Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810043503/pk2271sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536810043503/pk2271Isup2.hkl |
CCDC reference: 802950
Key indicators
- Single-crystal X-ray study
- T = 100 K
- Mean (C-C) = 0.002 Å
- R factor = 0.022
- wR factor = 0.066
- Data-to-parameter ratio = 15.7
checkCIF/PLATON results
No syntax errors found
Alert level B PLAT934_ALERT_3_B Number of (Iobs-Icalc)/SigmaW .gt. 10 Outliers . 1
Alert level C PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu -- O1 .. 5.01 su PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 1
Alert level G PLAT128_ALERT_4_G Alternate Setting of Space-group P21/c ....... P21/n PLAT380_ALERT_4_G Check Incorrectly? Oriented X(sp2)-Methyl Moiety C18 PLAT380_ALERT_4_G Check Incorrectly? Oriented X(sp2)-Methyl Moiety C28 PLAT794_ALERT_5_G Note: Tentative Bond Valency for Cu ....... 2.24
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check
Synthesis of 2-(N-methylamino)tropone (HTropNMe) was done according to the literature procedure (Roesky & Burgstein, 1999; Claramunt et al., 2004), while all other starting materials were obtained from commercially available sources. Cu(NO3)2 (100 mg, 0.44 mmol) was dissolved in CHCl3 or MeOH and refluxed with HTropNMe for 30 min. The product was filtered from the cold solution and dried in air for 24 h. Rhombic dark-green crystals suitable for X-ray diffraction was obtained from a chloroform/ether (1:1, 10 ml) mixture after 2 d. (Yield: 117 mg, 70%) 1H NMR (300 MHz, CDCl3, 25°C) 7.32 (m, 2H), 7.12 (d, 1H), 6.95 (d, 1H), 6.81 (t, 1H), 1.56 (s, 3H)
All H atoms were positioned geometrically and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent) of the parent atom with a C—H distance of 0.93. The methyl H atoms were placed in geometrically idealized positions and constrained to ride on the parent atoms with Uiso(H) = 1.5Ueq(C) and at a distance of 0.96 Å.
Complexes containing tropolonato type derivatives have steadily increased over the last few decades (Roesky, 2000), with most of the work having involved the first and second row transition elements. This attention has been to a large extent due to the medical application of tropolone in radio-pharmaceuticals (Nepveu et al., 1993) and catalyst precursors (Crous et al., 2005; Roodt et al., 2003). Functionalization of the tropolonato backbone (seven-membered ring) has also been investigated with a range of RhI and PdII complexes reported to date (Steyl et al., 2001; Steyl, 2005).
Heteroatom substitution of the tropolonato moiety has also been reported, most notably the O atoms are replaced with functionalized amino groups, resulting in either the 2- (aminotropone) or 1,2- (aminotropoimine) compounds (Roesky & Burgstein, 1999; Claramunt et al., 2004). Thus, a host of amino and anilino derivatives of tropolone have been reported (Roesky & Burgstein, 1999; Roesky, 2000; Claramunt et al., 2004). The addition of electron-donating or -withdrawing moieties to the N atom can significantly increase the application of these compounds in coordination chemistry. The most interesting observation concerning the CuII metal centres in general is the difference in the coordination behaviour of the bidentate-O,O donor atoms compared to the N,N donor atom complexes; the geometrical conformation changes from a square planar (Starikova & Shugam, 1969; Byrn et al., 1993) to a tetrahedral geometry (Park & Marshall, 2005; Dessy & Fares, 1979), respectively. The N-methylaminoacetylacetonato derivative have been reported (Baidina et al., 2004) as a distorted tetrahedral complex.
In an effort to further investigate these types of complexes, the crystal structure of [Cu(TropNMe)2] is presented.
The copper(II) ion is coordinated by two TropNMe ligands in a square-planar geometry (Fig 1). The Cu2+ ion chelates the TropNMe ligand via N1 and O1 to form a five-membered ring. The N1—O1—Cu—N2—O2 moiety is strictly planar. The ligand planes form angles of 6.54 (1)° and 3.12 (1)°, respectively with the 5-membered ring. This compares with literature (Hill & Steyl, 2008). π–π stacking between C11–C17 and C11–C17i (-x, 1 - y, -z) as well as C11–C17 and C21–C27ii (-x, 2 - y, -z) with intercentroid distances of 4.1483 (4) Å and 3.7827 (4) Å respectively as defined by the seven-membered ring system. Cu—O1 and Cu—O2 bond distances is 1.9313 (2) Å and 1.9386 (2) Å, respectively. This correlates well with literature (Zhang et al., 2008). The Cu—N1 and Cu—N2 bond distances is 1.9276 (2) Å and 1.9291 (2) Å respectively. The O1—Cu—N1 and O2—Cu—N2 angles is 82.292 (4)° and 82.090 (4)° respectively. This correlates well with literature (Kristiansson 2002). The N1—Cu—N2 angle is 175.769 (5)° this is smaller than the O1—Cu—O2 angle, which is 179.229 (6)°. This is in accordance with literature (Liang et al., 2001). The title compound is further stabilized by weak intramolecular C15—H15A···O1 and C16—H16A···O2 hydrogen interactions.
For related literature on values of bond lengths and angles, see: Zhang et al. (2008); Hill & Steyl (2008); Kristiansson (2002). For similar structures, see: Liang et al. (2001). For other related structures, see: Starikova & Shugam (1969); Byrn et al. (1993); Park & Marshall (2005); Dessy & Fares (1979); Baidina et al. (2004). For the synthesis of the title compound, see: Roesky & Burgstein (1999); Claramunt et al. (2004). For relativity [Relevance?] and use of the title compound, see: Roesky (2000); Nepveu et al. (1993); Crous et al. (2005); Roodt et al. (2003); Steyl (2005); Steyl et al. (2001).
Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2004); software used to prepare material for publication: WinGX (Farrugia, 1999).
Fig. 1. Representation of the title compound, showing the numbering scheme and displacement ellipsoids (50% probability). |
[Cu(C8H8NO)2] | F(000) = 684 |
Mr = 331.85 | Dx = 1.614 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 6754 reflections |
a = 6.7541 (9) Å | θ = 2.4–28.2° |
b = 9.1599 (12) Å | µ = 1.61 mm−1 |
c = 22.084 (3) Å | T = 100 K |
β = 92.108 (5)° | Cuboid, black |
V = 1365.3 (3) Å3 | 0.34 × 0.32 × 0.17 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 2985 independent reflections |
Graphite monochromator | 2804 reflections with I > 2σ(I) |
Detector resolution: 8.5 pixels mm-1 | Rint = 0.032 |
φ and ω scans | θmax = 27.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −8→8 |
Tmin = 0.583, Tmax = 0.760 | k = −10→11 |
21665 measured reflections | l = −28→28 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.066 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0363P)2 + 0.8483P] where P = (Fo2 + 2Fc2)/3 |
2985 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
[Cu(C8H8NO)2] | V = 1365.3 (3) Å3 |
Mr = 331.85 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.7541 (9) Å | µ = 1.61 mm−1 |
b = 9.1599 (12) Å | T = 100 K |
c = 22.084 (3) Å | 0.34 × 0.32 × 0.17 mm |
β = 92.108 (5)° |
Bruker APEXII CCD area-detector diffractometer | 2985 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2804 reflections with I > 2σ(I) |
Tmin = 0.583, Tmax = 0.760 | Rint = 0.032 |
21665 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | 0 restraints |
wR(F2) = 0.066 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.36 e Å−3 |
2985 reflections | Δρmin = −0.38 e Å−3 |
190 parameters |
Experimental. First 80 frames repeated after collection for monitoring possible decay. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C11 | 0.0756 (2) | 0.73761 (16) | −0.03802 (6) | 0.0123 (3) | |
C12 | −0.1170 (2) | 0.68077 (16) | −0.01916 (6) | 0.0117 (3) | |
C13 | −0.2292 (2) | 0.57152 (18) | −0.05113 (7) | 0.0152 (3) | |
H13 | −0.3515 | 0.5479 | −0.0336 | 0.018* | |
C14 | −0.1913 (2) | 0.49449 (18) | −0.10280 (7) | 0.0172 (3) | |
H14 | −0.2907 | 0.4259 | −0.1147 | 0.021* | |
C15 | −0.0299 (2) | 0.50069 (18) | −0.14071 (7) | 0.0171 (3) | |
H15 | −0.0326 | 0.4366 | −0.1746 | 0.02* | |
C16 | 0.1324 (2) | 0.59075 (18) | −0.13361 (7) | 0.0157 (3) | |
H16 | 0.2282 | 0.5813 | −0.1638 | 0.019* | |
C17 | 0.1773 (2) | 0.69413 (17) | −0.08858 (7) | 0.0141 (3) | |
H17 | 0.2993 | 0.7436 | −0.0934 | 0.017* | |
C18 | −0.3658 (2) | 0.70243 (17) | 0.05564 (6) | 0.0136 (3) | |
H18A | −0.3873 | 0.7593 | 0.0924 | 0.02* | |
H18B | −0.364 | 0.5982 | 0.0656 | 0.02* | |
H18C | −0.4732 | 0.7221 | 0.0257 | 0.02* | |
C21 | −0.0559 (2) | 1.02279 (16) | 0.17475 (6) | 0.0119 (3) | |
C22 | 0.1447 (2) | 1.06912 (16) | 0.15765 (6) | 0.0113 (3) | |
C23 | 0.2695 (2) | 1.16602 (17) | 0.19214 (7) | 0.0145 (3) | |
H23 | 0.3988 | 1.1773 | 0.1773 | 0.017* | |
C24 | 0.2340 (2) | 1.24600 (17) | 0.24341 (7) | 0.0172 (3) | |
H24 | 0.3422 | 1.3042 | 0.2578 | 0.021* | |
C25 | 0.0645 (2) | 1.25541 (17) | 0.27773 (7) | 0.0176 (3) | |
H25 | 0.0693 | 1.3219 | 0.3108 | 0.021* | |
C26 | −0.1089 (2) | 1.17780 (18) | 0.26841 (7) | 0.0167 (3) | |
H26 | −0.2094 | 1.1981 | 0.2962 | 0.02* | |
C27 | −0.1587 (2) | 1.07348 (18) | 0.22402 (7) | 0.0146 (3) | |
H27 | −0.2848 | 1.0296 | 0.2283 | 0.018* | |
C28 | 0.3903 (2) | 1.04390 (17) | 0.08191 (7) | 0.0136 (3) | |
H28A | 0.4064 | 0.9896 | 0.0442 | 0.02* | |
H28B | 0.4966 | 1.0171 | 0.1112 | 0.02* | |
H28C | 0.3965 | 1.1489 | 0.0737 | 0.02* | |
N1 | −0.17729 (18) | 0.74362 (14) | 0.03074 (5) | 0.0117 (2) | |
N2 | 0.19904 (18) | 1.00838 (14) | 0.10669 (5) | 0.0117 (2) | |
O1 | 0.15352 (16) | 0.83831 (13) | −0.00342 (5) | 0.0158 (2) | |
O2 | −0.14060 (15) | 0.92738 (13) | 0.13907 (5) | 0.0142 (2) | |
Cu | 0.00529 (2) | 0.881953 (19) | 0.067482 (7) | 0.01073 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C11 | 0.0124 (7) | 0.0115 (7) | 0.0126 (6) | 0.0001 (5) | −0.0022 (5) | 0.0015 (5) |
C12 | 0.0118 (7) | 0.0108 (7) | 0.0122 (6) | 0.0004 (5) | −0.0013 (5) | 0.0018 (5) |
C13 | 0.0146 (7) | 0.0149 (8) | 0.0161 (7) | −0.0032 (6) | 0.0009 (5) | −0.0008 (6) |
C14 | 0.0190 (7) | 0.0146 (8) | 0.0178 (7) | −0.0037 (6) | −0.0027 (6) | −0.0030 (6) |
C15 | 0.0222 (8) | 0.0142 (8) | 0.0147 (7) | 0.0012 (6) | −0.0007 (6) | −0.0048 (6) |
C16 | 0.0183 (7) | 0.0160 (8) | 0.0128 (7) | 0.0034 (6) | 0.0016 (6) | −0.0005 (6) |
C17 | 0.0137 (7) | 0.0136 (8) | 0.0150 (7) | −0.0007 (6) | 0.0004 (5) | 0.0005 (5) |
C18 | 0.0122 (7) | 0.0146 (8) | 0.0142 (7) | −0.0020 (6) | 0.0019 (5) | −0.0006 (5) |
C21 | 0.0135 (7) | 0.0103 (7) | 0.0116 (6) | 0.0000 (5) | −0.0024 (5) | 0.0028 (5) |
C22 | 0.0120 (7) | 0.0094 (7) | 0.0123 (6) | 0.0013 (5) | −0.0016 (5) | 0.0024 (5) |
C23 | 0.0134 (7) | 0.0143 (8) | 0.0158 (7) | −0.0009 (6) | −0.0013 (5) | 0.0000 (6) |
C24 | 0.0210 (8) | 0.0134 (8) | 0.0166 (7) | −0.0028 (6) | −0.0048 (6) | −0.0014 (6) |
C25 | 0.0274 (8) | 0.0133 (8) | 0.0120 (7) | −0.0008 (6) | −0.0006 (6) | −0.0026 (5) |
C26 | 0.0224 (8) | 0.0162 (8) | 0.0118 (7) | 0.0015 (6) | 0.0030 (6) | 0.0001 (6) |
C27 | 0.0160 (7) | 0.0150 (8) | 0.0128 (7) | −0.0010 (6) | 0.0006 (5) | 0.0017 (6) |
C28 | 0.0106 (7) | 0.0151 (8) | 0.0152 (7) | −0.0013 (5) | 0.0006 (5) | −0.0007 (5) |
N1 | 0.0115 (6) | 0.0115 (6) | 0.0122 (6) | −0.0012 (5) | 0.0000 (4) | 0.0008 (5) |
N2 | 0.0114 (6) | 0.0110 (6) | 0.0127 (6) | −0.0007 (5) | −0.0011 (4) | −0.0003 (5) |
O1 | 0.0145 (5) | 0.0185 (6) | 0.0143 (5) | −0.0058 (4) | 0.0019 (4) | −0.0048 (4) |
O2 | 0.0137 (5) | 0.0167 (6) | 0.0123 (5) | −0.0035 (4) | 0.0008 (4) | −0.0027 (4) |
Cu | 0.01051 (11) | 0.01176 (12) | 0.00990 (11) | −0.00228 (6) | −0.00007 (7) | −0.00182 (6) |
C11—O1 | 1.2970 (18) | C21—C22 | 1.482 (2) |
C11—C17 | 1.390 (2) | C22—N2 | 1.3196 (19) |
C11—C12 | 1.475 (2) | C22—C23 | 1.425 (2) |
C12—N1 | 1.3210 (19) | C23—C24 | 1.377 (2) |
C12—C13 | 1.426 (2) | C23—H23 | 0.95 |
C13—C14 | 1.374 (2) | C24—C25 | 1.399 (2) |
C13—H13 | 0.95 | C24—H24 | 0.95 |
C14—C15 | 1.400 (2) | C25—C26 | 1.379 (2) |
C14—H14 | 0.95 | C25—H25 | 0.95 |
C15—C16 | 1.376 (2) | C26—C27 | 1.401 (2) |
C15—H15 | 0.95 | C26—H26 | 0.95 |
C16—C17 | 1.398 (2) | C27—H27 | 0.95 |
C16—H16 | 0.95 | C28—N2 | 1.4582 (18) |
C17—H17 | 0.95 | C28—H28A | 0.98 |
C18—N1 | 1.4551 (18) | C28—H28B | 0.98 |
C18—H18A | 0.98 | C28—H28C | 0.98 |
C18—H18B | 0.98 | N1—Cu | 1.9263 (12) |
C18—H18C | 0.98 | N2—Cu | 1.9287 (12) |
C21—O2 | 1.2958 (18) | O1—Cu | 1.9312 (11) |
C21—C27 | 1.392 (2) | O2—Cu | 1.9385 (11) |
O1—C11—C17 | 118.36 (13) | C24—C23—H23 | 114.6 |
O1—C11—C12 | 115.32 (13) | C22—C23—H23 | 114.6 |
C17—C11—C12 | 126.32 (14) | C23—C24—C25 | 130.46 (15) |
N1—C12—C13 | 122.96 (13) | C23—C24—H24 | 114.8 |
N1—C12—C11 | 112.57 (13) | C25—C24—H24 | 114.8 |
C13—C12—C11 | 124.46 (13) | C26—C25—C24 | 126.51 (15) |
C14—C13—C12 | 131.26 (14) | C26—C25—H25 | 116.7 |
C14—C13—H13 | 114.4 | C24—C25—H25 | 116.7 |
C12—C13—H13 | 114.4 | C25—C26—C27 | 129.55 (15) |
C13—C14—C15 | 130.47 (15) | C25—C26—H26 | 115.2 |
C13—C14—H14 | 114.8 | C27—C26—H26 | 115.2 |
C15—C14—H14 | 114.8 | C21—C27—C26 | 131.35 (15) |
C16—C15—C14 | 126.19 (15) | C21—C27—H27 | 114.3 |
C16—C15—H15 | 116.9 | C26—C27—H27 | 114.3 |
C14—C15—H15 | 116.9 | N2—C28—H28A | 109.5 |
C15—C16—C17 | 129.65 (15) | N2—C28—H28B | 109.5 |
C15—C16—H16 | 115.2 | H28A—C28—H28B | 109.5 |
C17—C16—H16 | 115.2 | N2—C28—H28C | 109.5 |
C11—C17—C16 | 131.64 (15) | H28A—C28—H28C | 109.5 |
C11—C17—H17 | 114.2 | H28B—C28—H28C | 109.5 |
C16—C17—H17 | 114.2 | C12—N1—C18 | 120.21 (12) |
N1—C18—H18A | 109.5 | C12—N1—Cu | 115.20 (10) |
N1—C18—H18B | 109.5 | C18—N1—Cu | 124.54 (10) |
H18A—C18—H18B | 109.5 | C22—N2—C28 | 120.26 (12) |
N1—C18—H18C | 109.5 | C22—N2—Cu | 115.52 (10) |
H18A—C18—H18C | 109.5 | C28—N2—Cu | 124.15 (10) |
H18B—C18—H18C | 109.5 | C11—O1—Cu | 114.43 (9) |
O2—C21—C27 | 118.58 (13) | C21—O2—Cu | 114.48 (9) |
O2—C21—C22 | 115.20 (13) | N1—Cu—N2 | 175.77 (5) |
C27—C21—C22 | 126.21 (14) | N1—Cu—O1 | 82.26 (5) |
N2—C22—C23 | 122.75 (13) | N2—Cu—O1 | 97.17 (5) |
N2—C22—C21 | 112.46 (13) | N1—Cu—O2 | 98.51 (5) |
C23—C22—C21 | 124.78 (13) | N2—Cu—O2 | 82.06 (5) |
C24—C23—C22 | 130.81 (14) | O1—Cu—O2 | 179.23 (4) |
O1—C11—C12—N1 | −0.08 (18) | C13—C12—N1—C18 | 0.0 (2) |
C17—C11—C12—N1 | −179.70 (14) | C11—C12—N1—C18 | 179.21 (12) |
O1—C11—C12—C13 | 179.09 (14) | C13—C12—N1—Cu | 177.49 (11) |
C17—C11—C12—C13 | −0.5 (2) | C11—C12—N1—Cu | −3.32 (16) |
N1—C12—C13—C14 | −179.73 (16) | C23—C22—N2—C28 | −2.6 (2) |
C11—C12—C13—C14 | 1.2 (3) | C21—C22—N2—C28 | 178.48 (12) |
C12—C13—C14—C15 | −0.7 (3) | C23—C22—N2—Cu | −179.61 (11) |
C13—C14—C15—C16 | −0.3 (3) | C21—C22—N2—Cu | 1.49 (16) |
C14—C15—C16—C17 | 0.5 (3) | C17—C11—O1—Cu | −176.94 (11) |
O1—C11—C17—C16 | −179.83 (16) | C12—C11—O1—Cu | 3.41 (16) |
C12—C11—C17—C16 | −0.2 (3) | C27—C21—O2—Cu | 173.51 (11) |
C15—C16—C17—C11 | 0.1 (3) | C22—C21—O2—Cu | −5.60 (16) |
O2—C21—C22—N2 | 2.74 (18) | C12—N1—Cu—O1 | 4.09 (10) |
C27—C21—C22—N2 | −176.28 (14) | C18—N1—Cu—O1 | −178.57 (12) |
O2—C21—C22—C23 | −176.13 (14) | C12—N1—Cu—O2 | −175.85 (10) |
C27—C21—C22—C23 | 4.8 (2) | C18—N1—Cu—O2 | 1.49 (12) |
N2—C22—C23—C24 | 175.20 (16) | C22—N2—Cu—O1 | 176.53 (11) |
C21—C22—C23—C24 | −6.0 (3) | C28—N2—Cu—O1 | −0.34 (12) |
C22—C23—C24—C25 | 0.7 (3) | C22—N2—Cu—O2 | −3.48 (11) |
C23—C24—C25—C26 | 3.1 (3) | C28—N2—Cu—O2 | 179.66 (12) |
C24—C25—C26—C27 | 0.0 (3) | C11—O1—Cu—N1 | −4.09 (10) |
O2—C21—C27—C26 | −177.74 (16) | C11—O1—Cu—N2 | 171.68 (10) |
C22—C21—C27—C26 | 1.3 (3) | C21—O2—Cu—N1 | −179.20 (10) |
C25—C26—C27—C21 | −4.0 (3) | C21—O2—Cu—N2 | 5.04 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18A···O2 | 0.98 | 2.47 | 3.1222 (18) | 124 |
C28—H28A···O1 | 0.98 | 2.41 | 3.0715 (18) | 124 |
Experimental details
Crystal data | |
Chemical formula | [Cu(C8H8NO)2] |
Mr | 331.85 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 6.7541 (9), 9.1599 (12), 22.084 (3) |
β (°) | 92.108 (5) |
V (Å3) | 1365.3 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.61 |
Crystal size (mm) | 0.34 × 0.32 × 0.17 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.583, 0.760 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21665, 2985, 2804 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.066, 1.06 |
No. of reflections | 2985 |
No. of parameters | 190 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.38 |
Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenberg & Putz, 2004), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18A···O2 | 0.98 | 2.47 | 3.1222 (18) | 124 |
C28—H28A···O1 | 0.98 | 2.41 | 3.0715 (18) | 124.3 |
Complexes containing tropolonato type derivatives have steadily increased over the last few decades (Roesky, 2000), with most of the work having involved the first and second row transition elements. This attention has been to a large extent due to the medical application of tropolone in radio-pharmaceuticals (Nepveu et al., 1993) and catalyst precursors (Crous et al., 2005; Roodt et al., 2003). Functionalization of the tropolonato backbone (seven-membered ring) has also been investigated with a range of RhI and PdII complexes reported to date (Steyl et al., 2001; Steyl, 2005).
Heteroatom substitution of the tropolonato moiety has also been reported, most notably the O atoms are replaced with functionalized amino groups, resulting in either the 2- (aminotropone) or 1,2- (aminotropoimine) compounds (Roesky & Burgstein, 1999; Claramunt et al., 2004). Thus, a host of amino and anilino derivatives of tropolone have been reported (Roesky & Burgstein, 1999; Roesky, 2000; Claramunt et al., 2004). The addition of electron-donating or -withdrawing moieties to the N atom can significantly increase the application of these compounds in coordination chemistry. The most interesting observation concerning the CuII metal centres in general is the difference in the coordination behaviour of the bidentate-O,O donor atoms compared to the N,N donor atom complexes; the geometrical conformation changes from a square planar (Starikova & Shugam, 1969; Byrn et al., 1993) to a tetrahedral geometry (Park & Marshall, 2005; Dessy & Fares, 1979), respectively. The N-methylaminoacetylacetonato derivative have been reported (Baidina et al., 2004) as a distorted tetrahedral complex.
In an effort to further investigate these types of complexes, the crystal structure of [Cu(TropNMe)2] is presented.
The copper(II) ion is coordinated by two TropNMe ligands in a square-planar geometry (Fig 1). The Cu2+ ion chelates the TropNMe ligand via N1 and O1 to form a five-membered ring. The N1—O1—Cu—N2—O2 moiety is strictly planar. The ligand planes form angles of 6.54 (1)° and 3.12 (1)°, respectively with the 5-membered ring. This compares with literature (Hill & Steyl, 2008). π–π stacking between C11–C17 and C11–C17i (-x, 1 - y, -z) as well as C11–C17 and C21–C27ii (-x, 2 - y, -z) with intercentroid distances of 4.1483 (4) Å and 3.7827 (4) Å respectively as defined by the seven-membered ring system. Cu—O1 and Cu—O2 bond distances is 1.9313 (2) Å and 1.9386 (2) Å, respectively. This correlates well with literature (Zhang et al., 2008). The Cu—N1 and Cu—N2 bond distances is 1.9276 (2) Å and 1.9291 (2) Å respectively. The O1—Cu—N1 and O2—Cu—N2 angles is 82.292 (4)° and 82.090 (4)° respectively. This correlates well with literature (Kristiansson 2002). The N1—Cu—N2 angle is 175.769 (5)° this is smaller than the O1—Cu—O2 angle, which is 179.229 (6)°. This is in accordance with literature (Liang et al., 2001). The title compound is further stabilized by weak intramolecular C15—H15A···O1 and C16—H16A···O2 hydrogen interactions.