Download citation
Download citation
link to html
The title CdII compound, {[Cd2(C13H7NO4)2(H2O)4]·5H2O}n, was synthesized by the hydro­thermal reaction of Cd(NO3)2·4H2O and 5-(pyridin-4-yl)isophthalic acid (H2L). The asymmetric unit contains two crystallographically independent CdII cations, two deprotonated L2− ligands, four coordinated water mol­ecules and five isolated water mol­ecules. One of the CdII cations adopts a six-coordinate octa­hedral coordination geometry involving three O atoms from one bidentate chelating and one monodentate carboxyl­ate group of two different L2− ligands, one N atom of another L2− ligand and two coordinated water mol­ecules. The second CdII cation adopts a seven-coordinate penta­gonal–bipyramidal coordination geometry involving four O atoms from two bidentate chelating carboxyl­ate groups of two different L2− ligands, one N atom of another L2− ligand and two coordinated water mol­ecules. Each L2− ligand bridges three CdII cations and, likewise, each CdII cation connects to three L2− ligands, giving rise to a two-dimensional graphite-like 63 layer structure. These two-dimensional layers are further linked by O—H...O hydrogen-bonding inter­actions to form a three-dimensional supra­molecular architecture. The photoluminescence properties of the title compound were also investigated.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615015612/ov3061sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615015612/ov3061Isup2.hkl
Contains datablock I

CCDC reference: 1019815

Introduction top

In the past few decades, coordination polymers (CPs) have received a great deal of inter­est, not only for their potential applications in gas separation/storage (Li et al., 2009), catalysis (Liu et al., 2014), magnetism (Kurmoo, 2009) and luminescence (Cui et al., 2012), but also for their fascinating architectures and topologies. From the viewpoint of crystal engineering, the judicious selection of well designed organic bridging ligands containing modifiable backbones and known connective geometries, together with metal centres with different coordination preferences, has proven to be an efficient approach for the formation of target CPs. In this context, pyridyl­carboxyl­ate ligands have been documented as a very important type of organic ligand for the construction of CPs. For example, isonicotinate (Zhang et al., 2005), (pyridin-4-yl)acetate (Du et al., 2006), 3-(pyridin-3-yl)benzoate (Zhong et al., 2008), 3-(pyridin-4-yl)benzoate (Li et al., 2010) and 3-methyl-5-(pyridin-4-yl)benzoic acid (Zhang, Hu, Zhang et al., 2012) have been used widely to prepare numerous CPs. More recently, an elongated pyridinyl–di­carboxyl­ate ligand, i.e. deprotonated 5-(pyridin-4-yl)isophthalic acid (H2L), has attracted much attention (Xiang et al., 2011; Liu et al., 2012; Zhang, Hu, Wang et al., 2012; Zhang et al., 2014). 5-(Pyridin-4-yl)isophthalate (L2-) has some remarkable features as a ligand: (i) it contains pyridine and carboxyl­ate groups which can provide multiple coordination sites to construct CPs; (ii) it is a rigid ligand with a large backbone which may lead to the formation of large voids; and (iii) it has many N/O-atom donors which can regulate supra­molecular architectures through hydrogen-bonding inter­actions.

In our previous work, we have also prepared three luminescent LnIII CPs (Zhang, Hu, Wang et al., 2012) and a nanotubular ZnII CP (Zhang et al., 2014) by the reactions of 5-(pyridin-4-yl)isophthalic acid with LnIII cations and ZnII cations, respectively. In a continuation of our research in this area, we chose the Period 5 element cadmium as the metal centre because the d10 CdII cations can produce a variety of compounds with intriguing structures and properties (Wang et al., 2012; Deng et al., 2013; Haldar et al., 2014). Herein, we report the synthesis, crystal structure and photoluminescence properties of the two-dimensional cadmium(II) coordination polymer {[Cd2(L)2(H2O)4]·5H2O}n, (I).

Experimental top

Synthesis and crystallization top

All chemicals were of reagent grade, were obtained from commercial sources and were used without further purification. For the synthesis of (I), a mixture of H2L (0.0243 g, 0.1 mmol) and Cd(NO3)2·4H2O (0.0308 g, 0.1 mmol) in H2O (5 ml) was placed in a Teflon-lined stainless steel vessel, which was heated to 393 K for 3 d, and then cooled to room temperature at a rate of 5 K h-1. Colourless block-shaped crystals of (I) were obtained after filtration (yield 59.5%, based on H2L). Elemental analysis, calculated for C26H32Cd2N2O17: C 35.92, H 3.71, N 3.22%; found: C 35.96, H 3.64, N 3.26%. Spectroscopic analysis: IR (KBr, ν, cm-1): 3374 (s), 1612 (s), 1558 (vs), 1448 (s), 1364 (vs), 1070 (w), 842 (w), 777 (w), 740 (m), 634 (m), 565 (w), 506 (w).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms attached to C atoms were placed in geometrically idealized positions and included as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms. Water H atoms were either located in difference Fourier maps or placed in calculated positions so as to yield favourable hydrogen-bond inter­actions, as far as possible. They were then constrained to ride on their parent O atoms, with O—H = 0.85 (2) Å and Uiso(H) = 1.2Ueq(O).

Results and discussion top

Coordination polymer (I) crystallizes in the triclinic space group P1 and the asymmetric unit contains two crystallographically independent CdII cations, two deprotonated L2- ligands, four coordinated water molecules and five isolated water molecules. As shown in Fig. 1, ion Cd1 adopts a six-coordinated o­cta­hedral geometry involving three O atoms (O1, O2 and O5) from one bidentate chelate and one monodentate carboxyl­ate group of two different L2- ligands, one N atom [N2i; symmetry code: (i) x, y + 1, z] of another L2- ligand and two coordinated water molecules (O9 and O10). Ion Cd2 adopts a seven-coordinated penta­gonal–bipyramidal geometry involving four O atoms [O3, O4, O7ii and O8ii; symmetry code: (ii) x - 1, y, z + 1] from two bidentate chelate carboxyl­ate groups of two different L2- ligands, one N atom [N1iii; symmetry code: (iii) x, y - 1, z] of another L2- ligand and two coordinated water molecules (O11 and O12). The Cd—O and Cd—N bond lengths (Table 2) are in the ranges 2.282 (9)–2.583 (9) and 2.317 (8)–2.336 (10) Å, respectively, which are comparable with other CdII–carboxyl­ate compounds (Yang et al., 2013). In (I), the L2- ligands exhibit two kinds of coordination mode. One is a µ3-κ5N:O1,O1':O3,O3' coordination mode and the other is a µ3-κ4N:O1,O1':O3 coordination mode.

As shown in Fig. 2(a), each L2- ligand bridges three CdII cations and, likewise, each CdII cation is connected to three L2- ligands, giving rise to an extended two-dimensional coplanar layer structure with hexagonal windows. From a topological viewpoint, the CdII cations and L2- ligands in (I) can both be regarded as 3-connected nodes and the layer can thus be simplified as a two-dimensional graphite-like 63 topological network (Fig. 2a). Inter­estingly, these neighbouring two-dimensional layers are further linked by O—H···O hydrogen bonds between the coordinated water molecules and the carboxyl­ate O atoms (O9—H9A···O8iv, O10—H10A···O5v, O11—H11A···O1vi and O12—H12A···O4viii; see Table 3 for hydrogen-bond geometry and symmetry codes), to form a three-dimensional supra­molecular architecture with one-dimensional channels along the a axis (Fig. 2b). A particularly striking feature of this compound is that adjacent isolated water molecules are connected to each other by O—H···O hydrogen bonds (O13—H13B···O17, O14—H14B···O16, O14—H14A···O17, O15—H15A···O16 and O15—H15B···O13x; Table 3) to form one-dimensional water chains within each one-dimensional channel of this framework. Similar one-dimensional water chains penetrating channels are found in other transition metal coordination polymers (Sang & Xu, 2010; Zhang et al., 2011; Liu et al., 2012). In addition, strong O—H···O hydrogen bonds are observed between the one-dimensional water chains and the host three-dimensional supra­molecular framework (O9—H9B···O14i, O10—H10B···O15iv, O11—H11B···O15vii, O12—H12B···O14ix, O13—H13A···O2iii, O16—H16A···O6iv, O16—H16B···O3x and O17—H17A···O7iv; Table 3 and Fig. 2c), which can be considered to consolidate the three-dimensional supra­molecular framework structure of (I) further. After isolated water molecules have been removed, the effective free volume of the channels is 16.9% (calculated using PLATON; Spek, 2009) of the crystal volume (266 Å3 of the 1574.5 Å3 per unit-cell volume).

Powder X-ray diffraction (PXRD) experiments were carried out on (I) in order to establish the crystalline phase purity for bulk sample preparation. As shown in Fig. 3, the PXRD pattern of the as-synthesized sample matches well with the simulated one derived from the single-crystal diffraction data, demonstrating the good phase purity of the crystalline product of (I).

The solid-state luminescent properties of (I) and free H2L were investigated at room temperature. As shown in Fig. 4, upon excitation at 330 nm, (I) exhibits a strong purple luminescence with a maximum emission band around 390 nm. It should be pointed out that the emission of (I) is neither metal-to-ligand charge transfer (MLCT) nor ligand-to-metal charge transfer (LMCT) in nature, since CdII cations are difficult to oxidize or reduce because of their d10 electron configuration. The emission can probably be assigned to intra­ligand (ππ*) luminescence emission, because a similar emission is observed for free H2L at 415 nm upon excitation at 330 nm. The small blue shift (25 nm) for the emission of (I) compared with that of the free H2L molecule should result from the change in the ligand conformation according to Perkovic's hypothesis (Perkovic, 2000).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of the CdII cations in (I), showing the atom-numbering scheme. All the isolated water molecules have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, y + 1, z; (ii) x - 1, y, z + 1; (iii) x, y - 1, z.]
[Figure 2] Fig. 2. (a) The two-dimensional network and a schematic illustration of the 63 topology of (I) (the green sticks and turquoise polyhedra present the L2- ligands and the CdII cations, respectively). (b) The three-dimensional supramolecular architecture of (I) linked by hydrogen-bonding interactions, with the one-dimensional water chains shown in space-filling mode. (c) Hydrogen bonds among the isolated water molecules, coordinated water molecules and carboxylate O atoms. [Symmetry codes: (iii) x, y - 1, z; (iv) -x + 1, -y + 1, -z + 1; (vii) -x + 1, -y + 1, -z + 2; (ix) x - 1, y, z; (x) x + 1, y, z; (xi) x + 1, y - 1, z.]
[Figure 3] Fig. 3. Powder X-ray diffraction patterns for (I).
[Figure 4] Fig. 4. The solid-state emission spectra of (I) and free H2L at room temperature.
Poly[[tetraaquabis[µ3-5-(pyridin-4-yl)isophthalato]dicadmium(II)] pentahydrate] top
Crystal data top
[Cd2(C13H7NO4)2(H2O)4]·5H2OZ = 2
Mr = 869.34F(000) = 868
Triclinic, P1Dx = 1.834 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.144 ÅCell parameters from 1092 reflections
b = 11.599 Åθ = 2.6–28.5°
c = 13.529 ŵ = 1.43 mm1
α = 104.05°T = 173 K
β = 97.18°Block, colourless
γ = 108.05°0.20 × 0.20 × 0.18 mm
V = 1574.4 Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5540 independent reflections
Radiation source: fine-focus sealed tube2771 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.097
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 2.6°
φ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1113
Tmin = 0.763, Tmax = 0.783l = 1615
9462 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0572P)2]
where P = (Fo2 + 2Fc2)/3
5540 reflections(Δ/σ)max < 0.001
424 parametersΔρmax = 1.14 e Å3
6 restraintsΔρmin = 1.91 e Å3
Crystal data top
[Cd2(C13H7NO4)2(H2O)4]·5H2Oγ = 108.05°
Mr = 869.34V = 1574.4 Å3
Triclinic, P1Z = 2
a = 11.144 ÅMo Kα radiation
b = 11.599 ŵ = 1.43 mm1
c = 13.529 ÅT = 173 K
α = 104.05°0.20 × 0.20 × 0.18 mm
β = 97.18°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5540 independent reflections
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
2771 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.783Rint = 0.097
9462 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0746 restraints
wR(F2) = 0.195H-atom parameters constrained
S = 1.00Δρmax = 1.14 e Å3
5540 reflectionsΔρmin = 1.91 e Å3
424 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.17676 (9)0.74890 (8)0.57963 (7)0.0381 (3)
Cd20.32999 (9)0.40072 (8)1.07387 (7)0.0377 (3)
O10.0531 (9)0.6701 (8)0.6975 (7)0.046 (2)
O20.0628 (9)0.8611 (8)0.6910 (7)0.049 (3)
O30.2154 (9)0.4730 (8)0.9333 (7)0.047 (2)
O40.2811 (9)0.5978 (8)1.0465 (7)0.046 (2)
O50.2172 (9)0.5631 (7)0.5468 (7)0.046 (2)
O60.3052 (9)0.6722 (8)0.4458 (7)0.049 (3)
O70.5395 (9)0.4799 (8)0.1864 (7)0.047 (2)
O80.5500 (8)0.2921 (8)0.1834 (7)0.044 (2)
O90.3618 (9)0.8525 (8)0.7080 (7)0.056 (3)
H9A0.39490.81540.74470.084*
H9B0.40660.93130.72910.084*
O100.0155 (8)0.6610 (9)0.4538 (7)0.057 (3)
H10A0.06940.59850.46920.085*
H10B0.00040.63190.39280.085*
O110.1434 (9)0.4759 (8)1.1984 (8)0.067 (3)
H11A0.11550.43171.23060.100*
H11B0.09070.55211.22100.100*
O120.5138 (9)0.3169 (10)0.9411 (9)0.085 (4)
H12A0.58160.33600.93690.127*
H12B0.52330.24820.89510.127*
O130.1128 (12)0.1285 (11)0.7709 (9)0.098 (4)
H13A0.09820.04860.74710.147*
H13B0.16560.16730.73940.147*
O140.4910 (12)0.1130 (11)0.7637 (10)0.107 (5)
H14A0.44810.15750.74780.161*
H14B0.56170.16380.75800.161*
O150.9758 (10)0.2805 (9)0.7308 (8)0.077 (3)
H15A0.89920.26710.74010.115*
H15B0.99170.21200.72020.115*
O160.7259 (10)0.2846 (9)0.7441 (7)0.078 (3)
H16A0.71880.30810.68960.117*
H16B0.74430.34880.79730.117*
O170.3456 (18)0.2668 (15)0.7100 (13)0.183 (8)
H17A0.38120.34590.74260.275*
H17B0.32900.22500.64580.275*
N10.2719 (10)1.2253 (9)1.0137 (8)0.033 (3)
N20.2287 (10)0.0752 (9)0.5166 (9)0.043 (3)
C10.0253 (12)0.7690 (12)0.7248 (10)0.039 (3)
C20.2270 (12)0.5778 (11)0.9699 (10)0.034 (3)
C30.0615 (12)0.7739 (11)0.8045 (9)0.033 (3)
C40.1051 (12)0.6743 (11)0.8458 (9)0.033 (3)
H40.08490.59980.82280.039*
C50.1796 (12)0.6840 (11)0.9222 (9)0.034 (3)
C60.2094 (12)0.7935 (11)0.9524 (9)0.033 (3)
H60.26030.79991.00340.039*
C70.1682 (12)0.8933 (11)0.9113 (9)0.031 (3)
C80.0940 (12)0.8819 (12)0.8363 (10)0.040 (3)
H80.06500.94890.80630.047*
C90.2044 (12)1.0078 (11)0.9459 (9)0.030 (3)
C100.3061 (13)1.0063 (12)0.9941 (11)0.056 (4)
H100.35610.92961.00510.068*
C110.3371 (15)1.1131 (13)1.0266 (13)0.066 (5)
H110.40811.10741.05970.080*
C120.1766 (14)1.2281 (12)0.9665 (10)0.049 (4)
H120.12961.30600.95570.059*
C130.1388 (14)1.1224 (12)0.9305 (10)0.051 (4)
H130.06891.13010.89590.061*
C140.2831 (13)0.5727 (12)0.4747 (10)0.038 (3)
C150.5116 (13)0.3819 (12)0.2204 (11)0.042 (4)
C160.3298 (13)0.4717 (11)0.4272 (9)0.035 (3)
C170.3960 (11)0.4774 (11)0.3487 (9)0.035 (3)
H170.41440.55010.32470.042*
C180.4370 (11)0.3788 (10)0.3033 (9)0.027 (3)
C190.3977 (12)0.2687 (11)0.3327 (10)0.036 (3)
H190.41900.19850.29790.043*
C200.3293 (11)0.2563 (11)0.4098 (9)0.033 (3)
C210.2926 (12)0.3577 (11)0.4571 (10)0.036 (3)
H210.24310.35080.50900.043*
C220.2928 (13)0.1409 (12)0.4465 (10)0.040 (3)
C230.3606 (15)0.0591 (13)0.4320 (12)0.059 (4)
H230.43130.07560.39830.071*
C240.3253 (14)0.0477 (12)0.4666 (12)0.057 (4)
H240.37210.10380.45420.068*
C250.1603 (16)0.0001 (14)0.5272 (14)0.074 (5)
H250.08850.02020.55920.089*
C260.1894 (16)0.1071 (14)0.4933 (14)0.076 (6)
H260.13710.15820.50250.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0558 (7)0.0342 (6)0.0479 (7)0.0263 (5)0.0335 (6)0.0295 (5)
Cd20.0560 (7)0.0335 (6)0.0465 (7)0.0255 (5)0.0332 (6)0.0291 (5)
O10.071 (7)0.048 (6)0.050 (6)0.039 (5)0.043 (5)0.034 (5)
O20.064 (7)0.050 (6)0.063 (6)0.029 (5)0.050 (5)0.040 (5)
O30.074 (7)0.034 (5)0.050 (6)0.022 (5)0.034 (5)0.029 (4)
O40.073 (7)0.048 (6)0.053 (6)0.041 (5)0.044 (5)0.037 (5)
O50.073 (7)0.031 (5)0.056 (6)0.031 (5)0.041 (5)0.025 (4)
O60.084 (7)0.035 (5)0.062 (6)0.039 (5)0.048 (6)0.036 (5)
O70.048 (3)0.047 (3)0.047 (3)0.0163 (13)0.0116 (11)0.0148 (12)
O80.063 (6)0.051 (6)0.054 (6)0.037 (5)0.047 (5)0.036 (5)
O90.057 (6)0.049 (6)0.073 (7)0.023 (5)0.018 (5)0.030 (5)
O100.058 (7)0.067 (7)0.060 (6)0.022 (5)0.038 (5)0.033 (5)
O110.076 (7)0.042 (6)0.077 (7)0.009 (5)0.016 (6)0.038 (5)
O120.045 (7)0.095 (9)0.092 (9)0.027 (6)0.017 (6)0.017 (7)
O130.129 (11)0.076 (8)0.120 (11)0.034 (8)0.077 (9)0.061 (7)
O140.108 (10)0.076 (9)0.130 (12)0.016 (7)0.050 (9)0.024 (8)
O150.077 (8)0.060 (7)0.098 (9)0.006 (6)0.028 (7)0.049 (6)
O160.129 (10)0.069 (7)0.047 (6)0.039 (7)0.022 (7)0.028 (6)
O170.27 (2)0.107 (13)0.135 (15)0.020 (14)0.033 (15)0.031 (11)
N10.050 (7)0.028 (6)0.035 (6)0.026 (5)0.022 (6)0.009 (5)
N20.055 (8)0.031 (6)0.073 (8)0.028 (6)0.037 (7)0.040 (6)
C10.043 (9)0.043 (8)0.049 (9)0.020 (7)0.032 (7)0.031 (7)
C20.038 (8)0.030 (7)0.044 (8)0.019 (6)0.014 (7)0.019 (6)
C30.058 (9)0.033 (7)0.034 (7)0.030 (7)0.035 (7)0.028 (6)
C40.058 (9)0.032 (7)0.035 (7)0.035 (7)0.028 (7)0.023 (6)
C50.053 (9)0.029 (7)0.025 (7)0.014 (6)0.019 (7)0.014 (6)
C60.046 (8)0.032 (7)0.034 (7)0.017 (6)0.025 (6)0.024 (6)
C70.038 (8)0.037 (7)0.032 (7)0.024 (6)0.020 (6)0.018 (6)
C80.048 (9)0.042 (8)0.042 (8)0.020 (7)0.021 (7)0.024 (6)
C90.048 (8)0.028 (7)0.031 (7)0.022 (6)0.018 (6)0.022 (6)
C100.073 (11)0.030 (7)0.094 (12)0.023 (7)0.069 (10)0.036 (8)
C110.082 (12)0.042 (9)0.104 (13)0.032 (9)0.071 (11)0.033 (9)
C120.089 (12)0.030 (8)0.046 (9)0.029 (8)0.028 (9)0.026 (7)
C130.076 (11)0.049 (9)0.046 (9)0.031 (8)0.037 (8)0.024 (7)
C140.045 (9)0.034 (8)0.042 (8)0.017 (7)0.013 (7)0.016 (6)
C150.055 (9)0.032 (8)0.057 (9)0.015 (7)0.038 (8)0.031 (7)
C160.054 (9)0.027 (7)0.039 (8)0.018 (6)0.028 (7)0.023 (6)
C170.048 (9)0.034 (7)0.041 (8)0.021 (6)0.021 (7)0.028 (6)
C180.035 (8)0.028 (7)0.032 (7)0.017 (6)0.019 (6)0.020 (5)
C190.043 (8)0.031 (7)0.043 (8)0.017 (6)0.026 (7)0.014 (6)
C200.040 (8)0.030 (7)0.044 (8)0.017 (6)0.023 (7)0.024 (6)
C210.052 (9)0.032 (7)0.037 (8)0.021 (7)0.021 (7)0.022 (6)
C220.053 (9)0.036 (7)0.055 (9)0.025 (7)0.029 (7)0.036 (7)
C230.081 (12)0.052 (9)0.088 (12)0.041 (9)0.063 (10)0.052 (9)
C240.074 (11)0.043 (9)0.092 (12)0.034 (8)0.052 (10)0.053 (8)
C250.095 (13)0.054 (10)0.126 (15)0.046 (10)0.084 (12)0.062 (10)
C260.091 (13)0.054 (10)0.139 (16)0.046 (9)0.078 (12)0.072 (11)
Geometric parameters (Å, º) top
Cd1—O12.399 (9)N1—Cd2i2.317 (8)
Cd1—O22.475 (8)N2—C251.319 (16)
Cd1—O52.287 (7)N2—C241.339 (16)
Cd1—O92.295 (9)N2—Cd1iii2.336 (10)
Cd1—O102.328 (9)C1—C31.537 (16)
Cd1—N2i2.336 (10)C2—C51.511 (17)
Cd2—O32.583 (9)C3—C41.385 (16)
Cd2—O42.312 (9)C3—C81.394 (15)
Cd2—O7ii2.446 (9)C4—C51.410 (16)
Cd2—O8ii2.435 (9)C4—H40.9500
Cd2—O112.282 (9)C5—C61.391 (15)
Cd2—O122.316 (10)C6—C71.380 (17)
Cd2—N1iii2.317 (8)C6—H60.9500
Cd1—C12.759 (12)C7—C81.395 (16)
O1—C11.262 (14)C7—C91.491 (15)
O2—C11.238 (15)C8—H80.9500
O3—C21.250 (13)C9—C101.374 (16)
O4—C21.271 (14)C9—C131.384 (18)
O5—C141.297 (15)C10—C111.373 (16)
O6—C141.270 (15)C10—H100.9500
O7—C151.292 (15)C11—H110.9500
O7—Cd2iv2.446 (9)C12—C131.414 (16)
O8—C151.263 (13)C12—H120.9500
O8—Cd2iv2.435 (8)C13—H130.9500
O9—H9A0.8502C14—C161.468 (16)
O9—H9B0.8498C15—C181.478 (16)
O10—H10A0.8740C16—C171.369 (16)
O10—H10B0.8740C16—C211.431 (17)
O11—H11A0.8499C17—C181.396 (14)
O11—H11B0.8500C17—H170.9500
O12—H12A0.8498C18—C191.387 (17)
O12—H12B0.8503C19—C201.376 (16)
O13—H13A0.8584C19—H190.9500
O13—H13B0.8500C20—C211.399 (15)
O14—H14A0.8500C20—C221.497 (17)
O14—H14B0.8500C21—H210.9500
O15—H15A0.8499C22—C231.379 (17)
O15—H15B0.8500C22—C261.381 (19)
O16—H16A0.8498C23—C241.391 (18)
O16—H16B0.8501C23—H230.9500
O17—H17A0.8532C24—H240.9500
O17—H17B0.8499C25—C261.39 (2)
N1—C121.301 (16)C25—H250.9500
N1—C111.345 (17)C26—H260.9500
O1—Cd1—O253.8 (3)O2—C1—C3118.5 (11)
O5—Cd1—O185.7 (3)O1—C1—C3117.4 (11)
O9—Cd1—O10174.7 (3)O2—C1—Cd163.8 (7)
N2i—Cd1—O285.2 (3)O1—C1—Cd160.3 (6)
O5—Cd1—N2i135.3 (3)C3—C1—Cd1177.5 (9)
O5—Cd1—O991.8 (3)O3—C2—O4121.5 (12)
O5—Cd1—O1093.5 (3)O3—C2—C5120.5 (12)
O9—Cd1—N2i88.6 (4)O4—C2—C5118.0 (10)
O10—Cd1—N2i87.9 (4)C4—C3—C8120.2 (11)
O9—Cd1—O192.7 (3)C4—C3—C1121.0 (10)
O10—Cd1—O187.2 (3)C8—C3—C1118.8 (11)
N2i—Cd1—O1139.0 (3)C3—C4—C5119.7 (10)
O5—Cd1—O2139.5 (3)C3—C4—H4120.2
O9—Cd1—O289.0 (3)C5—C4—H4120.2
O10—Cd1—O286.7 (3)C6—C5—C4118.5 (12)
O5—Cd1—O653.0 (3)C6—C5—C2120.6 (11)
O9—Cd1—O691.6 (3)C4—C5—C2121.0 (10)
O10—Cd1—O692.0 (3)C7—C6—C5122.8 (12)
N2i—Cd1—O682.4 (3)C7—C6—H6118.6
O1—Cd1—O6138.5 (3)C5—C6—H6118.6
O2—Cd1—O6167.5 (3)C6—C7—C8117.7 (11)
O5—Cd1—C1112.8 (4)C6—C7—C9120.4 (11)
O9—Cd1—C191.1 (4)C8—C7—C9121.9 (12)
O10—Cd1—C186.4 (4)C3—C8—C7121.2 (12)
N2i—Cd1—C1111.8 (4)C3—C8—H8119.4
O1—Cd1—C127.2 (3)C7—C8—H8119.4
O2—Cd1—C126.7 (3)C10—C9—C13115.4 (11)
O6—Cd1—C1165.6 (3)C10—C9—C7122.3 (12)
O4—Cd2—O353.1 (3)C13—C9—C7122.3 (12)
O4—Cd2—O7ii83.1 (3)C11—C10—C9121.5 (13)
O8ii—Cd2—O7ii53.8 (3)C11—C10—H10119.2
O11—Cd2—O12176.5 (3)C9—C10—H10119.2
N1iii—Cd2—O382.1 (3)N1—C11—C10123.1 (13)
N1iii—Cd2—O8ii88.7 (3)N1—C11—H11118.4
O11—Cd2—O489.9 (3)C10—C11—H11118.4
O11—Cd2—N1iii85.5 (3)N1—C12—C13124.1 (13)
O4—Cd2—N1iii134.5 (4)N1—C12—H12118.0
O4—Cd2—O1291.3 (4)C13—C12—H12118.0
N1iii—Cd2—O1291.3 (3)C9—C13—C12119.5 (14)
O11—Cd2—O8ii91.2 (3)C9—C13—H13120.2
O4—Cd2—O8ii136.7 (3)C12—C13—H13120.2
O12—Cd2—O8ii90.2 (4)O6—C14—O5117.9 (11)
O11—Cd2—O7ii96.6 (3)O6—C14—C16120.8 (12)
N1iii—Cd2—O7ii142.4 (4)O5—C14—C16121.3 (12)
O12—Cd2—O7ii86.8 (3)O8—C15—O7119.5 (12)
O11—Cd2—O394.1 (3)O8—C15—C18121.5 (11)
O12—Cd2—O384.1 (4)O7—C15—C18118.9 (11)
O8ii—Cd2—O3169.1 (3)C17—C16—C21119.0 (11)
O7ii—Cd2—O3134.7 (3)C17—C16—C14122.6 (12)
C1—O1—Cd192.5 (8)C21—C16—C14118.0 (12)
C1—O2—Cd189.6 (8)C16—C17—C18121.5 (12)
C2—O3—Cd286.7 (8)C16—C17—H17119.3
C2—O4—Cd298.8 (7)C18—C17—H17119.3
C14—O5—Cd1101.6 (8)C19—C18—C17117.9 (11)
C14—O6—Cd187.6 (8)C19—C18—C15118.4 (10)
C15—O7—Cd2iv92.6 (7)C17—C18—C15123.5 (11)
C15—O8—Cd2iv93.9 (8)C20—C19—C18123.1 (11)
Cd1—O9—H9A123.3C20—C19—H19118.4
Cd1—O9—H9B128.0C18—C19—H19118.4
H9A—O9—H9B108.6C19—C20—C21118.2 (12)
Cd1—O10—H10A109.5C19—C20—C22123.7 (11)
Cd1—O10—H10B109.3C21—C20—C22118.1 (12)
H10A—O10—H10B109.3C20—C21—C16120.0 (12)
Cd2—O11—H11A125.2C20—C21—H21120.0
Cd2—O11—H11B126.4C16—C21—H21120.0
H11A—O11—H11B108.4C23—C22—C26115.9 (13)
Cd2—O12—H12A129.3C23—C22—C20120.7 (13)
Cd2—O12—H12B117.0C26—C22—C20123.4 (11)
H12A—O12—H12B112.5C22—C23—C24119.9 (14)
H13A—O13—H13B108.3C22—C23—H23120.1
H14A—O14—H14B93.0C24—C23—H23120.1
H15A—O15—H15B110.0N2—C24—C23123.2 (13)
H16A—O16—H16B108.7N2—C24—H24118.4
H17A—O17—H17B132.6C23—C24—H24118.4
C12—N1—C11116.3 (10)N2—C25—C26122.5 (15)
C12—N1—Cd2i123.3 (9)N2—C25—H25118.8
C11—N1—Cd2i120.4 (9)C26—C25—H25118.8
C25—N2—C24117.1 (12)C22—C26—C25121.2 (14)
C25—N2—Cd1iii120.4 (10)C22—C26—H26119.4
C24—N2—Cd1iii122.5 (8)C25—C26—H26119.4
O2—C1—O1124.0 (12)
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z+1; (iii) x, y1, z; (iv) x+1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O8v0.851.952.792 (13)172
O9—H9B···O14i0.851.932.775 (15)172
O10—H10A···O5vi0.872.022.859 (13)161
O10—H10B···O15v0.872.162.793 (14)129
O11—H11A···O1vii0.851.932.779 (12)179
O11—H11B···O15viii0.851.862.713 (13)179
O12—H12A···O4ix0.851.932.766 (12)169
O12—H12B···O14x0.852.132.951 (14)164
O13—H13A···O2iii0.862.012.872 (14)180
O13—H13B···O170.852.122.93 (2)159
O14—H14A···O170.852.062.91 (2)180
O14—H14B···O160.851.992.843 (16)179
O15—H15A···O160.852.012.827 (15)161
O15—H15B···O13xi0.852.032.768 (16)144
O16—H16A···O6v0.851.902.735 (13)169
O16—H16B···O3xi0.851.942.781 (12)169
O17—H17A···O7v0.851.882.731 (17)180
Symmetry codes: (i) x, y+1, z; (iii) x, y1, z; (v) x+1, y+1, z+1; (vi) x, y+1, z+1; (vii) x, y+1, z+2; (viii) x+1, y+1, z+2; (ix) x1, y+1, z+2; (x) x1, y, z; (xi) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cd2(C13H7NO4)2(H2O)4]·5H2O
Mr869.34
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)11.144, 11.599, 13.529
α, β, γ (°)104.05, 97.18, 108.05
V3)1574.4
Z2
Radiation typeMo Kα
µ (mm1)1.43
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Krause et al., 2015)
Tmin, Tmax0.763, 0.783
No. of measured, independent and
observed [I > 2σ(I)] reflections
9462, 5540, 2771
Rint0.097
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.195, 1.00
No. of reflections5540
No. of parameters424
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.14, 1.91

Computer programs: SMART (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Selected geometric parameters (Å, º) top
Cd1—O12.399 (9)Cd2—O42.312 (9)
Cd1—O22.475 (8)Cd2—O7ii2.446 (9)
Cd1—O52.287 (7)Cd2—O8ii2.435 (9)
Cd1—O92.295 (9)Cd2—O112.282 (9)
Cd1—O102.328 (9)Cd2—O122.316 (10)
Cd1—N2i2.336 (10)Cd2—N1iii2.317 (8)
Cd2—O32.583 (9)
O1—Cd1—O253.8 (3)O4—Cd2—O7ii83.1 (3)
O5—Cd1—O185.7 (3)O8ii—Cd2—O7ii53.8 (3)
O9—Cd1—O10174.7 (3)O11—Cd2—O12176.5 (3)
N2i—Cd1—O285.2 (3)N1iii—Cd2—O382.1 (3)
O5—Cd1—N2i135.3 (3)N1iii—Cd2—O8ii88.7 (3)
O4—Cd2—O353.1 (3)
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z+1; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O8iv0.851.952.792 (13)171.6
O9—H9B···O14i0.851.932.775 (15)172.3
O10—H10A···O5v0.872.022.859 (13)160.9
O10—H10B···O15iv0.872.162.793 (14)128.9
O11—H11A···O1vi0.851.932.779 (12)179.4
O11—H11B···O15vii0.851.862.713 (13)179.4
O12—H12A···O4viii0.851.932.766 (12)168.9
O12—H12B···O14ix0.852.132.951 (14)163.6
O13—H13A···O2iii0.862.012.872 (14)179.6
O13—H13B···O170.852.122.93 (2)158.5
O14—H14A···O170.852.062.91 (2)179.5
O14—H14B···O160.851.992.843 (16)179.1
O15—H15A···O160.852.012.827 (15)161.1
O15—H15B···O13x0.852.032.768 (16)144.4
O16—H16A···O6iv0.851.902.735 (13)169.2
O16—H16B···O3x0.851.942.781 (12)169.4
O17—H17A···O7iv0.851.882.731 (17)179.5
Symmetry codes: (i) x, y+1, z; (iii) x, y1, z; (iv) x+1, y+1, z+1; (v) x, y+1, z+1; (vi) x, y+1, z+2; (vii) x+1, y+1, z+2; (viii) x1, y+1, z+2; (ix) x1, y, z; (x) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds