Download citation
Download citation
link to html
In the title compound, C15H10ClNO4S, the heterocyclic thia­zine ring adopts a half-chair conformation with the S and N atoms displaced by 0.476 (5) and 0.227 (5) Å, respectively, on opposite sides of the mean plane formed by the remaining ring atoms. The structure is stabilized by inter­molecular N—H...O and C—H...O hydrogen bonds. In addition, intra­molecular O—H...O and C—H...N inter­actions are also present.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810009761/pk2231sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810009761/pk2231Isup2.hkl
Contains datablock I

CCDC reference: 774316

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.051
  • wR factor = 0.121
  • Data-to-parameter ratio = 16.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 42 PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF .... 3 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 40 PLAT927_ALERT_1_C Reported and Calculated wR2 * 100.0 Differ by . -0.35
Alert level G PLAT154_ALERT_1_G The su's on the Cell Angles are Equal (x 10000) 300 Deg.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

1,2-Benzothiazine 1,1-dioxides represent a class of pharmaceutically important heterocyclic compounds that have received considerable attention because of their dynamic structural features and a wide range of biological activity, e.g., anti-inflammatory (Lombardino & Wiseman, 1972), analgesic (Gupta et al., 2002), anti-cancer (Gupta et al., 1993), anti-bacterial (Zia-ur-Rehman et al., 2006) and endothelin receptor antagonists (Berryman et al., 1998), etc. In continuation of our research on the synthesis of biologically active benzothiazine derivatives (Ahmad et al., 2010), we herein report the synthesis and crystal structure of the title compound.

The title molecule is presented in Fig. 1. The bond distances are as expected (Allen et al., 1987) and agree with the corresponding parameters reported in closely related compounds (Siddiqui et al., 2008). The heterocyclic thiazine ring adopts a half chair conformation with atoms S1 and N1 displaced by 0.476 (5) and 0.227 (5) Å , respectively, on the opposite sides from the mean plane formed by the remaining ring atoms.

The structure is stabilized by intermolecular hydrogen bonds of the types N—H···O and C—H···O. In addition, intramolecular interactions O3—H3O···O4 and C15—H15···N1 are also present consolidating the crystal packing; details are provided in Table 1.

Related literature top

For the biological activity of 1,2-benzothiazine derivatives, see: Ahmad et al. (2010); Lombardino & Wiseman, (1972); Gupta et al. (1993, 2002); Zia-ur-Rehman et al. (2006); Berryman et al. (1998). For comparative bond distances, see: Allen et al. (1987). For related structures, see: Siddiqui et al. (2008)

Experimental top

Sodium metal (4.83 g, 210 mmol) was dissolved in dry methanol (35 ml) and 2-[2-(3-chlorophenyl)-2-oxoethyl]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (10.07 g, 30 mmol) was added to it. The mixture was refluxed for 30 minutes. The contents of the flask were cooled to room temperature and pH was adjusted at 3.0 using 5% HCl. A pale yellow precipitate of the title compound was filtered and washed with cold methanol. Crystals suitable for crystallographic study were grown from a methanolic solution by slow evaporation at room temperature. Yield, 74%; m.p. 438-440 K.

Refinement top

Though all the H atoms could be distinguished in the difference Fourier map, they were included at geometrically idealized positions and refined using a riding-model approximation with the following constraints: O—H, N—H and C—H distances were set to 0.82, 0.86 and 0.93 Å, respectively, and Uiso(H) = 1.2Ueq(parent atom). The final difference map was essentially featureless.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the displacement ellipsoids plotted at 30% probability level (Farrugia, 1997).
3-(3-Chlorobenzoyl)-4-hydroxy-2H-1,2-benzothiazine 1,1-dioxide top
Crystal data top
C15H10ClNO4SZ = 2
Mr = 335.75F(000) = 344
Triclinic, P1Dx = 1.558 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.7151 (3) ÅCell parameters from 1649 reflections
b = 12.2879 (8) Åθ = 1.0–27.5°
c = 12.5809 (6) ŵ = 0.43 mm1
α = 81.375 (3)°T = 295 K
β = 84.463 (3)°Block, yellow
γ = 85.608 (3)°0.14 × 0.12 × 0.10 mm
V = 715.88 (7) Å3
Data collection top
Nonius KappaCCD
diffractometer
3202 independent reflections
Radiation source: fine-focus sealed tube2783 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 66
Tmin = 0.942, Tmax = 0.958k = 1515
4352 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: difference Fourier map
wR(F2) = 0.121H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.025P)2 + 0.745P]
where P = (Fo2 + 2Fc2)/3
3202 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C15H10ClNO4Sγ = 85.608 (3)°
Mr = 335.75V = 715.88 (7) Å3
Triclinic, P1Z = 2
a = 4.7151 (3) ÅMo Kα radiation
b = 12.2879 (8) ŵ = 0.43 mm1
c = 12.5809 (6) ÅT = 295 K
α = 81.375 (3)°0.14 × 0.12 × 0.10 mm
β = 84.463 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3202 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2783 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.958Rint = 0.027
4352 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.09Δρmax = 0.45 e Å3
3202 reflectionsΔρmin = 0.36 e Å3
200 parameters
Special details top

Experimental. IR (KBr) 3157, 1615, 1358, 1156 cm-1, MS m/z: 335.2 [M+]. 1H NMR (DMSO-d6); 7.64 (t, 2H, J = 8.0 Hz, Ar—H), 7.75 (d, 2H, J = 8.0 Hz, Ar—H), 7.96 (d, 1H, J = 10.0 Hz, Ar—H), 7.96 (s, 1H, J = 16.4 Hz, Ar—H), 8.18 (t, 2H, J = 3.2 Hz, Ar—H).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.12832 (17)0.15369 (6)0.14547 (7)0.0618 (2)
S10.00971 (13)0.31098 (5)0.38523 (5)0.03988 (17)
O10.1096 (5)0.34309 (18)0.47468 (16)0.0601 (6)
O20.2260 (4)0.23281 (16)0.40650 (15)0.0511 (5)
O30.0663 (5)0.30935 (17)0.04835 (15)0.0604 (6)
H3O0.03720.25960.02570.073*
O40.3079 (4)0.15059 (17)0.05644 (14)0.0553 (5)
N10.2456 (4)0.26558 (18)0.30655 (17)0.0441 (5)
H1N0.41440.25190.32770.053*
C10.1507 (5)0.4240 (2)0.3008 (2)0.0415 (5)
C20.2846 (7)0.5148 (2)0.3434 (3)0.0563 (7)
H20.28150.52040.41620.068*
C30.4223 (8)0.5961 (3)0.2754 (3)0.0715 (10)
H30.51250.65750.30250.086*
C40.4271 (9)0.5873 (3)0.1678 (3)0.0748 (10)
H40.52410.64210.12330.090*
C50.2904 (7)0.4985 (3)0.1253 (3)0.0623 (8)
H50.29260.49430.05220.075*
C60.1488 (5)0.4148 (2)0.1915 (2)0.0425 (5)
C70.0006 (5)0.3206 (2)0.1462 (2)0.0415 (5)
C80.1900 (5)0.2482 (2)0.20148 (19)0.0386 (5)
C90.3263 (5)0.1547 (2)0.1542 (2)0.0407 (5)
C100.4876 (5)0.0619 (2)0.21729 (19)0.0394 (5)
C110.7101 (5)0.0062 (2)0.1617 (2)0.0413 (5)
H110.76340.03090.08950.050*
C120.8495 (5)0.0854 (2)0.2149 (2)0.0435 (6)
C130.7712 (7)0.1251 (2)0.3214 (2)0.0553 (7)
H130.86800.18700.35620.066*
C140.5477 (7)0.0714 (2)0.3752 (2)0.0589 (8)
H140.49100.09840.44650.071*
C150.4057 (6)0.0222 (2)0.3248 (2)0.0494 (6)
H150.25680.05830.36230.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0599 (4)0.0588 (4)0.0699 (5)0.0225 (3)0.0186 (4)0.0246 (4)
S10.0367 (3)0.0471 (3)0.0379 (3)0.0050 (2)0.0090 (2)0.0131 (2)
O10.0647 (13)0.0721 (14)0.0503 (11)0.0158 (10)0.0234 (10)0.0297 (10)
O20.0417 (10)0.0556 (11)0.0526 (11)0.0028 (8)0.0053 (8)0.0035 (9)
O30.0839 (15)0.0576 (13)0.0399 (10)0.0222 (11)0.0180 (10)0.0126 (9)
O40.0659 (13)0.0607 (12)0.0395 (10)0.0191 (10)0.0104 (9)0.0160 (8)
N10.0318 (10)0.0567 (13)0.0484 (12)0.0085 (9)0.0125 (9)0.0226 (10)
C10.0394 (13)0.0387 (12)0.0480 (14)0.0002 (10)0.0061 (10)0.0116 (10)
C20.0612 (18)0.0490 (16)0.0619 (17)0.0089 (13)0.0079 (14)0.0232 (13)
C30.084 (2)0.0411 (16)0.089 (3)0.0195 (15)0.0117 (19)0.0194 (15)
C40.095 (3)0.0494 (18)0.075 (2)0.0278 (17)0.0176 (19)0.0025 (15)
C50.078 (2)0.0501 (17)0.0551 (17)0.0170 (15)0.0116 (15)0.0028 (13)
C60.0442 (13)0.0365 (12)0.0466 (14)0.0033 (10)0.0058 (11)0.0067 (10)
C70.0455 (13)0.0409 (13)0.0389 (12)0.0028 (10)0.0068 (10)0.0092 (10)
C80.0358 (12)0.0424 (13)0.0390 (12)0.0015 (10)0.0045 (9)0.0118 (10)
C90.0389 (12)0.0435 (13)0.0409 (13)0.0001 (10)0.0036 (10)0.0109 (10)
C100.0428 (13)0.0381 (12)0.0385 (12)0.0001 (10)0.0051 (10)0.0094 (9)
C110.0445 (13)0.0420 (13)0.0387 (12)0.0008 (10)0.0066 (10)0.0099 (10)
C120.0437 (13)0.0426 (13)0.0476 (14)0.0028 (10)0.0130 (11)0.0140 (11)
C130.073 (2)0.0411 (14)0.0527 (16)0.0030 (13)0.0202 (14)0.0049 (12)
C140.082 (2)0.0514 (16)0.0420 (15)0.0081 (15)0.0055 (14)0.0009 (12)
C150.0567 (16)0.0492 (15)0.0428 (14)0.0057 (12)0.0035 (12)0.0122 (11)
Geometric parameters (Å, º) top
Cl1—C121.739 (3)C4—H40.9300
S1—O11.4240 (18)C5—C61.394 (4)
S1—O21.434 (2)C5—H50.9300
S1—N11.604 (2)C6—C71.467 (3)
S1—C11.747 (3)C7—C81.377 (3)
O3—C71.327 (3)C8—C91.451 (3)
O3—H3O0.8200C9—C101.491 (3)
O4—C91.250 (3)C10—C151.395 (4)
N1—C81.422 (3)C10—C111.396 (3)
N1—H1N0.8600C11—C121.376 (3)
C1—C21.391 (4)C11—H110.9300
C1—C61.396 (3)C12—C131.380 (4)
C2—C31.380 (4)C13—C141.376 (4)
C2—H20.9300C13—H130.9300
C3—C41.377 (5)C14—C151.385 (4)
C3—H30.9300C14—H140.9300
C4—C51.376 (4)C15—H150.9300
O1—S1—O2118.25 (13)O3—C7—C8122.4 (2)
O1—S1—N1108.39 (12)O3—C7—C6115.1 (2)
O2—S1—N1109.12 (12)C8—C7—C6122.6 (2)
O1—S1—C1112.18 (12)C7—C8—N1118.7 (2)
O2—S1—C1106.33 (11)C7—C8—C9120.5 (2)
N1—S1—C1101.20 (12)N1—C8—C9120.8 (2)
C7—O3—H3O109.5O4—C9—C8119.2 (2)
C8—N1—S1119.34 (16)O4—C9—C10117.9 (2)
C8—N1—H1N120.3C8—C9—C10122.9 (2)
S1—N1—H1N120.3C15—C10—C11119.6 (2)
C2—C1—C6121.6 (2)C15—C10—C9122.6 (2)
C2—C1—S1120.7 (2)C11—C10—C9117.4 (2)
C6—C1—S1117.43 (18)C12—C11—C10119.3 (2)
C3—C2—C1118.6 (3)C12—C11—H11120.4
C3—C2—H2120.7C10—C11—H11120.4
C1—C2—H2120.7C11—C12—C13121.6 (2)
C4—C3—C2120.6 (3)C11—C12—Cl1119.0 (2)
C4—C3—H3119.7C13—C12—Cl1119.3 (2)
C2—C3—H3119.7C14—C13—C12118.9 (3)
C5—C4—C3120.9 (3)C14—C13—H13120.5
C5—C4—H4119.6C12—C13—H13120.5
C3—C4—H4119.6C13—C14—C15121.0 (3)
C4—C5—C6120.2 (3)C13—C14—H14119.5
C4—C5—H5119.9C15—C14—H14119.5
C6—C5—H5119.9C14—C15—C10119.6 (3)
C5—C6—C1118.2 (2)C14—C15—H15120.2
C5—C6—C7120.3 (2)C10—C15—H15120.2
C1—C6—C7121.5 (2)
O1—S1—N1—C8167.9 (2)O3—C7—C8—N1179.3 (2)
O2—S1—N1—C862.0 (2)C6—C7—C8—N10.1 (4)
C1—S1—N1—C849.8 (2)O3—C7—C8—C90.6 (4)
O1—S1—C1—C235.9 (3)C6—C7—C8—C9178.6 (2)
O2—S1—C1—C294.9 (2)S1—N1—C8—C736.5 (3)
N1—S1—C1—C2151.2 (2)S1—N1—C8—C9142.2 (2)
O1—S1—C1—C6150.4 (2)C7—C8—C9—O412.1 (4)
O2—S1—C1—C678.9 (2)N1—C8—C9—O4169.2 (2)
N1—S1—C1—C635.0 (2)C7—C8—C9—C10167.5 (2)
C6—C1—C2—C31.1 (5)N1—C8—C9—C1011.2 (4)
S1—C1—C2—C3172.4 (3)O4—C9—C10—C15143.7 (3)
C1—C2—C3—C40.2 (5)C8—C9—C10—C1535.9 (4)
C2—C3—C4—C51.3 (6)O4—C9—C10—C1129.3 (3)
C3—C4—C5—C61.2 (6)C8—C9—C10—C11151.1 (2)
C4—C5—C6—C10.1 (5)C15—C10—C11—C121.6 (4)
C4—C5—C6—C7179.4 (3)C9—C10—C11—C12174.8 (2)
C2—C1—C6—C51.2 (4)C10—C11—C12—C131.3 (4)
S1—C1—C6—C5172.5 (2)C10—C11—C12—Cl1179.47 (18)
C2—C1—C6—C7178.3 (3)C11—C12—C13—C140.2 (4)
S1—C1—C6—C78.0 (3)Cl1—C12—C13—C14179.1 (2)
C5—C6—C7—O314.6 (4)C12—C13—C14—C151.3 (5)
C1—C6—C7—O3165.9 (2)C13—C14—C15—C100.9 (4)
C5—C6—C7—C8166.2 (3)C11—C10—C15—C140.5 (4)
C1—C6—C7—C813.3 (4)C9—C10—C15—C14173.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.032.872 (3)168
O3—H3O···O40.821.802.525 (3)146
C2—H2···O1ii0.932.543.279 (3)136
C14—H14···O2iii0.932.583.435 (3)153
C15—H15···N10.932.543.009 (4)112
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H10ClNO4S
Mr335.75
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)4.7151 (3), 12.2879 (8), 12.5809 (6)
α, β, γ (°)81.375 (3), 84.463 (3), 85.608 (3)
V3)715.88 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.14 × 0.12 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.942, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
4352, 3202, 2783
Rint0.027
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.121, 1.09
No. of reflections3202
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.36

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.032.872 (3)167.6
O3—H3O···O40.821.802.525 (3)146.0
C2—H2···O1ii0.932.543.279 (3)136.3
C14—H14···O2iii0.932.583.435 (3)152.9
C15—H15···N10.932.543.009 (4)111.8
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds