Download citation
Download citation
link to html
We performed an analysis by single-crystal X-ray diffraction and scanning electron microscopy (SEM), aiming to solve and refine the structure of an ilmenite single crystal [(Fe0.5832Mg04168)TiO3] from the city of Ouvidor (Goiás, Brazil). Hirsh­feld partition was used to explore the values of w(r), dnorm and curved­ness that achieve com­plementary surfaces for neighbouring atoms in this ionic system, and the subsequent impact on the charge distribution, allowing the ionic radius and the charges of the ilmenite sample to be modelled.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229622009366/ov3161sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622009366/ov3161Isup2.hkl
Contains datablock I

txt

Text file https://doi.org/10.1107/S2053229622009366/ov3161sup3.txt
shelxl.res file refinement results considering all data

CCDC reference: 2209182

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012).

(I) top
Crystal data top
Mg2.50Fe3.50Ti6O18Dx = 4.404 Mg m3
Mr = 831.65Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 1298 reflections
a = 5.08348 (5) Åθ = 4.4–67.7°
c = 14.01305 (12) ŵ = 7.77 mm1
V = 313.61 (1) Å3T = 293 K
Z = 1Natural mineral single-crystal, black
F(000) = 3970.30 × 0.15 × 0.10 mm
Data collection top
Rigaku Xcalibur Gemini ultra with an Atlas detector
diffractometer
584 independent reflections
Radiation source: fine-focus sealed tube545 reflections with I > 2σ(I)
Detector resolution: 10.4186 pixels mm-1Rint = 0.048
ω scansθmax = 45.3°, θmin = 4.4°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 1010
Tmin = 0.239, Tmax = 0.430k = 1010
15715 measured reflectionsl = 2727
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.023Secondary atom site location: difference Fourier map
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0222P)2 + 0.9027P]
where P = (Fo2 + 2Fc2)/3
S = 1.29(Δ/σ)max < 0.001
582 reflectionsΔρmax = 0.54 e Å3
18 parametersΔρmin = 1.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.00000.00000.35436 (17)0.00171 (8)0.583 (4)
Mg10.00000.00000.3533 (7)0.00171 (8)0.417 (4)
Ti10.00000.00000.14423 (2)0.00926 (8)
O10.29407 (16)0.02234 (16)0.25430 (5)0.00675 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.00171 (8)0.00171 (8)0.00171 (12)0.00085 (4)0.0000.000
Mg10.00171 (8)0.00171 (8)0.00171 (12)0.00085 (4)0.0000.000
Ti10.00920 (9)0.00920 (9)0.00940 (12)0.00460 (4)0.0000.000
O10.0073 (2)0.0068 (2)0.0071 (2)0.00420 (18)0.00105 (16)0.00126 (16)
Geometric parameters (Å, º) top
Fe1—O1i1.8750 (12)Mg1—Mg1vii2.988 (4)
Fe1—O1ii1.8750 (12)Mg1—Mg1iii2.988 (4)
Fe1—O1iii1.8750 (12)Mg1—Fe1vi2.9907 (14)
Fe1—O12.0937 (17)Mg1—Fe1vii2.9907 (14)
Fe1—O1iv2.0937 (17)Ti1—O1viii2.0655 (7)
Fe1—O1v2.0937 (17)Ti1—O1ix2.0655 (7)
Fe1—Ti12.945 (2)Ti1—O1x2.0656 (7)
Fe1—Mg1vi2.9907 (14)Ti1—O1v2.1900 (7)
Fe1—Mg1vii2.9907 (14)Ti1—O1iv2.1900 (7)
Fe1—Mg1iii2.9907 (14)Ti1—O12.1901 (7)
Mg1—O1i1.881 (4)Ti1—Ti1ix3.0016 (1)
Mg1—O1ii1.881 (4)Ti1—Ti1xi3.0016 (1)
Mg1—O1iii1.881 (4)Ti1—Ti1xii3.0016 (1)
Mg1—O12.084 (6)Ti1—Mg1xiii3.413 (5)
Mg1—O1iv2.084 (6)O1—Fe1iii1.8750 (12)
Mg1—O1v2.084 (6)O1—Mg1iii1.881 (4)
Mg1—Ti12.930 (9)O1—Ti1ix2.0655 (7)
Mg1—Mg1vi2.988 (4)
O1i—Fe1—O1ii102.59 (8)Ti1—Mg1—Fe1vi78.92 (13)
O1i—Fe1—O1iii102.59 (8)Mg1vi—Mg1—Fe1vi0.3 (2)
O1ii—Fe1—O1iii102.59 (8)Mg1vii—Mg1—Fe1vi116.49 (15)
O1i—Fe1—O193.21 (5)Mg1iii—Mg1—Fe1vi116.48 (15)
O1ii—Fe1—O1161.87 (11)O1i—Mg1—Fe1vii43.96 (10)
O1iii—Fe1—O182.23 (3)O1ii—Mg1—Fe1vii100.06 (3)
O1i—Fe1—O1iv161.87 (11)O1iii—Mg1—Fe1vii143.01 (14)
O1ii—Fe1—O1iv82.23 (3)O1—Mg1—Fe1vii85.32 (13)
O1iii—Fe1—O1iv93.21 (5)O1iv—Mg1—Fe1vii118.8 (3)
O1—Fe1—O1iv80.05 (8)O1v—Mg1—Fe1vii38.38 (3)
O1i—Fe1—O1v82.23 (3)Ti1—Mg1—Fe1vii78.92 (13)
O1ii—Fe1—O1v93.21 (5)Mg1vi—Mg1—Fe1vii116.49 (15)
O1iii—Fe1—O1v161.87 (11)Mg1vii—Mg1—Fe1vii0.3 (2)
O1—Fe1—O1v80.05 (8)Mg1iii—Mg1—Fe1vii116.48 (15)
O1iv—Fe1—O1v80.05 (8)Fe1vi—Mg1—Fe1vii116.40 (8)
O1i—Fe1—Ti1115.69 (7)O1viii—Ti1—O1ix101.93 (2)
O1ii—Fe1—Ti1115.69 (7)O1viii—Ti1—O1x101.92 (2)
O1iii—Fe1—Ti1115.69 (7)O1ix—Ti1—O1x101.92 (2)
O1—Fe1—Ti147.95 (5)O1viii—Ti1—O1v161.45 (2)
O1iv—Fe1—Ti147.95 (5)O1ix—Ti1—O1v88.88 (4)
O1v—Fe1—Ti147.95 (5)O1x—Ti1—O1v90.34 (3)
O1i—Fe1—Mg1vi143.12 (5)O1viii—Ti1—O1iv90.34 (3)
O1ii—Fe1—Mg1vi43.63 (17)O1ix—Ti1—O1iv161.45 (2)
O1iii—Fe1—Mg1vi100.01 (7)O1x—Ti1—O1iv88.88 (4)
O1—Fe1—Mg1vi118.56 (8)O1v—Ti1—O1iv75.88 (3)
O1iv—Fe1—Mg1vi38.59 (15)O1viii—Ti1—O188.88 (4)
O1v—Fe1—Mg1vi85.26 (8)O1ix—Ti1—O190.34 (3)
Ti1—Fe1—Mg1vi78.92 (13)O1x—Ti1—O1161.45 (2)
O1i—Fe1—Mg1vii43.63 (17)O1v—Ti1—O175.88 (3)
O1ii—Fe1—Mg1vii100.01 (7)O1iv—Ti1—O175.88 (3)
O1iii—Fe1—Mg1vii143.12 (5)O1viii—Ti1—Mg1116.25 (2)
O1—Fe1—Mg1vii85.26 (8)O1ix—Ti1—Mg1116.25 (2)
O1iv—Fe1—Mg1vii118.56 (8)O1x—Ti1—Mg1116.25 (2)
O1v—Fe1—Mg1vii38.59 (15)O1v—Ti1—Mg145.230 (18)
Ti1—Fe1—Mg1vii78.92 (13)O1iv—Ti1—Mg145.230 (18)
Mg1vi—Fe1—Mg1vii116.40 (8)O1—Ti1—Mg145.229 (18)
O1i—Fe1—Mg1iii100.01 (7)O1viii—Ti1—Fe1116.25 (2)
O1ii—Fe1—Mg1iii143.12 (5)O1ix—Ti1—Fe1116.25 (2)
O1iii—Fe1—Mg1iii43.63 (17)O1x—Ti1—Fe1116.25 (2)
O1—Fe1—Mg1iii38.59 (15)O1v—Ti1—Fe145.230 (18)
O1iv—Fe1—Mg1iii85.26 (8)O1iv—Ti1—Fe145.230 (18)
O1v—Fe1—Mg1iii118.56 (8)O1—Ti1—Fe145.229 (18)
Ti1—Fe1—Mg1iii78.92 (13)Mg1—Ti1—Fe10.000 (1)
Mg1vi—Fe1—Mg1iii116.40 (9)O1viii—Ti1—Ti1ix97.351 (19)
Mg1vii—Fe1—Mg1iii116.40 (9)O1ix—Ti1—Ti1ix46.856 (19)
O1i—Mg1—O1ii102.1 (3)O1x—Ti1—Ti1ix146.50 (2)
O1i—Mg1—O1iii102.1 (3)O1v—Ti1—Ti1ix78.96 (2)
O1ii—Mg1—O1iii102.1 (3)O1iv—Ti1—Ti1ix118.32 (2)
O1i—Mg1—O193.34 (9)O1—Ti1—Ti1ix43.483 (19)
O1ii—Mg1—O1162.5 (4)Mg1—Ti1—Ti1ix77.905 (11)
O1iii—Mg1—O182.34 (8)Fe1—Ti1—Ti1ix77.905 (11)
O1i—Mg1—O1iv162.5 (4)O1viii—Ti1—Ti1xi46.855 (19)
O1ii—Mg1—O1iv82.34 (8)O1ix—Ti1—Ti1xi146.50 (2)
O1iii—Mg1—O1iv93.34 (9)O1x—Ti1—Ti1xi97.350 (19)
O1—Mg1—O1iv80.5 (3)O1v—Ti1—Ti1xi118.32 (2)
O1i—Mg1—O1v82.34 (8)O1iv—Ti1—Ti1xi43.483 (19)
O1ii—Mg1—O1v93.34 (9)O1—Ti1—Ti1xi78.96 (2)
O1iii—Mg1—O1v162.5 (4)Mg1—Ti1—Ti1xi77.905 (11)
O1—Mg1—O1v80.5 (3)Fe1—Ti1—Ti1xi77.905 (11)
O1iv—Mg1—O1v80.5 (3)Ti1ix—Ti1—Ti1xi115.732 (8)
O1i—Mg1—Ti1116.1 (3)O1viii—Ti1—Ti1xii146.50 (2)
O1ii—Mg1—Ti1116.1 (3)O1ix—Ti1—Ti1xii97.349 (19)
O1iii—Mg1—Ti1116.1 (3)O1x—Ti1—Ti1xii46.854 (19)
O1—Mg1—Ti148.25 (19)O1v—Ti1—Ti1xii43.483 (19)
O1iv—Mg1—Ti148.25 (19)O1iv—Ti1—Ti1xii78.96 (2)
O1v—Mg1—Ti148.25 (19)O1—Ti1—Ti1xii118.32 (2)
O1i—Mg1—Mg1vi142.9 (3)Mg1—Ti1—Ti1xii77.905 (11)
O1ii—Mg1—Mg1vi43.73 (9)Fe1—Ti1—Ti1xii77.905 (11)
O1iii—Mg1—Mg1vi99.94 (12)Ti1ix—Ti1—Ti1xii115.731 (8)
O1—Mg1—Mg1vi119.0 (5)Ti1xi—Ti1—Ti1xii115.731 (8)
O1iv—Mg1—Mg1vi38.61 (16)O1viii—Ti1—Mg1xiii75.13 (6)
O1v—Mg1—Mg1vi85.5 (3)O1ix—Ti1—Mg1xiii117.22 (12)
Ti1—Mg1—Mg1vi79.2 (4)O1x—Ti1—Mg1xiii28.645 (19)
O1i—Mg1—Mg1vii43.73 (9)O1v—Ti1—Mg1xiii113.45 (9)
O1ii—Mg1—Mg1vii99.94 (12)O1iv—Ti1—Mg1xiii79.18 (13)
O1iii—Mg1—Mg1vii142.9 (3)O1—Ti1—Mg1xiii150.20 (9)
O1—Mg1—Mg1vii85.5 (3)Mg1—Ti1—Mg1xiii120.68 (14)
O1iv—Mg1—Mg1vii119.0 (5)Fe1—Ti1—Mg1xiii120.68 (14)
O1v—Mg1—Mg1vii38.61 (16)Ti1ix—Ti1—Mg1xiii161.42 (14)
Ti1—Mg1—Mg1vii79.2 (4)Ti1xi—Ti1—Mg1xiii71.72 (6)
Mg1vi—Mg1—Mg1vii116.6 (2)Ti1xii—Ti1—Mg1xiii71.73 (6)
O1i—Mg1—Mg1iii99.94 (12)Fe1iii—O1—Mg1iii0.4 (3)
O1ii—Mg1—Mg1iii142.9 (3)Fe1iii—O1—Ti1ix119.48 (4)
O1iii—Mg1—Mg1iii43.73 (9)Mg1iii—O1—Ti1ix119.60 (8)
O1—Mg1—Mg1iii38.61 (16)Fe1iii—O1—Mg197.99 (19)
O1iv—Mg1—Mg1iii85.5 (3)Mg1iii—O1—Mg197.66 (8)
O1v—Mg1—Mg1iii119.0 (5)Ti1ix—O1—Mg1128.00 (4)
Ti1—Mg1—Mg1iii79.2 (4)Fe1iii—O1—Fe197.78 (3)
Mg1vi—Mg1—Mg1iii116.6 (2)Mg1iii—O1—Fe197.4 (2)
Mg1vii—Mg1—Mg1iii116.6 (2)Ti1ix—O1—Fe1128.01 (3)
O1i—Mg1—Fe1vi143.01 (14)Mg1—O1—Fe10.3 (2)
O1ii—Mg1—Fe1vi43.96 (10)Fe1iii—O1—Ti1135.42 (6)
O1iii—Mg1—Fe1vi100.06 (3)Mg1iii—O1—Ti1135.67 (17)
O1—Mg1—Fe1vi118.8 (3)Ti1ix—O1—Ti189.66 (3)
O1iv—Mg1—Fe1vi38.38 (3)Mg1—O1—Ti186.5 (2)
O1v—Mg1—Fe1vi85.32 (13)Fe1—O1—Ti186.82 (5)
Symmetry codes: (i) y+1/3, x+y+2/3, z+2/3; (ii) xy2/3, x1/3, z+2/3; (iii) x+1/3, y1/3, z+2/3; (iv) x+y, x, z; (v) y, xy, z; (vi) x2/3, y1/3, z+2/3; (vii) x+1/3, y+2/3, z+2/3; (viii) xy1/3, x2/3, z+1/3; (ix) x+2/3, y+1/3, z+1/3; (x) y1/3, x+y+1/3, z+1/3; (xi) x1/3, y2/3, z+1/3; (xii) x1/3, y+1/3, z+1/3; (xiii) x2/3, y1/3, z1/3.
Chemical composition by SEM of the ilmenite single crystal top
OxideWt (%)saPoints
TiO255.761.2530
FeO33.531.0330
Nb2O51.430.1930
MgO8.630.9730
SiO20.090.0630
MnO3.030.1730
Note: (a) the standard deviation value refers to the dispersion estimative of chemical composition over the analyzed crystal surface.
Atomic parameters for the ilmenite single crystal top
SiteXYZSite occupancyUeq
Fe0.000000.000000.35436 (17)0.194390.00171 (8)
Mg0.000000.000000.3533 (7)0.138940.00171 (8)
Ti0.000000.000000.14423 (2)0.333330.00926 (8)
O0.29407 (16)-0.02234 (16)0.25430 (5)1.000000.00675 (11)
Metal–oxygen distances (Å) for the refined structure of ilmenite top
BondFe—OMg—OTi—O
M—Omin1.875 (2)1.881 (4)2.0655 (7)
M—Omax2.094 (2)2.084 (6)2.1900 (7)
M—Oaverage1.984 (2)1.983 (5)2.1278 (7)
Hirshfeld surface [w(r) = 0.5] parameters for FeTiO3 model (pure ilmenite) top
AtomVolume (Å3)Area (Å2)GlobularitySphericity
Fe7.9221.430.8970.004
Ti9.7424.160.9130.002
O5.7415.740.9850.005
Hirshfeld surface [w(r) = 0.5] parameters for MgTiO3 model (pure geikielite) top
AtomVolume (Å3)Area (Å2)GlobularitySphericity
Mg2.459.000.9780.001
Ti10.9227.150.8770.005
O7.3918.530.9900.003
Directional Hirshfeld surface properties in different bond directions: FeTiO3 model top
Bond axisadi (Å)de (Å)dnormdnorm*bShapeCurvedness
Fe—OMin0.96080.9214-0.91340.3668-0.5005-2.2996
OMin—Fe0.90380.9580-0.9173-0.37680.9197-1.4045
Fe—OMax1.06621.0331-0.78720.3993-0.7778-2.4788
OMax—Fe0.99141.1048-0.7954-0.47190.9465-1.0169
Ti—OMin1.06281.0102-0.80400.6838-0.6324-2.3120
OMin—Ti0.98471.0853-0.8095-0.73270.9241-1.2800
Ti—OMax1.11881.0765-0.73240.7102-0.3779-2.9132
OMax—Ti0.98541.0874-0.8080-0.73500.9228-1.2907
Notes: (a) Hirshfeld surface plotted centred in the first atom and parameters obtained in the direction of the second atom. For the bond axis with `OMin', the oxygen anion has the lower bond distance and for `OMax' the oxygen anion has the higher bond distance. (b) Recalculated dnorm using the ionic radius.
Directional Hirshfeld surface properties in different bond directions: MgTiO3 model top
Bond axisadi (Å)de (Å)dnormdnorm*bShapeCurvedness
Mg—OMax0.80831.2851-0.6873-0.00500.8811-0.7978
OMax—Mg1.20310.8916-0.6931-0.15210.7645-0.9541
Mg—OMin0.74001.1461-0.81830.01770.8917-0.8278
OMin—Mg1.03711.1559-0.7397-0.58150.8946-1.0915
Ti—OMin1.06641.0067-0.80450.6912-0.7669-2.0222
OMin—Ti1.11750.7705-0.8213-0.2125-0.5671-1.6507
Ti—OMax1.12641.0710-0.73250.7244-0.6349-1.9917
OMax—Ti0.98831.0821-0.8088-0.72580.9402-1.3490
Notes: (a) Hirshfeld surface plotted centred in the first atom and parameters obtained in the direction of the second atom. For the bond axis with `OMin', the oxygen anion has the lower bond distance and for `OMax' the oxygen anion has the higher bond distance. (b) Recalculated dnorm using the ionic radius.
Comparison between van der Waals and ionic radii for the target system atoms top
AtomIonIonic radius (Å)aCrystal radius (Å)bvan der Waals radius (Å)c
FeFe2+0.780.921.96
MgMg2+0.720.861.41
TiTi4+0.6050.7452.14
OO2-1.221.361.47
Notes: (a) Pauling ionic radius. (b) Ionic radius in crystalline solids as determined by Shannon & Prewitt (1969). (c) van der Waals radius for the neutral atom.
Derived parameters from Hirshfeld surface analysis from natural ilmenite sample – pure ilmenite fragment top
IonBond axisaBase w(r)bBase dnorm*b,cBase curvednessbw(r)dCurvednessddnorm* modulusc,d
Fe2,0+Fe—OMin0.54170.3318-2.35120.5474-2.27490.3303
O2,0-OMin—Fe0.4000-0.3204-2.52260.4135
Fe2,0+Fe—OMax0.54170.3628-2.34230.5739-1.60740.3340
O2,0-OMax—Fe0.4000-0.3800-1.35230.3434
Ti4,0+Ti—OMax0.61110.6002-1.43130.5233-1.80160.6547
O2,0-OMax—Ti0.4000-0.7016-1.36200.4171
Ti4,0+Ti—OMin0.61110.5841-1.68290.5685-1.98580.6269
O2,0-OMin—Ti0.4000-0.6408-1.91980.3710
Notes: (a) Hirshfeld surface plotted centred in the first atom and parameters obtained in the direction of the second atom. For the bond axis with `OMin', the oxygen–metal bond distance is the smaller and for `OMax', the oxygen–metal bond distance is the greater. (b) Values of w(r), dnorm* and curvedness obtained using the standard ionic charges for the Hirshfeld surface build. (c) Recalculated dnorm using the ionic radius. (d) Values of w(r), dnorm* and curvedness obtained for complementary surfaces between neighbouring cations and anions.
Derived parameters from Hirshfeld surface analysis from natural ilmenite sample – geikielite fragment top
IonBond axisaBase w(r)bBase dnorm*b,cBase curvednessbw(r)dCurvednessddnorm* modulusc,d
Mg2,0+Fe—OMax0.6000-0.0436-0.58270.3558-1.06580.2033
O2,0-OMax—Fe0.40000.0002-1.08150.4135
Mg2,0+Fe—OMin0.6000-0.0842-0.55600.3558-0.32400.0628
O2,0-OMin—Fe0.4000-0.0587-1.52640.4555
Ti4,0+Ti—OMax0.61110.6167-1.65740.5874-1.79740.8825
O2,0-OMax—Ti0.4000-0.6909-1.51630.3463
Ti4,0+Ti—OMin0.61110.5927-1.75220.5699-2.25650.8646
O2,0-OMin—Ti0.4000-0.6370-2.18840.3916
Notes: (a) Hirshfeld surface plotted centred in the first atom and parameters obtained in the direction of the second atom. For the bond axis with `OMin', the oxygen–metal bond distance is the smaller and for `OMax', the oxygen–metal bond distance is the greater. (b) Values of w(r), dnorm* and curvedness obtained using the standard ionic charges for the Hirshfeld surface build. (c) Recalculated dnorm using the ionic radius. (d) Values of w(r), dnorm* and curvedness obtained for complementary surfaces between neighbouring cations and anions.
Derived parameters from Hirshfeld surface analysis from a natural ilmenite sample – pure ilmenite/geikielite models top
IonPure ilmenite modelGeikielite model
RDMaxaRDMinbChargeRDMaxaRDMinbCharge
Fe2+0.60480.66772.27
Mg2+0.83620.83621.77
Ti4+0.78300.61452.690.5218-3.31
O2- (M2+ octahedra)1.27961.2702-1.701.32781.4756-1.65
O2- (M4+ octahedra)1.27351.45251.5653
Notes: (a) ion–surface distance in the direction of the longer bond distance; (b) ion-surface distance in the direction of the shorter bond distance.
Comparison data for rutile TiO2 top
IonCharge – Hartree–Fock computational methodaCharge – Hartree–Fock computational methodbCharge – Hirshfeld surface analysis
Ti4+2.752.63.41
O2--1.38c-1.3-1.75
Notes: (a) from Reinhardt et al. (1996); (b) from Silvi et al. (1991); (c) obtained by charge balance from Silvi et al. (1991).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds