Download citation
Download citation
link to html
In the centrosymmetric title molecule, [Mn2(C6H2O8)(H2O)8], the MnII atom is in an octa­hedral environment coordinated by six O-atom donors from water mol­ecules and ethane-1,1,2,2-tetra­carboxyl­ate ligands. The crystal structure features a three-dimensional hydrogen-bonding network based on a strong and distinctive pattern of O—H...O hydrogen-bonding inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536811008063/pb2059sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536811008063/pb2059Isup2.hkl
Contains datablock I

CCDC reference: 734124

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.026
  • wR factor = 0.069
  • Data-to-parameter ratio = 9.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.98 PLAT088_ALERT_3_C Poor Data / Parameter Ratio .................... 9.58 PLAT166_ALERT_4_C S.U's Given on Coordinates for calc-flagged .... H9 PLAT222_ALERT_3_C Large Non-Solvent H Uiso(max)/Uiso(min) .. 6.82 Ratio PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Mn1 -- O2 .. 5.38 su PLAT354_ALERT_3_C Short O-H Bond (0.82A) O2 - H4 ... 0.71 Ang. PLAT702_ALERT_1_C Angle Calc 107.4(13), Rep 105.9(12), Dev.. 1.15 Sigma C3 -C2 -H9 1.555 1.555 1.555 # 37 PLAT702_ALERT_1_C Angle Calc 107.4(15), Rep 105.3(13), Dev.. 1.40 Sigma C1 -C2 -H9 1.555 1.555 1.555 # 38 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 33 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 3
Alert level G PLAT154_ALERT_1_G The su's on the Cell Angles are Equal (x 10000) 300 Deg. PLAT164_ALERT_4_G Nr. of Refined C-H H-Atoms in Heavy-Atom Struct. 1 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K PLAT794_ALERT_5_G Note: Tentative Bond Valency for Mn1 (II) 2.11
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 10 ALERT level C = Check. Ensure it is not caused by an omission or oversight 5 ALERT level G = General information/check it is not something unexpected 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The design and synthesis of metal-organic frameworks(MOFs) has become a very interesting research field. This not only stems from their potential application as functional materials but also from their intriguing structural topologies(Chen et al., 2007; Fan & Zhu, 2006; Li & Yang, 2006). However, frankly speaking, the designed synthesis of coordination networks and supramolecular architectures is still a difficult challenge. The formation of coordination polymers is not only influenced by the geometrical and electronic properties of metal ions but also relying on other factors such as the rigidity or flexibility of the ligands and diversity of metal ions and organic ligands in coordination and noncovalent interactions such as hydrogen bonding (Kim & Jung, 2000; Forster et al., 2002). Therefore, the rational design and construction of coordination polymers based upon assembly of metal ions and multifunctional organic ligands is an interesting research field. Herein we report the crystal structure of the title compound (I).

The molecular structure of (I) is illustrated in Fig. 1., where selected bond distances and bond angles are given in Table 1.

Single-crystal X-ray analysis reveals that 1 crystallizes in the triclinic space group P-1, The structure of 1 is a single molecule in which the asymmetric unit contains one Mn atom, half tce anion, four coordinated water molecules. In complex 1, there is one kind of crystallographically independent MnII center.1 features a 3-D hydrogen bonding network based on a strong and distinctive pattern of hydrogen bonding interactions. As show in Fig. 2., a one-dimensional chain is formed by bond generated by coordinated water molecule and uncoordinated oxygen atom of ligand tce, Further, one-dimensional chains are linked by bonds to form two-dimensional layers, and two-dimensional layers are also jointed by hydrogen bonds to give rise to three-dimensional structure.

Related literature top

For related literature on metal–organic frameworks, see: Chen et al. (2007); Fan & Zhu (2006); Li & Yang (2006). For related literature on hydrogen bonding, see: Forster & Cheetham (2002); Kim & Jung (2000).

Experimental top

A H2O solution (10 ml) of sodium 1,1,2,2-tetracarboxyl-ethylene (29.4 mg, 1 mmol) was added to a CH3OH solution (10 ml) of Mn(OAc)22.5H2O (17.3 mg,1 mmol). The pH of the mixture was adjusted to about 7. The mixture was stirred for 2 h and then filtered.Single crystals appeared after the filtered solution was allowed to stand at room temperature for 2 days.

Refinement top

The C-bound H atoms were placed to the bonded parent atoms in geometrically idealized positions (C—H = 0.93, and 0.98 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C). The O-bound H atoms were located in difference Fourier maps and refined as riding in their as-found relative positions(O—H =0.96 Å) with Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL (Bruker, 2000); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing diagram of l.
(µ-Ethane-1,1,2,2-tetracarboxylato)bis[tetraaquamanganese(II)] top
Crystal data top
[Mn2(C6H2O8)(H2O)8]Z = 1
Mr = 456.08F(000) = 232.0
Triclinic, P1Dx = 1.993 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2901 (12) ÅCell parameters from 924 reflections
b = 8.0212 (15) Åθ = 2.2–20.2°
c = 8.0769 (15) ŵ = 1.75 mm1
α = 108.522 (3)°T = 293 K
β = 95.068 (3)°Block, brown
γ = 97.086 (3)°0.30 × 0.26 × 0.24 mm
V = 379.92 (12) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1379 independent reflections
Radiation source: fine-focus sealed tube1309 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 67
Tmin = 0.785, Tmax = 0.823k = 99
1956 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0451P)2]
where P = (Fo2 + 2Fc2)/3
1379 reflections(Δ/σ)max = 0.001
144 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Mn2(C6H2O8)(H2O)8]γ = 97.086 (3)°
Mr = 456.08V = 379.92 (12) Å3
Triclinic, P1Z = 1
a = 6.2901 (12) ÅMo Kα radiation
b = 8.0212 (15) ŵ = 1.75 mm1
c = 8.0769 (15) ÅT = 293 K
α = 108.522 (3)°0.30 × 0.26 × 0.24 mm
β = 95.068 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1379 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1309 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 0.823Rint = 0.044
1956 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.30 e Å3
1379 reflectionsΔρmin = 0.30 e Å3
144 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.30762 (4)0.25813 (4)0.70315 (3)0.02040 (14)
O10.0280 (3)0.2382 (3)0.6000 (2)0.0407 (4)
O20.6555 (2)0.3118 (2)0.8276 (2)0.0249 (3)
O30.3825 (3)0.5167 (2)0.6758 (2)0.0388 (4)
O40.3632 (3)0.1354 (2)0.43505 (19)0.0293 (3)
O50.2172 (2)0.34158 (18)0.96515 (17)0.0238 (3)
O60.2933 (2)0.00729 (18)0.72542 (18)0.0246 (3)
O70.1900 (2)0.28929 (19)1.21579 (17)0.0282 (3)
O80.3028 (2)0.1656 (2)0.90616 (19)0.0297 (3)
C10.1621 (3)0.2406 (2)1.0530 (2)0.0186 (4)
C20.0577 (3)0.0477 (2)0.9454 (2)0.0184 (4)
H90.050 (3)0.053 (3)0.853 (3)0.022*
C30.2319 (3)0.0512 (2)0.8542 (2)0.0192 (4)
H30.685 (4)0.421 (5)0.890 (4)0.046 (8)*
H40.669 (4)0.260 (4)0.883 (4)0.036 (8)*
H70.292 (4)0.177 (4)0.373 (3)0.034 (7)*
H80.475 (6)0.111 (5)0.400 (5)0.077 (12)*
H50.519 (9)0.581 (8)0.691 (7)0.15 (2)*
H10.108 (7)0.278 (6)0.663 (6)0.100 (15)*
H20.092 (6)0.175 (5)0.510 (5)0.067 (11)*
H60.332 (6)0.591 (6)0.719 (5)0.077 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0220 (2)0.02101 (19)0.01841 (19)0.00202 (12)0.00384 (12)0.00706 (13)
O10.0267 (9)0.0621 (12)0.0257 (9)0.0078 (8)0.0007 (7)0.0045 (8)
O20.0274 (8)0.0220 (8)0.0251 (8)0.0022 (6)0.0024 (6)0.0086 (7)
O30.0508 (11)0.0237 (8)0.0427 (10)0.0047 (8)0.0128 (8)0.0110 (7)
O40.0338 (9)0.0375 (9)0.0210 (7)0.0145 (7)0.0088 (7)0.0114 (7)
O50.0331 (8)0.0176 (7)0.0200 (7)0.0006 (6)0.0069 (6)0.0059 (5)
O60.0310 (8)0.0234 (7)0.0234 (7)0.0073 (6)0.0126 (6)0.0098 (6)
O70.0389 (8)0.0245 (7)0.0180 (7)0.0011 (6)0.0012 (6)0.0057 (6)
O80.0345 (8)0.0312 (8)0.0317 (8)0.0145 (6)0.0116 (6)0.0168 (6)
C10.0167 (9)0.0192 (9)0.0200 (9)0.0048 (7)0.0041 (7)0.0056 (7)
C20.0196 (9)0.0184 (9)0.0177 (9)0.0023 (7)0.0031 (7)0.0067 (7)
C30.0216 (9)0.0163 (9)0.0173 (9)0.0006 (7)0.0024 (7)0.0032 (7)
Geometric parameters (Å, º) top
Mn1—O32.1541 (18)O3—H60.71 (4)
Mn1—O42.1552 (15)O4—H70.82 (3)
Mn1—O52.1578 (13)O4—H80.80 (4)
Mn1—O12.1674 (18)O5—C11.273 (2)
Mn1—O62.1845 (14)O6—C31.275 (2)
Mn1—O22.2557 (16)O7—C11.236 (2)
O1—H10.77 (4)O8—C31.237 (2)
O1—H20.78 (4)C1—C21.541 (3)
O2—H30.85 (3)C2—C2i1.515 (3)
O2—H40.71 (3)C2—C31.536 (2)
O3—H50.92 (6)C2—H90.98 (2)
O3—Mn1—O489.71 (7)Mn1—O3—H5126 (3)
O3—Mn1—O598.50 (6)Mn1—O3—H6123 (3)
O4—Mn1—O5170.75 (6)H5—O3—H696 (4)
O3—Mn1—O190.76 (8)Mn1—O4—H7107.7 (18)
O4—Mn1—O187.24 (7)Mn1—O4—H8128 (3)
O5—Mn1—O188.40 (6)H7—O4—H8113 (3)
O3—Mn1—O6169.57 (7)C1—O5—Mn1126.22 (12)
O4—Mn1—O686.03 (6)C3—O6—Mn1125.18 (11)
O5—Mn1—O686.55 (5)O7—C1—O5123.56 (17)
O1—Mn1—O698.54 (7)O7—C1—C2120.04 (16)
O3—Mn1—O284.27 (8)O5—C1—C2116.39 (16)
O4—Mn1—O296.98 (6)C2i—C2—C3112.65 (19)
O5—Mn1—O288.12 (6)C2i—C2—C1112.95 (19)
O1—Mn1—O2173.45 (7)C3—C2—C1108.56 (14)
O6—Mn1—O286.79 (6)C2i—C2—H9107.6 (13)
Mn1—O1—H1120 (3)C3—C2—H9107.4 (13)
Mn1—O1—H2129 (3)C1—C2—H9107.4 (15)
H1—O1—H2109 (4)O8—C3—O6124.24 (16)
Mn1—O2—H3107.8 (18)O8—C3—C2120.15 (16)
Mn1—O2—H4110 (2)O6—C3—C2115.61 (16)
H3—O2—H4109 (3)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H3···O5ii0.85 (3)1.88 (3)2.726 (2)174 (3)
O2—H4···O8iii0.71 (3)2.07 (3)2.765 (2)166 (3)
O4—H7···O7iv0.82 (3)1.89 (3)2.689 (2)167 (2)
O4—H8···O6v0.80 (4)1.97 (4)2.757 (2)167 (4)
O3—H5···O7ii0.92 (6)1.95 (6)2.847 (2)165 (5)
O1—H1···O2vi0.77 (4)2.07 (4)2.818 (2)164 (5)
O1—H2···O6vii0.78 (4)2.14 (4)2.914 (2)175 (4)
O3—H6···O8viii0.71 (4)2.10 (4)2.771 (2)158 (4)
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x+1, y, z+2; (iv) x, y, z1; (v) x+1, y, z+1; (vi) x1, y, z; (vii) x, y, z+1; (viii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Mn2(C6H2O8)(H2O)8]
Mr456.08
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.2901 (12), 8.0212 (15), 8.0769 (15)
α, β, γ (°)108.522 (3), 95.068 (3), 97.086 (3)
V3)379.92 (12)
Z1
Radiation typeMo Kα
µ (mm1)1.75
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.785, 0.823
No. of measured, independent and
observed [I > 2σ(I)] reflections
1956, 1379, 1309
Rint0.044
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.069, 1.05
No. of reflections1379
No. of parameters144
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.30

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H3···O5i0.85 (3)1.88 (3)2.726 (2)174 (3)
O2—H4···O8ii0.71 (3)2.07 (3)2.765 (2)166 (3)
O4—H7···O7iii0.82 (3)1.89 (3)2.689 (2)167 (2)
O4—H8···O6iv0.80 (4)1.97 (4)2.757 (2)167 (4)
O3—H5···O7i0.92 (6)1.95 (6)2.847 (2)165 (5)
O1—H1···O2v0.77 (4)2.07 (4)2.818 (2)164 (5)
O1—H2···O6vi0.78 (4)2.14 (4)2.914 (2)175 (4)
O3—H6···O8vii0.71 (4)2.10 (4)2.771 (2)158 (4)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2; (iii) x, y, z1; (iv) x+1, y, z+1; (v) x1, y, z; (vi) x, y, z+1; (vii) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds