | 0.0486 | 0.7471 | 0.147* | |
H13B | 0.1656 | 0.1673 | 0.7394 | 0.147* | |
O14 | 0.4910 (12) | 0.1130 (11) | 0.7637 (10) | 0.107 (5) | |
H14A | 0.4481 | 0.1575 | 0.7478 | 0.161* | |
H14B | 0.5617 | 0.1638 | 0.7580 | 0.161* | |
O15 | 0.9758 (10) | 0.2805 (9) | 0.7308 (8) | 0.077 (3) | |
H15A | 0.8992 | 0.2671 | 0.7401 | 0.115* | |
H15B | 0.9917 | 0.2120 | 0.7202 | 0.115* | |
O16 | 0.7259 (10) | 0.2846 (9) | 0.7441 (7) | 0.078 (3) | |
H16A | 0.7188 | 0.3081 | 0.6896 | 0.117* | |
H16B | 0.7443 | 0.3488 | 0.7973 | 0.117* | |
O17 | 0.3456 (18) | 0.2668 (15) | 0.7100 (13) | 0.183 (8) | |
H17A | 0.3812 | 0.3459 | 0.7426 | 0.275* | |
H17B | 0.3290 | 0.2250 | 0.6458 | 0.275* | |
N1 | −0.2719 (10) | 1.2253 (9) | 1.0137 (8) | 0.033 (3) | |
N2 | 0.2287 (10) | −0.0752 (9) | 0.5166 (9) | 0.043 (3) | |
C1 | 0.0253 (12) | 0.7690 (12) | 0.7248 (10) | 0.039 (3) | |
C2 | −0.2270 (12) | 0.5778 (11) | 0.9699 (10) | 0.034 (3) | |
C3 | −0.0615 (12) | 0.7739 (11) | 0.8045 (9) | 0.033 (3) | |
C4 | −0.1051 (12) | 0.6743 (11) | 0.8458 (9) | 0.033 (3) | |
H4 | −0.0849 | 0.5998 | 0.8228 | 0.039* | |
C5 | −0.1796 (12) | 0.6840 (11) | 0.9222 (9) | 0.034 (3) | |
C6 | −0.2094 (12) | 0.7935 (11) | 0.9524 (9) | 0.033 (3) | |
H6 | −0.2603 | 0.7999 | 1.0034 | 0.039* | |
C7 | −0.1682 (12) | 0.8933 (11) | 0.9113 (9) | 0.031 (3) | |
C8 | −0.0940 (12) | 0.8819 (12) | 0.8363 (10) | 0.040 (3) | |
H8 | −0.0650 | 0.9489 | 0.8063 | 0.047* | |
C9 | −0.2044 (12) | 1.0078 (11) | 0.9459 (9) | 0.030 (3) | |
C10 | −0.3061 (13) | 1.0063 (12) | 0.9941 (11) | 0.056 (4) | |
H10 | −0.3561 | 0.9296 | 1.0051 | 0.068* | |
C11 | −0.3371 (15) | 1.1131 (13) | 1.0266 (13) | 0.066 (5) | |
H11 | −0.4081 | 1.1074 | 1.0597 | 0.080* | |
C12 | −0.1766 (14) | 1.2281 (12) | 0.9665 (10) | 0.049 (4) | |
H12 | −0.1296 | 1.3060 | 0.9557 | 0.059* | |
C13 | −0.1388 (14) | 1.1224 (12) | 0.9305 (10) | 0.051 (4) | |
H13 | −0.0689 | 1.1301 | 0.8959 | 0.061* | |
C14 | 0.2831 (13) | 0.5727 (12) | 0.4747 (10) | 0.038 (3) | |
C15 | 0.5116 (13) | 0.3819 (12) | 0.2204 (11) | 0.042 (4) | |
C16 | 0.3298 (13) | 0.4717 (11) | 0.4272 (9) | 0.035 (3) | |
C17 | 0.3960 (11) | 0.4774 (11) | 0.3487 (9) | 0.035 (3) | |
H17 | 0.4144 | 0.5501 | 0.3247 | 0.042* | |
C18 | 0.4370 (11) | 0.3788 (10) | 0.3033 (9) | 0.027 (3) | |
C19 | 0.3977 (12) | 0.2687 (11) | 0.3327 (10) | 0.036 (3) | |
H19 | 0.4190 | 0.1985 | 0.2979 | 0.043* | |
C20 | 0.3293 (11) | 0.2563 (11) | 0.4098 (9) | 0.033 (3) | |
C21 | 0.2926 (12) | 0.3577 (11) | 0.4571 (10) | 0.036 (3) | |
H21 | 0.2431 | 0.3508 | 0.5090 | 0.043* | |
C22 | 0.2928 (13) | 0.1409 (12) | 0.4465 (10) | 0.040 (3) | |
C23 | 0.3606 (15) | 0.0591 (13) | 0.4320 (12) | 0.059 (4) | |
H23 | 0.4313 | 0.0756 | 0.3983 | 0.071* | |
C24 | 0.3253 (14) | −0.0477 (12) | 0.4666 (12) | 0.057 (4) | |
H24 | 0.3721 | −0.1038 | 0.4542 | 0.068* | |
C25 | 0.1603 (16) | −0.0001 (14) | 0.5272 (14) | 0.074 (5) | |
H25 | 0.0885 | −0.0202 | 0.5592 | 0.089* | |
C26 | 0.1894 (16) | 0.1071 (14) | 0.4933 (14) | 0.076 (6) | |
H26 | 0.1371 | 0.1582 | 0.5025 | 0.092* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.0558 (7) | 0.0342 (6) | 0.0479 (7) | 0.0263 (5) | 0.0335 (6) | 0.0295 (5) |
Cd2 | 0.0560 (7) | 0.0335 (6) | 0.0465 (7) | 0.0255 (5) | 0.0332 (6) | 0.0291 (5) |
O1 | 0.071 (7) | 0.048 (6) | 0.050 (6) | 0.039 (5) | 0.043 (5) | 0.034 (5) |
O2 | 0.064 (7) | 0.050 (6) | 0.063 (6) | 0.029 (5) | 0.050 (5) | 0.040 (5) |
O3 | 0.074 (7) | 0.034 (5) | 0.050 (6) | 0.022 (5) | 0.034 (5) | 0.029 (4) |
O4 | 0.073 (7) | 0.048 (6) | 0.053 (6) | 0.041 (5) | 0.044 (5) | 0.037 (5) |
O5 | 0.073 (7) | 0.031 (5) | 0.056 (6) | 0.031 (5) | 0.041 (5) | 0.025 (4) |
O6 | 0.084 (7) | 0.035 (5) | 0.062 (6) | 0.039 (5) | 0.048 (6) | 0.036 (5) |
O7 | 0.048 (3) | 0.047 (3) | 0.047 (3) | 0.0163 (13) | 0.0116 (11) | 0.0148 (12) |
O8 | 0.063 (6) | 0.051 (6) | 0.054 (6) | 0.037 (5) | 0.047 (5) | 0.036 (5) |
O9 | 0.057 (6) | 0.049 (6) | 0.073 (7) | 0.023 (5) | 0.018 (5) | 0.030 (5) |
O10 | 0.058 (7) | 0.067 (7) | 0.060 (6) | 0.022 (5) | 0.038 (5) | 0.033 (5) |
O11 | 0.076 (7) | 0.042 (6) | 0.077 (7) | 0.009 (5) | −0.016 (6) | 0.038 (5) |
O12 | 0.045 (7) | 0.095 (9) | 0.092 (9) | 0.027 (6) | 0.017 (6) | −0.017 (7) |
O13 | 0.129 (11) | 0.076 (8) | 0.120 (11) | 0.034 (8) | 0.077 (9) | 0.061 (7) |
O14 | 0.108 (10) | 0.076 (9) | 0.130 (12) | 0.016 (7) | 0.050 (9) | 0.024 (8) |
O15 | 0.077 (8) | 0.060 (7) | 0.098 (9) | 0.006 (6) | 0.028 (7) | 0.049 (6) |
O16 | 0.129 (10) | 0.069 (7) | 0.047 (6) | 0.039 (7) | 0.022 (7) | 0.028 (6) |
O17 | 0.27 (2) | 0.107 (13) | 0.135 (15) | 0.020 (14) | 0.033 (15) | 0.031 (11) |
N1 | 0.050 (7) | 0.028 (6) | 0.035 (6) | 0.026 (5) | 0.022 (6) | 0.009 (5) |
N2 | 0.055 (8) | 0.031 (6) | 0.073 (8) | 0.028 (6) | 0.037 (7) | 0.040 (6) |
C1 | 0.043 (9) | 0.043 (8) | 0.049 (9) | 0.020 (7) | 0.032 (7) | 0.031 (7) |
C2 | 0.038 (8) | 0.030 (7) | 0.044 (8) | 0.019 (6) | 0.014 (7) | 0.019 (6) |
C3 | 0.058 (9) | 0.033 (7) | 0.034 (7) | 0.030 (7) | 0.035 (7) | 0.028 (6) |
C4 | 0.058 (9) | 0.032 (7) | 0.035 (7) | 0.035 (7) | 0.028 (7) | 0.023 (6) |
C5 | 0.053 (9) | 0.029 (7) | 0.025 (7) | 0.014 (6) | 0.019 (7) | 0.014 (6) |
C6 | 0.046 (8) | 0.032 (7) | 0.034 (7) | 0.017 (6) | 0.025 (6) | 0.024 (6) |
C7 | 0.038 (8) | 0.037 (7) | 0.032 (7) | 0.024 (6) | 0.020 (6) | 0.018 (6) |
C8 | 0.048 (9) | 0.042 (8) | 0.042 (8) | 0.020 (7) | 0.021 (7) | 0.024 (6) |
C9 | 0.048 (8) | 0.028 (7) | 0.031 (7) | 0.022 (6) | 0.018 (6) | 0.022 (6) |
C10 | 0.073 (11) | 0.030 (7) | 0.094 (12) | 0.023 (7) | 0.069 (10) | 0.036 (8) |
C11 | 0.082 (12) | 0.042 (9) | 0.104 (13) | 0.032 (9) | 0.071 (11) | 0.033 (9) |
C12 | 0.089 (12) | 0.030 (8) | 0.046 (9) | 0.029 (8) | 0.028 (9) | 0.026 (7) |
C13 | 0.076 (11) | 0.049 (9) | 0.046 (9) | 0.031 (8) | 0.037 (8) | 0.024 (7) |
C14 | 0.045 (9) | 0.034 (8) | 0.042 (8) | 0.017 (7) | 0.013 (7) | 0.016 (6) |
C15 | 0.055 (9) | 0.032 (8) | 0.057 (9) | 0.015 (7) | 0.038 (8) | 0.031 (7) |
C16 | 0.054 (9) | 0.027 (7) | 0.039 (8) | 0.018 (6) | 0.028 (7) | 0.023 (6) |
C17 | 0.048 (9) | 0.034 (7) | 0.041 (8) | 0.021 (6) | 0.021 (7) | 0.028 (6) |
C18 | 0.035 (8) | 0.028 (7) | 0.032 (7) | 0.017 (6) | 0.019 (6) | 0.020 (5) |
C19 | 0.043 (8) | 0.031 (7) | 0.043 (8) | 0.017 (6) | 0.026 (7) | 0.014 (6) |
C20 | 0.040 (8) | 0.030 (7) | 0.044 (8) | 0.017 (6) | 0.023 (7) | 0.024 (6) |
C21 | 0.052 (9) | 0.032 (7) | 0.037 (8) | 0.021 (7) | 0.021 (7) | 0.022 (6) |
C22 | 0.053 (9) | 0.036 (7) | 0.055 (9) | 0.025 (7) | 0.029 (7) | 0.036 (7) |
C23 | 0.081 (12) | 0.052 (9) | 0.088 (12) | 0.041 (9) | 0.063 (10) | 0.052 (9) |
C24 | 0.074 (11) | 0.043 (9) | 0.092 (12) | 0.034 (8) | 0.052 (10) | 0.053 (8) |
C25 | 0.095 (13) | 0.054 (10) | 0.126 (15) | 0.046 (10) | 0.084 (12) | 0.062 (10) |
C26 | 0.091 (13) | 0.054 (10) | 0.139 (16) | 0.046 (9) | 0.078 (12) | 0.072 (11) |
Cd1—O1 | 2.399 (9) | N1—Cd2i | 2.317 (8) |
Cd1—O2 | 2.475 (8) | N2—C25 | 1.319 (16) |
Cd1—O5 | 2.287 (7) | N2—C24 | 1.339 (16) |
Cd1—O9 | 2.295 (9) | N2—Cd1iii | 2.336 (10) |
Cd1—O10 | 2.328 (9) | C1—C3 | 1.537 (16) |
Cd1—N2i | 2.336 (10) | C2—C5 | 1.511 (17) |
Cd2—O3 | 2.583 (9) | C3—C4 | 1.385 (16) |
Cd2—O4 | 2.312 (9) | C3—C8 | 1.394 (15) |
Cd2—O7ii | 2.446 (9) | C4—C5 | 1.410 (16) |
Cd2—O8ii | 2.435 (9) | C4—H4 | 0.9500 |
Cd2—O11 | 2.282 (9) | C5—C6 | 1.391 (15) |
Cd2—O12 | 2.316 (10) | C6—C7 | 1.380 (17) |
Cd2—N1iii | 2.317 (8) | C6—H6 | 0.9500 |
Cd1—C1 | 2.759 (12) | C7—C8 | 1.395 (16) |
O1—C1 | 1.262 (14) | C7—C9 | 1.491 (15) |
O2—C1 | 1.238 (15) | C8—H8 | 0.9500 |
O3—C2 | 1.250 (13) | C9—C10 | 1.374 (16) |
O4—C2 | 1.271 (14) | C9—C13 | 1.384 (18) |
O5—C14 | 1.297 (15) | C10—C11 | 1.373 (16) |
O6—C14 | 1.270 (15) | C10—H10 | 0.9500 |
O7—C15 | 1.292 (15) | C11—H11 | 0.9500 |
O7—Cd2iv | 2.446 (9) | C12—C13 | 1.414 (16) |
O8—C15 | 1.263 (13) | C12—H12 | 0.9500 |
O8—Cd2iv | 2.435 (8) | C13—H13 | 0.9500 |
O9—H9A | 0.8502 | C14—C16 | 1.468 (16) |
O9—H9B | 0.8498 | C15—C18 | 1.478 (16) |
O10—H10A | 0.8740 | C16—C17 | 1.369 (16) |
O10—H10B | 0.8740 | C16—C21 | 1.431 (17) |
O11—H11A | 0.8499 | C17—C18 | 1.396 (14) |
O11—H11B | 0.8500 | C17—H17 | 0.9500 |
O12—H12A | 0.8498 | C18—C19 | 1.387 (17) |
O12—H12B | 0.8503 | C19—C20 | 1.376 (16) |
O13—H13A | 0.8584 | C19—H19 | 0.9500 |
O13—H13B | 0.8500 | C20—C21 | 1.399 (15) |
O14—H14A | 0.8500 | C20—C22 | 1.497 (17) |
O14—H14B | 0.8500 | C21—H21 | 0.9500 |
O15—H15A | 0.8499 | C22—C23 | 1.379 (17) |
O15—H15B | 0.8500 | C22—C26 | 1.381 (19) |
O16—H16A | 0.8498 | C23—C24 | 1.391 (18) |
O16—H16B | 0.8501 | C23—H23 | 0.9500 |
O17—H17A | 0.8532 | C24—H24 | 0.9500 |
O17—H17B | 0.8499 | C25—C26 | 1.39 (2) |
N1—C12 | 1.301 (16) | C25—H25 | 0.9500 |
N1—C11 | 1.345 (17) | C26—H26 | 0.9500 |
O1—Cd1—O2 | 53.8 (3) | O2—C1—C3 | 118.5 (11) |
O5—Cd1—O1 | 85.7 (3) | O1—C1—C3 | 117.4 (11) |
O9—Cd1—O10 | 174.7 (3) | O2—C1—Cd1 | 63.8 (7) |
N2i—Cd1—O2 | 85.2 (3) | O1—C1—Cd1 | 60.3 (6) |
O5—Cd1—N2i | 135.3 (3) | C3—C1—Cd1 | 177.5 (9) |
O5—Cd1—O9 | 91.8 (3) | O3—C2—O4 | 121.5 (12) |
O5—Cd1—O10 | 93.5 (3) | O3—C2—C5 | 120.5 (12) |
O9—Cd1—N2i | 88.6 (4) | O4—C2—C5 | 118.0 (10) |
O10—Cd1—N2i | 87.9 (4) | C4—C3—C8 | 120.2 (11) |
O9—Cd1—O1 | 92.7 (3) | C4—C3—C1 | 121.0 (10) |
O10—Cd1—O1 | 87.2 (3) | C8—C3—C1 | 118.8 (11) |
N2i—Cd1—O1 | 139.0 (3) | C3—C4—C5 | 119.7 (10) |
O5—Cd1—O2 | 139.5 (3) | C3—C4—H4 | 120.2 |
O9—Cd1—O2 | 89.0 (3) | C5—C4—H4 | 120.2 |
O10—Cd1—O2 | 86.7 (3) | C6—C5—C4 | 118.5 (12) |
O5—Cd1—O6 | 53.0 (3) | C6—C5—C2 | 120.6 (11) |
O9—Cd1—O6 | 91.6 (3) | C4—C5—C2 | 121.0 (10) |
O10—Cd1—O6 | 92.0 (3) | C7—C6—C5 | 122.8 (12) |
N2i—Cd1—O6 | 82.4 (3) | C7—C6—H6 | 118.6 |
O1—Cd1—O6 | 138.5 (3) | C5—C6—H6 | 118.6 |
O2—Cd1—O6 | 167.5 (3) | C6—C7—C8 | 117.7 (11) |
O5—Cd1—C1 | 112.8 (4) | C6—C7—C9 | 120.4 (11) |
O9—Cd1—C1 | 91.1 (4) | C8—C7—C9 | 121.9 (12) |
O10—Cd1—C1 | 86.4 (4) | C3—C8—C7 | 121.2 (12) |
N2i—Cd1—C1 | 111.8 (4) | C3—C8—H8 | 119.4 |
O1—Cd1—C1 | 27.2 (3) | C7—C8—H8 | 119.4 |
O2—Cd1—C1 | 26.7 (3) | C10—C9—C13 | 115.4 (11) |
O6—Cd1—C1 | 165.6 (3) | C10—C9—C7 | 122.3 (12) |
O4—Cd2—O3 | 53.1 (3) | C13—C9—C7 | 122.3 (12) |
O4—Cd2—O7ii | 83.1 (3) | C11—C10—C9 | 121.5 (13) |
O8ii—Cd2—O7ii | 53.8 (3) | C11—C10—H10 | 119.2 |
O11—Cd2—O12 | 176.5 (3) | C9—C10—H10 | 119.2 |
N1iii—Cd2—O3 | 82.1 (3) | N1—C11—C10 | 123.1 (13) |
N1iii—Cd2—O8ii | 88.7 (3) | N1—C11—H11 | 118.4 |
O11—Cd2—O4 | 89.9 (3) | C10—C11—H11 | 118.4 |
O11—Cd2—N1iii | 85.5 (3) | N1—C12—C13 | 124.1 (13) |
O4—Cd2—N1iii | 134.5 (4) | N1—C12—H12 | 118.0 |
O4—Cd2—O12 | 91.3 (4) | C13—C12—H12 | 118.0 |
N1iii—Cd2—O12 | 91.3 (3) | C9—C13—C12 | 119.5 (14) |
O11—Cd2—O8ii | 91.2 (3) | C9—C13—H13 | 120.2 |
O4—Cd2—O8ii | 136.7 (3) | C12—C13—H13 | 120.2 |
O12—Cd2—O8ii | 90.2 (4) | O6—C14—O5 | 117.9 (11) |
O11—Cd2—O7ii | 96.6 (3) | O6—C14—C16 | 120.8 (12) |
N1iii—Cd2—O7ii | 142.4 (4) | O5—C14—C16 | 121.3 (12) |
O12—Cd2—O7ii | 86.8 (3) | O8—C15—O7 | 119.5 (12) |
O11—Cd2—O3 | 94.1 (3) | O8—C15—C18 | 121.5 (11) |
O12—Cd2—O3 | 84.1 (4) | O7—C15—C18 | 118.9 (11) |
O8ii—Cd2—O3 | 169.1 (3) | C17—C16—C21 | 119.0 (11) |
O7ii—Cd2—O3 | 134.7 (3) | C17—C16—C14 | 122.6 (12) |
C1—O1—Cd1 | 92.5 (8) | C21—C16—C14 | 118.0 (12) |
C1—O2—Cd1 | 89.6 (8) | C16—C17—C18 | 121.5 (12) |
C2—O3—Cd2 | 86.7 (8) | C16—C17—H17 | 119.3 |
C2—O4—Cd2 | 98.8 (7) | C18—C17—H17 | 119.3 |
C14—O5—Cd1 | 101.6 (8) | C19—C18—C17 | 117.9 (11) |
C14—O6—Cd1 | 87.6 (8) | C19—C18—C15 | 118.4 (10) |
C15—O7—Cd2iv | 92.6 (7) | C17—C18—C15 | 123.5 (11) |
C15—O8—Cd2iv | 93.9 (8) | C20—C19—C18 | 123.1 (11) |
Cd1—O9—H9A | 123.3 | C20—C19—H19 | 118.4 |
Cd1—O9—H9B | 128.0 | C18—C19—H19 | 118.4 |
H9A—O9—H9B | 108.6 | C19—C20—C21 | 118.2 (12) |
Cd1—O10—H10A | 109.5 | C19—C20—C22 | 123.7 (11) |
Cd1—O10—H10B | 109.3 | C21—C20—C22 | 118.1 (12) |
H10A—O10—H10B | 109.3 | C20—C21—C16 | 120.0 (12) |
Cd2—O11—H11A | 125.2 | C20—C21—H21 | 120.0 |
Cd2—O11—H11B | 126.4 | C16—C21—H21 | 120.0 |
H11A—O11—H11B | 108.4 | C23—C22—C26 | 115.9 (13) |
Cd2—O12—H12A | 129.3 | C23—C22—C20 | 120.7 (13) |
Cd2—O12—H12B | 117.0 | C26—C22—C20 | 123.4 (11) |
H12A—O12—H12B | 112.5 | C22—C23—C24 | 119.9 (14) |
H13A—O13—H13B | 108.3 | C22—C23—H23 | 120.1 |
H14A—O14—H14B | 93.0 | C24—C23—H23 | 120.1 |
H15A—O15—H15B | 110.0 | N2—C24—C23 | 123.2 (13) |
H16A—O16—H16B | 108.7 | N2—C24—H24 | 118.4 |
H17A—O17—H17B | 132.6 | C23—C24—H24 | 118.4 |
C12—N1—C11 | 116.3 (10) | N2—C25—C26 | 122.5 (15) |
C12—N1—Cd2i | 123.3 (9) | N2—C25—H25 | 118.8 |
C11—N1—Cd2i | 120.4 (9) | C26—C25—H25 | 118.8 |
C25—N2—C24 | 117.1 (12) | C22—C26—C25 | 121.2 (14) |
C25—N2—Cd1iii | 120.4 (10) | C22—C26—H26 | 119.4 |
C24—N2—Cd1iii | 122.5 (8) | C25—C26—H26 | 119.4 |
O2—C1—O1 | 124.0 (12) |
Symmetry codes: (i) x, y+1, z; (ii) x−1, y, z+1; (iii) x, y−1, z; (iv) x+1, y, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9A···O8v | 0.85 | 1.95 | 2.792 (13) | 172 |
O9—H9B···O14i | 0.85 | 1.93 | 2.775 (15) | 172 |
O10—H10A···O5vi | 0.87 | 2.02 | 2.859 (13) | 161 |
O10—H10B···O15v | 0.87 | 2.16 | 2.793 (14) | 129 |
O11—H11A···O1vii | 0.85 | 1.93 | 2.779 (12) | 179 |
O11—H11B···O15viii | 0.85 | 1.86 | 2.713 (13) | 179 |
O12—H12A···O4ix | 0.85 | 1.93 | 2.766 (12) | 169 |
O12—H12B···O14x | 0.85 | 2.13 | 2.951 (14) | 164 |
O13—H13A···O2iii | 0.86 | 2.01 | 2.872 (14) | 180 |
O13—H13B···O17 | 0.85 | 2.12 | 2.93 (2) | 159 |
O14—H14A···O17 | 0.85 | 2.06 | 2.91 (2) | 180 |
O14—H14B···O16 | 0.85 | 1.99 | 2.843 (16) | 179 |
O15—H15A···O16 | 0.85 | 2.01 | 2.827 (15) | 161 |
O15—H15B···O13xi | 0.85 | 2.03 | 2.768 (16) | 144 |
O16—H16A···O6v | 0.85 | 1.90 | 2.735 (13) | 169 |
O16—H16B···O3xi | 0.85 | 1.94 | 2.781 (12) | 169 |
O17—H17A···O7v | 0.85 | 1.88 | 2.731 (17) | 180 |
Symmetry codes: (i) x, y+1, z; (iii) x, y−1, z; (v) −x+1, −y+1, −z+1; (vi) −x, −y+1, −z+1; (vii) −x, −y+1, −z+2; (viii) −x+1, −y+1, −z+2; (ix) −x−1, −y+1, −z+2; (x) x−1, y, z; (xi) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cd2(C13H7NO4)2(H2O)4]·5H2O |
Mr | 869.34 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 173 |
a, b, c (Å) | 11.144, 11.599, 13.529 |
α, β, γ (°) | 104.05, 97.18, 108.05 |
V (Å3) | 1574.4 |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.43 |
Crystal size (mm) | 0.20 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Krause et al., 2015) |
Tmin, Tmax | 0.763, 0.783 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9462, 5540, 2771 |
Rint | 0.097 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.074, 0.195, 1.00 |
No. of reflections | 5540 |
No. of parameters | 424 |
No. of restraints | 6 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.14, −1.91 |
Computer programs: SMART (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).
Cd1—O1 | 2.399 (9) | Cd2—O4 | 2.312 (9) |
Cd1—O2 | 2.475 (8) | Cd2—O7ii | 2.446 (9) |
Cd1—O5 | 2.287 (7) | Cd2—O8ii | 2.435 (9) |
Cd1—O9 | 2.295 (9) | Cd2—O11 | 2.282 (9) |
Cd1—O10 | 2.328 (9) | Cd2—O12 | 2.316 (10) |
Cd1—N2i | 2.336 (10) | Cd2—N1iii | 2.317 (8) |
Cd2—O3 | 2.583 (9) | ||
O1—Cd1—O2 | 53.8 (3) | O4—Cd2—O7ii | 83.1 (3) |
O5—Cd1—O1 | 85.7 (3) | O8ii—Cd2—O7ii | 53.8 (3) |
O9—Cd1—O10 | 174.7 (3) | O11—Cd2—O12 | 176.5 (3) |
N2i—Cd1—O2 | 85.2 (3) | N1iii—Cd2—O3 | 82.1 (3) |
O5—Cd1—N2i | 135.3 (3) | N1iii—Cd2—O8ii | 88.7 (3) |
O4—Cd2—O3 | 53.1 (3) |
Symmetry codes: (i) x, y+1, z; (ii) x−1, y, z+1; (iii) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9A···O8iv | 0.85 | 1.95 | 2.792 (13) | 171.6 |
O9—H9B···O14i | 0.85 | 1.93 | 2.775 (15) | 172.3 |
O10—H10A···O5v | 0.87 | 2.02 | 2.859 (13) | 160.9 |
O10—H10B···O15iv | 0.87 | 2.16 | 2.793 (14) | 128.9 |
O11—H11A···O1vi | 0.85 | 1.93 | 2.779 (12) | 179.4 |
O11—H11B···O15vii | 0.85 | 1.86 | 2.713 (13) | 179.4 |
O12—H12A···O4viii | 0.85 | 1.93 | 2.766 (12) | 168.9 |
O12—H12B···O14ix | 0.85 | 2.13 | 2.951 (14) | 163.6 |
O13—H13A···O2iii | 0.86 | 2.01 | 2.872 (14) | 179.6 |
O13—H13B···O17 | 0.85 | 2.12 | 2.93 (2) | 158.5 |
O14—H14A···O17 | 0.85 | 2.06 | 2.91 (2) | 179.5 |
O14—H14B···O16 | 0.85 | 1.99 | 2.843 (16) | 179.1 |
O15—H15A···O16 | 0.85 | 2.01 | 2.827 (15) | 161.1 |
O15—H15B···O13x | 0.85 | 2.03 | 2.768 (16) | 144.4 |
O16—H16A···O6iv | 0.85 | 1.90 | 2.735 (13) | 169.2 |
O16—H16B···O3x | 0.85 | 1.94 | 2.781 (12) | 169.4 |
O17—H17A···O7iv | 0.85 | 1.88 | 2.731 (17) | 179.5 |
Symmetry codes: (i) x, y+1, z; (iii) x, y−1, z; (iv) −x+1, −y+1, −z+1; (v) −x, −y+1, −z+1; (vi) −x, −y+1, −z+2; (vii) −x+1, −y+1, −z+2; (viii) −x−1, −y+1, −z+2; (ix) x−1, y, z; (x) x+1, y, z. |