Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810046015/pk2265sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536810046015/pk2265Isup2.hkl |
Key indicators
- Single-crystal X-ray study
- T = 293 K
- Mean (Si-O) = 0.001 Å Some non-H atoms missing
- Disorder in main residue
- R factor = 0.023
- wR factor = 0.067
- Data-to-parameter ratio = 17.8
checkCIF/PLATON results
No syntax errors found
Alert level A PLAT974_ALERT_2_A Large Calcd. Negative Residual Density on Mn1 -28.19 eA-3 PLAT974_ALERT_2_A Large Calcd. Negative Residual Density on Mn1# -28.19 eA-3 PLAT974_ALERT_2_A Large Calcd. Negative Residual Density on Mn3# -6.99 eA-3 PLAT974_ALERT_2_A Large Calcd. Negative Residual Density on Mg2# -6.99 eA-3 PLAT974_ALERT_2_A Large Calcd. Negative Residual Density on Mn2# -6.91 eA-3 PLAT974_ALERT_2_A Large Calcd. Negative Residual Density on Mg1# -6.91 eA-3 PLAT051_ALERT_1_A Mu(calc) and Mu(CIF) Ratio Differs from 1.0 by . 23.07 Perc. PLAT070_ALERT_1_A Duplicate Atomic Label on INPUT ................ <I>M</I PLAT070_ALERT_1_A Duplicate Atomic Label on INPUT ................ <I>M</I PLAT070_ALERT_1_A Duplicate Atomic Label on INPUT ................ <I>M</I PLAT070_ALERT_1_A Duplicate Atomic Label on INPUT ................ <I>M</I PLAT701_ALERT_1_A Bond Calc 3.8293(12), Rep 2.0197(11), Dev.. 1508.00 Sigma <I>M<-O4 1.555 7.556 # 7 PLAT701_ALERT_1_A Bond Calc 4.7795(11), Rep 2.0197(11), Dev.. 2508.91 Sigma <I>M<-O4 1.555 8.454 # 8 PLAT701_ALERT_1_A Bond Calc 4.8116(11), Rep 2.1425(11), Dev.. 2426.45 Sigma <I>M<-O2 1.555 1.554 # 9 PLAT701_ALERT_1_A Bond Calc 2.0553(11), Rep 2.1425(11), Dev.. 79.27 Sigma <I>M<-O2 1.555 2.556 # 10 PLAT701_ALERT_1_A Bond Calc 3.6711(11), Rep 2.2554(10), Dev.. 1287.00 Sigma <I>M<-O1 1.555 2.555 # 11 PLAT701_ALERT_1_A Bond Calc 2.1147(10), Rep 2.2554(10), Dev.. 140.70 Sigma <I>M<-O1 1.555 1.555 # 12 PLAT701_ALERT_1_A Bond Calc 2.0223(11), Rep 2.0339(15), Dev.. 10.55 Sigma <I>M<-O3 1.555 5.556 # 13 PLAT701_ALERT_1_A Bond Calc 4.7859(15), Rep 2.0339(15), Dev.. 1834.67 Sigma <I>M<-O3 1.555 1.554 # 14 PLAT701_ALERT_1_A Bond Calc 2.1147(10), Rep 2.0730(10), Dev.. 41.70 Sigma <I>M<-O1 1.555 1.555 # 15 PLAT701_ALERT_1_A Bond Calc 3.6711(11), Rep 2.0730(10), Dev.. 1452.82 Sigma <I>M<-O1 1.555 2.555 # 16 PLAT701_ALERT_1_A Bond Calc 4.7796(11), Rep 2.0730(10), Dev.. 2460.55 Sigma <I>M<-O1 1.555 5.555 # 17 PLAT701_ALERT_1_A Bond Calc 3.7202(10), Rep 2.0730(10), Dev.. 1647.20 Sigma <I>M<-O1 1.555 6.555 # 18 PLAT702_ALERT_1_A Angle Calc 40.82(2), Rep 101.65(7), Dev.. 3041.50 Sigma O4 -<I>M<-O4 7.556 1.555 8.454 # 16 PLAT702_ALERT_1_A Angle Calc 38.73(2), Rep 92.64(4), Dev.. 2695.50 Sigma O4 -<I>M<-O2 7.556 1.555 1.554 # 17 PLAT702_ALERT_1_A Angle Calc 38.09(2), Rep 97.47(4), Dev.. 2969.00 Sigma O4 -<I>M<-O2 8.454 1.555 1.554 # 18 PLAT702_ALERT_1_A Angle Calc 54.71(4), Rep 97.47(4), Dev.. 1069.00 Sigma O4 -<I>M<-O2 7.556 1.555 2.556 # 19 PLAT702_ALERT_1_A Angle Calc 23.62(3), Rep 92.64(4), Dev.. 2300.67 Sigma O4 -<I>M<-O2 8.454 1.555 2.556 # 20 PLAT702_ALERT_1_A Angle Calc 61.71(3), Rep 163.97(6), Dev.. 3408.67 Sigma O2 -<I>M<-O2 1.554 1.555 2.556 # 21 PLAT702_ALERT_1_A Angle Calc 68.90(2), Rep 166.32(4), Dev.. 4871.00 Sigma O4 -<I>M<-O1 7.556 1.555 2.555 # 22 PLAT702_ALERT_1_A Angle Calc 39.76(2), Rep 91.14(4), Dev.. 2569.00 Sigma O4 -<I>M<-O1 8.454 1.555 2.555 # 23 PLAT702_ALERT_1_A Angle Calc 36.22(2), Rep 80.77(4), Dev.. 2227.50 Sigma O2 -<I>M<-O1 1.554 1.555 2.555 # 24 PLAT702_ALERT_1_A Angle Calc 55.31(3), Rep 86.65(4), Dev.. 1044.67 Sigma O2 -<I>M<-O1 2.556 1.555 2.555 # 25 PLAT702_ALERT_1_A Angle Calc 52.81(3), Rep 91.14(4), Dev.. 1277.67 Sigma O4 -<I>M<-O1 7.556 1.555 1.555 # 26 PLAT702_ALERT_1_A Angle Calc 62.62(3), Rep 166.32(4), Dev.. 3456.67 Sigma O4 -<I>M<-O1 8.454 1.555 1.555 # 27 PLAT702_ALERT_1_A Angle Calc 24.54(3), Rep 86.65(4), Dev.. 2070.33 Sigma O2 -<I>M<-O1 1.554 1.555 1.555 # 28 PLAT702_ALERT_1_A Angle Calc 86.24(4), Rep 80.77(4), Dev.. 136.75 Sigma O2 -<I>M<-O1 2.556 1.555 1.555 # 29 PLAT702_ALERT_1_A Angle Calc 49.26(3), Rep 76.60(5), Dev.. 911.33 Sigma O1 -<I>M<-O1 2.555 1.555 1.555 # 30 PLAT702_ALERT_1_A Angle Calc 57.33(5), Rep 180.00(6), Dev.. 2453.40 Sigma O3 -<I>M<-O3 5.556 1.555 1.554 # 31 PLAT702_ALERT_1_A Angle Calc 83.68(5), Rep 84.47(4), Dev.. 15.80 Sigma O3 -<I>M<-O1 5.556 1.555 1.555 # 32 PLAT702_ALERT_1_A Angle Calc 26.41(3), Rep 95.53(4), Dev.. 2304.00 Sigma O3 -<I>M<-O1 1.554 1.555 1.555 # 33 PLAT702_ALERT_1_A Angle Calc 55.92(4), Rep 95.53(4), Dev.. 990.25 Sigma O3 -<I>M<-O1 5.556 1.555 2.555 # 34 PLAT702_ALERT_1_A Angle Calc 35.07(2), Rep 84.47(4), Dev.. 2470.00 Sigma O3 -<I>M<-O1 1.554 1.555 2.555 # 35 PLAT702_ALERT_1_A Angle Calc 49.26(3), Rep 84.81(5), Dev.. 1185.00 Sigma O1 -<I>M<-O1 1.555 1.555 2.555 # 36 PLAT702_ALERT_1_A Angle Calc 23.81(5), Rep 95.53(4), Dev.. 1434.40 Sigma O3 -<I>M<-O1 5.556 1.555 5.555 # 37 PLAT702_ALERT_1_A Angle Calc 33.55(2), Rep 84.47(4), Dev.. 2546.00 Sigma O3 -<I>M<-O1 1.554 1.555 5.555 # 38 PLAT702_ALERT_1_A Angle Calc 59.94(3), Rep 180.00(6), Dev.. 4002.00 Sigma O1 -<I>M<-O1 1.555 1.555 5.555 # 39 PLAT702_ALERT_1_A Angle Calc 39.83(2), Rep 95.19(5), Dev.. 2768.00 Sigma O1 -<I>M<-O1 2.555 1.555 5.555 # 40 PLAT702_ALERT_1_A Angle Calc 46.75(4), Rep 84.47(4), Dev.. 943.00 Sigma O3 -<I>M<-O1 5.556 1.555 6.555 # 41 PLAT702_ALERT_1_A Angle Calc 39.45(2), Rep 95.53(4), Dev.. 2804.00 Sigma O3 -<I>M<-O1 1.554 1.555 6.555 # 42 PLAT702_ALERT_1_A Angle Calc 55.38(3), Rep 95.19(5), Dev.. 1327.00 Sigma O1 -<I>M<-O1 1.555 1.555 6.555 # 43 PLAT702_ALERT_1_A Angle Calc 68.24(2), Rep 180.00(3), Dev.. 5588.00 Sigma O1 -<I>M<-O1 2.555 1.555 6.555 # 44 PLAT702_ALERT_1_A Angle Calc 35.73(2), Rep 84.81(5), Dev.. 2454.00 Sigma O1 -<I>M<-O1 5.555 1.555 6.555 # 45 PLAT924_ALERT_1_A The Reported and Calculated Rho(min) Differ by . 27.59 eA-3 PLAT925_ALERT_1_A The Reported and Calculated Rho(max) Differ by . 3.05 eA-3 PLAT926_ALERT_1_A Reported and Calculated R1 * 100.0 Differ by . -17.35 PLAT927_ALERT_1_A Reported and Calculated wR2 * 100.0 Differ by . -43.30 PLAT928_ALERT_1_A Reported and Calculated S value Differ by . -6.70
Alert level B PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Mn1# -- O2 .. 20.50 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) M4C -- O2 .. 21.01 su
Alert level C PLAT220_ALERT_2_C Large Non-Solvent Mn Ueq(max)/Ueq(min) ... 3.22 Ratio PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Mn1# -- O1 .. 9.09 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Mn1# -- O3 .. 8.34 su PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 1 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 4 PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density 2.50 eA-3 PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density 1.66 eA-3 PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density 1.53 eA-3 PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density 1.53 eA-3 PLAT972_ALERT_2_C Large Calcd. Non-Metal Negative Residual Density -2.40 eA-3 PLAT972_ALERT_2_C Large Calcd. Non-Metal Negative Residual Density -1.87 eA-3 PLAT972_ALERT_2_C Large Calcd. Non-Metal Negative Residual Density -1.74 eA-3 PLAT972_ALERT_2_C Large Calcd. Non-Metal Negative Residual Density -1.66 eA-3 PLAT972_ALERT_2_C Large Calcd. Non-Metal Negative Residual Density -1.51 eA-3 PLAT041_ALERT_1_C Calc. and Reported SumFormula Strings Differ ? PLAT043_ALERT_1_C Check Reported Molecular Weight ................ 897.29 PLAT044_ALERT_1_C Calculated and Reported Dx Differ .............. ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.50 Ratio PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)... ? PLAT077_ALERT_4_C Unitcell contains non-integer number of atoms .. ? PLAT224_ALERT_1_C Ueq(Rep) and Ueq(Calc) differ by 0.003 Ang 2 . Mn1# PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 19
Alert level G FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:H1.86 Al0.2 Ca0.18 F0.14 Fe0.2 Atom count from the _atom_site data: Ca0.18 K0.208 Mg2.3062 Mn2.913 CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G ALERT: Large difference may be due to a symmetry error - see SYMMG tests From the CIF: _cell_formula_units_Z 2 From the CIF: _chemical_formula_sum Al.2 Ca.18 F.14 Fe.27 H1.86 K.2 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff Al 0.40 0.00 0.40 Ca 0.36 0.36 0.00 F 0.28 0.00 0.28 Fe 0.54 0.00 0.54 H 3.72 0.00 3.72 K 0.40 0.42 -0.02 Mg 4.40 4.61 -0.21 Mn 5.22 5.83 -0.61 Na 4.80 4.65 0.15 O 47.72 48.00 -0.28 Si 15.84 16.00 -0.16 Ti 0.04 0.00 0.04 PLAT301_ALERT_3_G Note: Main Residue Disorder ................... 13.00 Perc. PLAT396_ALERT_2_G Deviating Si-O-Si Angle from 150 Deg for O5 137.20 Deg. PLAT396_ALERT_2_G Deviating Si-O-Si Angle from 150 Deg for O6 137.00 Deg. PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K PLAT302_ALERT_4_G Note: Anion/Solvent Disorder ................... 16.00 Perc. PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .......... 12 PLAT793_ALERT_4_G The Model has Chirality at Si1 (Verify) .... S PLAT793_ALERT_4_G The Model has Chirality at Si2 (Verify) .... S PLAT811_ALERT_5_G No ADDSYM Analysis: Too Many Excluded Atoms .... !
58 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 22 ALERT level C = Check and explain 14 ALERT level G = General alerts; check 62 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 23 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check
The kôzulite specimen used in this study is from the type locality Tanohata Mine, Iwate Prefecture, Tohoku Region, Honshu Island, Japan and is in the collection of the RRUFF project (deposition No. R070122; http://rruff.info). The crystal chemistry was determined with a CAMECA SX50 electron microprobe (http://rruff.info) on the same single-crystal used for the collection of X-ray intensity data. The average composition (10 point analyses) yielded a chemical formula (normalized on the basis of 23 oxygen): (K0.20Na0.80)(Na1.60Ca0.18Mn2+0.22)˘Mn2+2.14Mn3+0.25Mg2.20Fe3+0.27Al0.14)˘Si7.92Al0.06Ti0.02)O22[(OH)1.86F0.14].
The chemical analysis and crystal-chemical considerations show that the C-group cations consist of Mn2+, Mn3+, Fe3+, Mg, and Al3+. Because of similar X-ray scattering powers, Fe and Mn were grouped together (represented by the scattering factor for Mn) and Mg and Al together (represented by Mg) throughout the structure refinements. No refinement was made for the cations in the M4 site (= Na0.80Ca0.09Mn2+0.11); they were assigned based on crystal-chemical considerations and previous studies on amphiboles (Hawthorne 1983). The total Mn and Mg in the M1 + M2 + M3 sites were fixed to those from the chemical analysis. To dampen the extreme correlations that would otherwise occur among the refined A-site variables, the isotropic displacement factors of these A sites were constrained to be equal (Hawthorne & Harlow 2008).
Kôzulite, with the ideal formula NaNa2[Mn42+(Fe3+,Al)]Si8O22(OH)2, is an Mn-rich alkali member of the rock-forming amphibole family and was first described by Nambu et al. (1969). Kitamura and Morimoto (1972), in a meeting abstract, presented the structure refinement of a kôzulite crystal with the composition (Na2.54K0.27Ca0.19)(Mn3.69Mg0.63Fe3+0.33Al3+0.31)Σi8.00O21.78[(OH)2.18F0.04]. However, they did not report its detailed structure information, such as atomic coordinates and displacement parameters. This study presents the first reported structure of kôzulite based on single-crystal X-ray diffraction data, as a part of our effort to build an integrated, web-based database of Raman spectra, X-ray diffraction, and chemistry data for all minerals (http://rruff.info).
The site occupancies determined from the refinements are M1 = 0.453 (1) Mn + 0.547 (1) Mg, M2 = 0.766 (1) Mn + 0.234 (1) Mg, and M3 = 0.257 (1) Mn + 0.743 (1) Mg, where Mn and Mg represent (Mn +Fe) and (Mg + Al), respectively. There results should be compared to those given by Kitamura and Morimoto (1972) for their kôzulite crystal: M1 = 0.78 Mn + 0.22 Mg, M2 = 0.95 Mn + 0.05 Mg, and M3 = 0.58 Mn + 0.42 Mg. The average M—O bond lengths are 2.064 (1), 2.139 (1), and 2.060 (1) Å for the M1, M2, and M3 sites, respectively. These values indicate that the M2 site is dominantly occupied by larger Mn2+, whereas the M1 and M3 sites should have similar amounts of (Mn3+ + Fe3+) and Mg. The relatively short average M3—O distance (versus. M1—O) suggests that Al3+ is preferentially ordered into the M3 site. Our results on kôzulite are very similar to those observed by Hawthorne et al. (1995) for ungarettiite with the composition (K0.15Na0.82)(Na1.97Ca0.03)˘Mn2+1.66Mn3+2.97Mg0.34Fe3+0.03Zn0.01)(Si7.99Al0.01)O22O2. The average M—O distances in ungarettiite are 2.03, 2.17, and 2.01 Å for the M1, M2, and M3 sites, respectively, pointing to the strong ordering of larger Mn2+ into the M2 site and smaller Mn3+ into M1 and M3.
Four partially occupied amphibole A sites [A(m), A(m)', A(2), and A(1)] were revealed from the structure refinements. The refinement shows that K prefers the A(m) site, whereas Na is distributed among the other three sites. The refined A site occupancies are 0.208 K + 0.764Na [A(m) = 0.208 (4) K, A(m)' = 0.374 (14) Na, A(2) = 0.146 (6)Na, and A(1) = 0.224 (18) Na], consistent with the result derived from microprobe analysis (0.20 K + 0.80Na), considering experimental uncertainties. The presence of two distinct A sites on the mirror plane, A(m) and A(m)' has also been observed in many other alkali amphiboles (e.g., Hawthorne et al. 1996; Hawthorne and Harlow 2008).
For more information on the geologic occurrence of kôzulite, see: Ashley (1986); Banno (1997); Hirtopanu (2006); Kawachi & Coombs (1993); Matsubara et al. (2002); Nambu et al. (1969, 1970, 1981); Watanabe et al. (1976). For the initial structural refinement of kôzulite, see: Fleischer & Nickel (1970); Kitamura & Morimoto (1972). For general background to the amphibole group, see: Hawthorne (1983); Hawthorne et al. (1995, 1996); Hawthorne & Harlow (2008).For background information on the amphibole group and nomenclature, see: Leake (1978); Leake et al. (1997, 2003); Mogessie et al. (2004).
Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: XtalDraw (Downs & Hall-Wallace, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).
Na3[Mn4(Fe)]Si8O22(OH)2 | F(000) = 954 |
Mr = 897.29 | Dx = 3.232 Mg m−3 |
Monoclinic, C2/m | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2y | Cell parameters from 2537 reflections |
a = 9.9024 (7) Å | θ = 4.0–34.7° |
b = 18.1117 (12) Å | µ = 2.87 mm−1 |
c = 5.2992 (4) Å | T = 293 K |
β = 104.034 (4)° | Euhedral, brown |
V = 922.04 (11) Å3 | 0.06 × 0.05 × 0.04 mm |
Z = 2 |
Bruker APEXII CCD area-detector diffractometer | 1977 independent reflections |
Radiation source: fine-focus sealed tube | 1656 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
φ and ω scans | θmax = 34.4°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | h = −15→15 |
Tmin = 0.847, Tmax = 0.894 | k = −28→28 |
7829 measured reflections | l = −8→7 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | H-atom parameters not refined |
wR(F2) = 0.067 | w = 1/[σ2(Fo2) + (0.0302P)2 + 1.2008P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
1977 reflections | Δρmax = 0.58 e Å−3 |
111 parameters | Δρmin = −0.59 e Å−3 |
1 restraint |
Na3[Mn4(Fe)]Si8O22(OH)2 | V = 922.04 (11) Å3 |
Mr = 897.29 | Z = 2 |
Monoclinic, C2/m | Mo Kα radiation |
a = 9.9024 (7) Å | µ = 2.87 mm−1 |
b = 18.1117 (12) Å | T = 293 K |
c = 5.2992 (4) Å | 0.06 × 0.05 × 0.04 mm |
β = 104.034 (4)° |
Bruker APEXII CCD area-detector diffractometer | 1977 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | 1656 reflections with I > 2σ(I) |
Tmin = 0.847, Tmax = 0.894 | Rint = 0.019 |
7829 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 1 restraint |
wR(F2) = 0.067 | H-atom parameters not refined |
S = 1.08 | Δρmax = 0.58 e Å−3 |
1977 reflections | Δρmin = −0.59 e Å−3 |
111 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
M1 | 0.0000 | 0.08447 (2) | 0.5000 | 0.00933 (11) | 0.4529 (19) |
M1A | 0.0000 | 0.08447 (2) | 0.5000 | 0.00933 (11) | 0.5471 (19) |
M2 | 0.0000 | 0.182241 (18) | 0.0000 | 0.00935 (9) | 0.766 (2) |
M2A | 0.0000 | 0.182241 (18) | 0.0000 | 0.00935 (9) | 0.234 (2) |
M3 | 0.0000 | 0.0000 | 0.0000 | 0.00682 (19) | 0.256 (4) |
M3A | 0.0000 | 0.0000 | 0.0000 | 0.00682 (19) | 0.744 (4) |
M4A | 0.0000 | 0.27152 (4) | 0.5000 | 0.02191 (15) | 0.79 |
M4B | 0.0000 | 0.27152 (4) | 0.5000 | 0.02191 (15) | 0.09 |
M4C | 0.0000 | 0.27152 (4) | 0.5000 | 0.02191 (15) | 0.11 |
Si1 | 0.28233 (4) | 0.084285 (19) | 0.28706 (7) | 0.00858 (8) | |
Si2 | 0.28734 (4) | 0.16909 (2) | 0.79054 (7) | 0.00908 (8) | |
O1 | 0.11555 (10) | 0.08452 (5) | 0.2127 (2) | 0.01077 (18) | |
O2 | 0.11918 (11) | 0.16575 (6) | 0.7170 (2) | 0.01460 (19) | |
O3 | 0.10330 (15) | 0.0000 | 0.7118 (3) | 0.0131 (3) | |
O4 | 0.35819 (12) | 0.24732 (6) | 0.7901 (2) | 0.0179 (2) | |
O5 | 0.34710 (10) | 0.12714 (6) | 0.0742 (2) | 0.01335 (19) | |
O6 | 0.34473 (10) | 0.11704 (6) | 0.57692 (19) | 0.01358 (19) | |
O7 | 0.34279 (16) | 0.0000 | 0.2884 (3) | 0.0154 (3) | |
AM | 0.5211 (9) | 0.0000 | 0.053 (2) | 0.0149 (9)* | 0.104 (4) |
AM' | 0.5562 (10) | 0.0000 | 0.1298 (17) | 0.0149 (9)* | 0.187 (11) |
A2 | 0.5000 | −0.0215 (15) | 0.0000 | 0.0149 (9)* | 0.073 (6) |
A1 | 0.5386 (18) | −0.0192 (18) | 0.103 (4) | 0.0149 (9)* | 0.056 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
M1 | 0.00812 (19) | 0.01278 (19) | 0.00693 (19) | 0.000 | 0.00151 (14) | 0.000 |
M1A | 0.00812 (19) | 0.01278 (19) | 0.00693 (19) | 0.000 | 0.00151 (14) | 0.000 |
M2 | 0.00981 (15) | 0.00801 (14) | 0.01081 (16) | 0.000 | 0.00360 (11) | 0.000 |
M2A | 0.00981 (15) | 0.00801 (14) | 0.01081 (16) | 0.000 | 0.00360 (11) | 0.000 |
M3 | 0.0078 (3) | 0.0059 (3) | 0.0063 (3) | 0.000 | 0.0009 (2) | 0.000 |
M3A | 0.0078 (3) | 0.0059 (3) | 0.0063 (3) | 0.000 | 0.0009 (2) | 0.000 |
M4A | 0.0226 (4) | 0.0251 (4) | 0.0224 (4) | 0.000 | 0.0139 (3) | 0.000 |
M4B | 0.0226 (4) | 0.0251 (4) | 0.0224 (4) | 0.000 | 0.0139 (3) | 0.000 |
M4C | 0.0226 (4) | 0.0251 (4) | 0.0224 (4) | 0.000 | 0.0139 (3) | 0.000 |
Si1 | 0.00867 (16) | 0.00776 (15) | 0.00854 (16) | −0.00068 (11) | 0.00063 (12) | 0.00007 (11) |
Si2 | 0.00895 (16) | 0.00906 (15) | 0.00918 (16) | −0.00125 (11) | 0.00213 (12) | 0.00087 (11) |
O1 | 0.0088 (4) | 0.0112 (4) | 0.0115 (4) | −0.0013 (3) | 0.0009 (3) | −0.0005 (3) |
O2 | 0.0093 (4) | 0.0202 (5) | 0.0138 (5) | 0.0015 (4) | 0.0018 (3) | 0.0031 (4) |
O3 | 0.0139 (6) | 0.0114 (6) | 0.0133 (6) | 0.000 | 0.0021 (5) | 0.000 |
O4 | 0.0236 (5) | 0.0115 (4) | 0.0186 (5) | −0.0056 (4) | 0.0054 (4) | 0.0012 (4) |
O5 | 0.0112 (4) | 0.0171 (5) | 0.0114 (4) | 0.0000 (3) | 0.0021 (3) | 0.0049 (3) |
O6 | 0.0115 (4) | 0.0184 (5) | 0.0099 (4) | 0.0004 (3) | 0.0006 (3) | −0.0039 (3) |
O7 | 0.0149 (7) | 0.0076 (5) | 0.0227 (7) | 0.000 | 0.0022 (5) | 0.000 |
M1—O3i | 2.0223 (10) | M4A—O5ix | 3.0160 (12) |
M1—O3 | 2.0223 (10) | Si1—O1 | 1.6022 (11) |
M1—O2 | 2.0551 (11) | Si1—O6 | 1.6226 (11) |
M1—O2ii | 2.0551 (11) | Si1—O5 | 1.6240 (10) |
M1—O1 | 2.1148 (10) | Si1—O7 | 1.6391 (7) |
M1—O1ii | 2.1148 (10) | Si2—O4 | 1.5814 (11) |
M2—O4iii | 2.0197 (11) | Si2—O2 | 1.6166 (11) |
M2—O4iv | 2.0197 (11) | Si2—O5x | 1.6598 (11) |
M2—O2v | 2.1425 (11) | Si2—O6 | 1.6748 (11) |
M2—O2ii | 2.1425 (11) | AM—O7xi | 2.506 (7) |
M2—O1vi | 2.2554 (10) | AM—O5xii | 2.809 (3) |
M2—O1 | 2.2554 (10) | AM—O5xi | 2.809 (3) |
M3—O3i | 2.0339 (15) | AM—O5viii | 2.894 (4) |
M3—O3v | 2.0339 (15) | AM'—O7xi | 2.643 (7) |
M3—O1 | 2.0730 (10) | AM'—O6xiii | 2.671 (6) |
M3—O1vi | 2.0730 (10) | AM'—O6xiv | 2.671 (6) |
M3—O1vii | 2.0730 (10) | AM'—O5xii | 2.809 (4) |
M3—O1viii | 2.0730 (10) | A2—O7xi | 2.463 (4) |
M4A—O4ix | 2.3450 (12) | A2—O5viii | 2.53 (2) |
M4A—O4iii | 2.3450 (12) | A2—O5xi | 2.53 (2) |
M4A—O2ii | 2.3930 (13) | A1—O6xiv | 2.53 (3) |
M4A—O2 | 2.3930 (13) | A1—O5xi | 2.55 (3) |
M4A—O6iii | 2.6283 (12) | A1—O7xi | 2.644 (17) |
M4A—O6ix | 2.6283 (12) | A1—O5viii | 2.70 (3) |
M4A—O5iii | 3.0160 (12) | ||
O3i—M1—O3 | 81.68 (6) | O1vi—M2—O1 | 76.60 (5) |
O3i—M1—O2 | 175.50 (5) | O3i—M3—O3v | 180.00 (6) |
O3—M1—O2 | 94.98 (4) | O3i—M3—O1 | 84.47 (4) |
O3i—M1—O2ii | 94.98 (4) | O3v—M3—O1 | 95.53 (4) |
O3—M1—O2ii | 175.50 (5) | O3i—M3—O1vi | 95.53 (4) |
O2—M1—O2ii | 88.50 (6) | O3v—M3—O1vi | 84.47 (4) |
O3i—M1—O1 | 83.68 (5) | O1—M3—O1vi | 84.81 (5) |
O3—M1—O1 | 96.35 (5) | O3i—M3—O1vii | 95.53 (4) |
O2—M1—O1 | 93.72 (4) | O3v—M3—O1vii | 84.47 (4) |
O2ii—M1—O1 | 86.24 (4) | O1—M3—O1vii | 180.00 (6) |
O3i—M1—O1ii | 96.35 (5) | O1vi—M3—O1vii | 95.19 (5) |
O3—M1—O1ii | 83.68 (5) | O3i—M3—O1viii | 84.47 (4) |
O2—M1—O1ii | 86.24 (4) | O3v—M3—O1viii | 95.53 (4) |
O2ii—M1—O1ii | 93.72 (4) | O1—M3—O1viii | 95.19 (5) |
O1—M1—O1ii | 179.95 (6) | O1vi—M3—O1viii | 180.00 (3) |
O4iii—M2—O4iv | 101.65 (7) | O1vii—M3—O1viii | 84.81 (5) |
O4iii—M2—O2v | 92.64 (4) | O1—Si1—O6 | 111.41 (5) |
O4iv—M2—O2v | 97.47 (4) | O1—Si1—O5 | 112.64 (5) |
O4iii—M2—O2ii | 97.47 (4) | O6—Si1—O5 | 111.04 (6) |
O4iv—M2—O2ii | 92.64 (4) | O1—Si1—O7 | 110.92 (6) |
O2v—M2—O2ii | 163.97 (6) | O6—Si1—O7 | 106.35 (7) |
O4iii—M2—O1vi | 166.32 (4) | O5—Si1—O7 | 104.05 (7) |
O4iv—M2—O1vi | 91.14 (4) | O4—Si2—O2 | 117.68 (6) |
O2v—M2—O1vi | 80.77 (4) | O4—Si2—O5x | 110.52 (6) |
O2ii—M2—O1vi | 86.65 (4) | O2—Si2—O5x | 108.75 (6) |
O4iii—M2—O1 | 91.14 (4) | O4—Si2—O6 | 106.26 (6) |
O4iv—M2—O1 | 166.32 (4) | O2—Si2—O6 | 108.33 (6) |
O2v—M2—O1 | 86.65 (4) | O5x—Si2—O6 | 104.45 (6) |
O2ii—M2—O1 | 80.77 (4) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x, y, −z+1; (iii) −x+1/2, −y+1/2, −z+1; (iv) x−1/2, −y+1/2, z−1; (v) x, y, z−1; (vi) −x, y, −z; (vii) −x, −y, −z; (viii) x, −y, z; (ix) x−1/2, −y+1/2, z; (x) x, y, z+1; (xi) −x+1, −y, −z; (xii) −x+1, y, −z; (xiii) −x+1, y, −z+1; (xiv) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | Na3[Mn4(Fe)]Si8O22(OH)2 |
Mr | 897.29 |
Crystal system, space group | Monoclinic, C2/m |
Temperature (K) | 293 |
a, b, c (Å) | 9.9024 (7), 18.1117 (12), 5.2992 (4) |
β (°) | 104.034 (4) |
V (Å3) | 922.04 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.87 |
Crystal size (mm) | 0.06 × 0.05 × 0.04 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008a) |
Tmin, Tmax | 0.847, 0.894 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7829, 1977, 1656 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.795 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.067, 1.08 |
No. of reflections | 1977 |
No. of parameters | 111 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters not refined |
Δρmax, Δρmin (e Å−3) | 0.58, −0.59 |
Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), XtalDraw (Downs & Hall-Wallace, 2003), SHELXTL (Sheldrick, 2008b).
Kôzulite, with the ideal formula NaNa2[Mn42+(Fe3+,Al)]Si8O22(OH)2, is an Mn-rich alkali member of the rock-forming amphibole family and was first described by Nambu et al. (1969). Kitamura and Morimoto (1972), in a meeting abstract, presented the structure refinement of a kôzulite crystal with the composition (Na2.54K0.27Ca0.19)(Mn3.69Mg0.63Fe3+0.33Al3+0.31)Σi8.00O21.78[(OH)2.18F0.04]. However, they did not report its detailed structure information, such as atomic coordinates and displacement parameters. This study presents the first reported structure of kôzulite based on single-crystal X-ray diffraction data, as a part of our effort to build an integrated, web-based database of Raman spectra, X-ray diffraction, and chemistry data for all minerals (http://rruff.info).
The site occupancies determined from the refinements are M1 = 0.453 (1) Mn + 0.547 (1) Mg, M2 = 0.766 (1) Mn + 0.234 (1) Mg, and M3 = 0.257 (1) Mn + 0.743 (1) Mg, where Mn and Mg represent (Mn +Fe) and (Mg + Al), respectively. There results should be compared to those given by Kitamura and Morimoto (1972) for their kôzulite crystal: M1 = 0.78 Mn + 0.22 Mg, M2 = 0.95 Mn + 0.05 Mg, and M3 = 0.58 Mn + 0.42 Mg. The average M—O bond lengths are 2.064 (1), 2.139 (1), and 2.060 (1) Å for the M1, M2, and M3 sites, respectively. These values indicate that the M2 site is dominantly occupied by larger Mn2+, whereas the M1 and M3 sites should have similar amounts of (Mn3+ + Fe3+) and Mg. The relatively short average M3—O distance (versus. M1—O) suggests that Al3+ is preferentially ordered into the M3 site. Our results on kôzulite are very similar to those observed by Hawthorne et al. (1995) for ungarettiite with the composition (K0.15Na0.82)(Na1.97Ca0.03)˘Mn2+1.66Mn3+2.97Mg0.34Fe3+0.03Zn0.01)(Si7.99Al0.01)O22O2. The average M—O distances in ungarettiite are 2.03, 2.17, and 2.01 Å for the M1, M2, and M3 sites, respectively, pointing to the strong ordering of larger Mn2+ into the M2 site and smaller Mn3+ into M1 and M3.
Four partially occupied amphibole A sites [A(m), A(m)', A(2), and A(1)] were revealed from the structure refinements. The refinement shows that K prefers the A(m) site, whereas Na is distributed among the other three sites. The refined A site occupancies are 0.208 K + 0.764Na [A(m) = 0.208 (4) K, A(m)' = 0.374 (14) Na, A(2) = 0.146 (6)Na, and A(1) = 0.224 (18) Na], consistent with the result derived from microprobe analysis (0.20 K + 0.80Na), considering experimental uncertainties. The presence of two distinct A sites on the mirror plane, A(m) and A(m)' has also been observed in many other alkali amphiboles (e.g., Hawthorne et al. 1996; Hawthorne and Harlow 2008).