Download citation
Download citation
link to html
In the title compound, C16H12ClFO2S, the 4-fluoro­phenyl ring is rotated out of the benzofuran plane, as indicated by the dihedral angle of 6.96 (5)°. The crystal structure exhibits a Cl...O inter­action with a Cl...O distance of 3.163 (1) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810001728/pk2225sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810001728/pk2225Isup2.hkl
Contains datablock I

CCDC reference: 765164

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.033
  • wR factor = 0.088
  • Data-to-parameter ratio = 14.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT431_ALERT_2_C Short Inter HL..A Contact Cl .. O2 .. 3.16 Ang.
Author Response: Mentioned as a halogen bond in the Abstract & Comment.
PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L=  0.600          2

Alert level G PLAT154_ALERT_1_G The su's on the Cell Angles are Equal (x 10000) 100 Deg.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Molecules involving the benzofuran skeleton have received particular interest in view of their biological activities (Aslam et al., 2006; Galal et al., 2009; Howlett et al., 1999) and their occurrence as natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 2-(4-fluorophenyl)-5-halo-3-methylsulfinyl-1-benzofuran analogues (Choi et al., 2010a,b,c), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the plane of the benzofuran and the 4-fluorophenyl ring is 6.96 (5)°. The crystal packing (Fig. 2) is stabilized by a Cl···O halogen bond between the chlorine and the oxygen of the SO unit [Cl···O2i = 3.163 (1) Å; C—Cl···O2 = 168.98 (6)°] (Politzer et al., 2007).

Related literature top

For the crystal structures of similar 2-(4-fluorophenyl)-5-halo-3-methylsulfinyl-1-benzofuran derivatives, see: Choi et al. (2010a,b,c). For the biological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Howlett et al. (1999). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For a review of halogen bonding, see: Politzer et al. (2007).

Experimental top

77% 3-Chloroperoxybenzoic acid (202 mg, 0.9 mmol) was added in small portions to a stirred solution of 5-chloro-3-ethylsulfanyl-2-(4-fluorophenyl)-1-benzofuran (245 mg, 0.8 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 3h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 81%, m.p. 413–414 K; Rf = 0.56 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aryl, 0.97 Å for methylene, and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and methylene H atoms, and 1.5Ueq(C) for methyl H atoms.

Structure description top

Molecules involving the benzofuran skeleton have received particular interest in view of their biological activities (Aslam et al., 2006; Galal et al., 2009; Howlett et al., 1999) and their occurrence as natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 2-(4-fluorophenyl)-5-halo-3-methylsulfinyl-1-benzofuran analogues (Choi et al., 2010a,b,c), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the plane of the benzofuran and the 4-fluorophenyl ring is 6.96 (5)°. The crystal packing (Fig. 2) is stabilized by a Cl···O halogen bond between the chlorine and the oxygen of the SO unit [Cl···O2i = 3.163 (1) Å; C—Cl···O2 = 168.98 (6)°] (Politzer et al., 2007).

For the crystal structures of similar 2-(4-fluorophenyl)-5-halo-3-methylsulfinyl-1-benzofuran derivatives, see: Choi et al. (2010a,b,c). For the biological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Howlett et al. (1999). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For a review of halogen bonding, see: Politzer et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50 % probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. C—Cl···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x + 1, - y + 1, - z.]
5-Chloro-3-ethylsulfinyl-2-(4-fluorophenyl)-1-benzofuran top
Crystal data top
C16H12ClFO2SZ = 2
Mr = 322.77F(000) = 332
Triclinic, P1Dx = 1.562 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2843 (1) ÅCell parameters from 8228 reflections
b = 9.4590 (1) Åθ = 2.3–27.5°
c = 10.7717 (2) ŵ = 0.44 mm1
α = 101.630 (1)°T = 100 K
β = 99.301 (1)°Block, colourless
γ = 104.471 (1)°0.36 × 0.28 × 0.22 mm
V = 686.08 (2) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
2692 independent reflections
Radiation source: Rotating Anode2549 reflections with I > 2σ(I)
Bruker HELIOS graded multilayer optics monochromatorRint = 0.023
Detector resolution: 10.0 pixels mm-1θmax = 26.0°, θmin = 2.0°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1111
Tmin = 0.685, Tmax = 0.746l = 1313
10971 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: difference Fourier map
wR(F2) = 0.088H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.4635P]
where P = (Fo2 + 2Fc2)/3
2692 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C16H12ClFO2Sγ = 104.471 (1)°
Mr = 322.77V = 686.08 (2) Å3
Triclinic, P1Z = 2
a = 7.2843 (1) ÅMo Kα radiation
b = 9.4590 (1) ŵ = 0.44 mm1
c = 10.7717 (2) ÅT = 100 K
α = 101.630 (1)°0.36 × 0.28 × 0.22 mm
β = 99.301 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2692 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2549 reflections with I > 2σ(I)
Tmin = 0.685, Tmax = 0.746Rint = 0.023
10971 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.06Δρmax = 0.53 e Å3
2692 reflectionsΔρmin = 0.30 e Å3
190 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.45255 (6)0.80712 (5)0.40708 (4)0.02482 (13)
Cl0.28282 (7)0.27078 (5)0.05264 (4)0.03514 (14)
F0.25946 (19)0.84365 (15)1.02077 (10)0.0444 (3)
O10.20936 (16)0.41731 (12)0.48378 (11)0.0220 (2)
O20.5927 (2)0.79848 (16)0.32129 (14)0.0365 (3)
C10.3394 (2)0.62050 (18)0.41357 (15)0.0206 (3)
C20.2984 (2)0.48819 (18)0.30777 (15)0.0208 (3)
C30.3201 (2)0.46061 (19)0.17918 (16)0.0237 (3)
H30.37230.53870.14300.028*
C40.2602 (2)0.3116 (2)0.10851 (16)0.0258 (4)
C50.1846 (3)0.1912 (2)0.16042 (17)0.0285 (4)
H50.14860.09270.10930.034*
C60.1631 (3)0.21813 (19)0.28749 (17)0.0258 (4)
H60.11290.13990.32400.031*
C70.2202 (2)0.36738 (18)0.35738 (15)0.0212 (3)
C80.2840 (2)0.57255 (18)0.51702 (16)0.0206 (3)
C90.2817 (2)0.64559 (19)0.64935 (15)0.0213 (3)
C100.2304 (2)0.5573 (2)0.73545 (17)0.0261 (4)
H100.20190.45290.70850.031*
C110.2220 (3)0.6242 (2)0.86001 (17)0.0304 (4)
H110.18490.56570.91660.036*
C120.2694 (3)0.7788 (2)0.89875 (16)0.0304 (4)
C130.3240 (3)0.8701 (2)0.81899 (17)0.0306 (4)
H130.35750.97450.84850.037*
C140.3279 (2)0.8025 (2)0.69353 (17)0.0262 (4)
H140.36200.86240.63740.031*
C150.2417 (3)0.8367 (2)0.31295 (17)0.0275 (4)
H15A0.28310.92500.28010.033*
H15B0.18120.75040.23900.033*
C160.0937 (3)0.8588 (2)0.39391 (19)0.0300 (4)
H16A0.15260.94520.46640.036*
H16B0.05050.77080.42510.036*
H16C0.01550.87430.34130.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0245 (2)0.0222 (2)0.0283 (2)0.00369 (16)0.00953 (17)0.00866 (16)
Cl0.0472 (3)0.0381 (3)0.0213 (2)0.0177 (2)0.00961 (18)0.00222 (18)
F0.0576 (8)0.0547 (8)0.0209 (5)0.0212 (6)0.0129 (5)0.0003 (5)
O10.0256 (6)0.0205 (6)0.0219 (6)0.0071 (5)0.0080 (4)0.0070 (4)
O20.0333 (7)0.0367 (7)0.0437 (8)0.0072 (6)0.0211 (6)0.0138 (6)
C10.0200 (8)0.0200 (8)0.0226 (8)0.0061 (6)0.0062 (6)0.0059 (6)
C20.0187 (7)0.0223 (8)0.0226 (8)0.0081 (6)0.0050 (6)0.0052 (6)
C30.0234 (8)0.0275 (9)0.0226 (8)0.0098 (7)0.0072 (6)0.0071 (7)
C40.0265 (8)0.0315 (9)0.0214 (8)0.0136 (7)0.0063 (6)0.0041 (7)
C50.0303 (9)0.0240 (8)0.0296 (9)0.0114 (7)0.0039 (7)0.0012 (7)
C60.0274 (8)0.0210 (8)0.0303 (9)0.0083 (7)0.0068 (7)0.0072 (7)
C70.0213 (8)0.0234 (8)0.0215 (8)0.0095 (6)0.0063 (6)0.0062 (6)
C80.0187 (7)0.0200 (8)0.0241 (8)0.0068 (6)0.0051 (6)0.0060 (6)
C90.0184 (7)0.0258 (8)0.0203 (8)0.0075 (6)0.0043 (6)0.0057 (6)
C100.0275 (9)0.0284 (9)0.0242 (8)0.0093 (7)0.0067 (7)0.0082 (7)
C110.0324 (9)0.0401 (10)0.0237 (9)0.0131 (8)0.0095 (7)0.0135 (8)
C120.0298 (9)0.0432 (11)0.0183 (8)0.0152 (8)0.0057 (7)0.0019 (7)
C130.0320 (9)0.0289 (9)0.0280 (9)0.0096 (7)0.0065 (7)0.0005 (7)
C140.0271 (9)0.0269 (9)0.0248 (8)0.0070 (7)0.0077 (7)0.0063 (7)
C150.0343 (9)0.0255 (9)0.0254 (8)0.0103 (7)0.0072 (7)0.0100 (7)
C160.0256 (9)0.0284 (9)0.0375 (10)0.0088 (7)0.0076 (7)0.0102 (7)
Geometric parameters (Å, º) top
Cl—O2i3.163 (1)C6—H60.9300
S—O21.489 (1)C8—C91.458 (2)
S—C11.772 (2)C9—C141.398 (2)
S—C151.8142 (18)C9—C101.402 (2)
Cl—C41.745 (2)C10—C111.381 (2)
F—C121.355 (2)C10—H100.9300
O1—C71.370 (2)C11—C121.373 (3)
O1—C81.381 (2)C11—H110.9300
C1—C81.367 (2)C12—C131.371 (3)
C1—C21.443 (2)C13—C141.382 (2)
C2—C71.391 (2)C13—H130.9300
C2—C31.399 (2)C14—H140.9300
C3—C41.382 (2)C15—C161.520 (2)
C3—H30.9300C15—H15A0.9700
C4—C51.398 (3)C15—H15B0.9700
C5—C61.383 (2)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—C71.382 (2)C16—H16C0.9600
C4—Cl—O2i168.98 (6)C14—C9—C8121.88 (15)
O2—S—C1107.41 (8)C10—C9—C8119.66 (15)
O2—S—C15106.84 (8)C11—C10—C9120.48 (17)
C1—S—C1597.19 (8)C11—C10—H10119.8
C7—O1—C8106.92 (12)C9—C10—H10119.8
C8—C1—C2107.26 (14)C12—C11—C10118.76 (16)
C8—C1—S128.13 (13)C12—C11—H11120.6
C2—C1—S124.54 (12)C10—C11—H11120.6
C7—C2—C3119.43 (15)F—C12—C13118.64 (17)
C7—C2—C1105.04 (14)F—C12—C11118.45 (17)
C3—C2—C1135.52 (16)C13—C12—C11122.91 (16)
C4—C3—C2116.69 (15)C12—C13—C14118.13 (17)
C4—C3—H3121.7C12—C13—H13120.9
C2—C3—H3121.7C14—C13—H13120.9
C3—C4—C5123.17 (16)C13—C14—C9121.24 (16)
C3—C4—Cl118.61 (14)C13—C14—H14119.4
C5—C4—Cl118.21 (13)C9—C14—H14119.4
C6—C5—C4120.24 (16)C16—C15—S111.69 (12)
C6—C5—H5119.9C16—C15—H15A109.3
C4—C5—H5119.9S—C15—H15A109.3
C7—C6—C5116.50 (16)C16—C15—H15B109.3
C7—C6—H6121.7S—C15—H15B109.3
C5—C6—H6121.7H15A—C15—H15B107.9
O1—C7—C6125.40 (15)C15—C16—H16A109.5
O1—C7—C2110.66 (14)C15—C16—H16B109.5
C6—C7—C2123.94 (15)H16A—C16—H16B109.5
C1—C8—O1110.11 (14)C15—C16—H16C109.5
C1—C8—C9135.48 (15)H16A—C16—H16C109.5
O1—C8—C9114.40 (13)H16B—C16—H16C109.5
C14—C9—C10118.46 (15)
O2—S—C1—C8143.68 (15)C2—C1—C8—O10.18 (18)
C15—S—C1—C8106.11 (16)S—C1—C8—O1177.16 (11)
O2—S—C1—C232.81 (16)C2—C1—C8—C9178.51 (17)
C15—S—C1—C277.40 (15)S—C1—C8—C94.5 (3)
C8—C1—C2—C70.29 (17)C7—O1—C8—C10.59 (17)
S—C1—C2—C7176.82 (12)C7—O1—C8—C9179.30 (13)
C8—C1—C2—C3179.92 (18)C1—C8—C9—C146.7 (3)
S—C1—C2—C33.0 (3)O1—C8—C9—C14171.53 (14)
C7—C2—C3—C40.2 (2)C1—C8—C9—C10173.73 (18)
C1—C2—C3—C4179.97 (17)O1—C8—C9—C108.0 (2)
C2—C3—C4—C51.2 (2)C14—C9—C10—C111.4 (2)
C2—C3—C4—Cl179.67 (12)C8—C9—C10—C11178.16 (15)
C3—C4—C5—C61.2 (3)C9—C10—C11—C121.6 (3)
Cl—C4—C5—C6179.67 (13)C10—C11—C12—F179.52 (16)
C4—C5—C6—C70.1 (3)C10—C11—C12—C130.4 (3)
C8—O1—C7—C6178.85 (15)F—C12—C13—C14178.07 (16)
C8—O1—C7—C20.78 (17)C11—C12—C13—C141.1 (3)
C5—C6—C7—O1179.54 (15)C12—C13—C14—C91.3 (3)
C5—C6—C7—C20.9 (3)C10—C9—C14—C130.1 (3)
C3—C2—C7—O1179.50 (13)C8—C9—C14—C13179.63 (16)
C1—C2—C7—O10.67 (17)O2—S—C15—C16175.89 (12)
C3—C2—C7—C60.9 (2)C1—S—C15—C1673.42 (13)
C1—C2—C7—C6178.98 (15)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H12ClFO2S
Mr322.77
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.2843 (1), 9.4590 (1), 10.7717 (2)
α, β, γ (°)101.630 (1), 99.301 (1), 104.471 (1)
V3)686.08 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.36 × 0.28 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.685, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
10971, 2692, 2549
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.06
No. of reflections2692
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds