Download citation
Download citation
link to html
In the title complex, [Zn(N3)2(C3H4N2S)2], the ZnII atom is tetra­hedrally coordinated by two terminal azide ligands and by the ring N atoms of two different 2-amino­thia­zole ligands. Intra­molecular N—H...N hydrogen bonds between the amino groups of both 2-amino­thia­zole ligands and the N atom of one of the azide ligands ensure that the heterocyclic rings are oriented in the same direction. Inter­molecular N—H...N hydrogen bonds link the mol­ecules into zigzag sheets in the ac plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810053766/pk2293sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810053766/pk2293Isup2.hkl
Contains datablock I

CCDC reference: 811140

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.025
  • wR factor = 0.068
  • Data-to-parameter ratio = 15.9

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT934_ALERT_3_B Number of (Iobs-Icalc)/SigmaW .gt. 10 Outliers . 1
Alert level C PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N2 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 4 PLAT152_ALERT_1_C The Supplied and Calc. Volume s.u. Differ by ... 3 Units PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 7
Alert level G PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 4 ZN -N1 -N2 -N3 164.00 6.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 8 ZN -N4 -N5 -N6 18.00 0.00 1.555 1.555 1.555 1.555 PLAT794_ALERT_5_G Note: Tentative Bond Valency for Zn ....... 1.90
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Multi-dimensional supramolecular complexes with both organic and inorganic ligands have become of great interest recently (Iwamoto, 1996; Batten & Robson, 1998). They have been shown to have useful electronic, magnetic, optical, catalytic, etc. properties (Braga et al., 1998). For designing novel 1-, 2- and 3-D frameworks, we (Kim et al., 2008) and others (Cortes et al., 1997; Yun et al., 2004) have used the coordination properties of pseudohalide ions and complementary organic ligands. Pseudo-halide ions are known to build up 1-, 2- and 3-D structures by bridging metal centers (Vrieze & Koten, 1987). The of use of complementary organic ligands, such as aliphatic and aromatic amines is known to play an important role in stabilizing multi-dimensional structures. In particular, aromatic heterocycles such as imidazole and thiazole derivatives represent an important class of ligands in coordination chemistry (Balch et al., 1993; Costes et al., 1991). However, the frameworks of metal complexes with thiazole derivatives have been considerably less investigated. Our research is focused on the development of novel supramolecular structures utilizing the terminal and bridging properties of pseudo-halide ions, and the coordination behaviour of thiazole derivatives as complementary organic ligands (Suh et al., 2005, 2007, 2009; Kim & Kim, 2010). Herein, we present the synthesis and structure determination of the title complex, Zn(N3)2(C3H4N2S)2, with 2-aminothiazole as shown in Fig. 1. In the title complex, the ZnII atom is tetrahedrally coordinated by two terminal azido ligands, and by the N atoms of two different 2-aminothiazole ligands. Intramolecular N—H···N hydrogen bonds between the amino groups of both 2-aminothiazole ligands and the nitrogen atom of one of the azido ligands ensure that the heterocyclic rings are oriented in the same direction. Intermolecular N—H···N hydrogen bonds form the molecules into zig-zag sheets in the ac plane (Fig. 2).

Related literature top

For multi-dimensional supramolecular complexes with organic–inorganic hybrids, see: Iwamoto (1996); Batten & Robson (1998); Braga et al. (1998). For the use of pseudo-halides in the construction of supramolecular assemblies, see: Vrieze & Koten (1987); Cortes et al. (1997); Yun et al. (2004); Kim et al. (2008). For the coordination chemistry of imidazole and thiazole derivatives, see: Costes et al. (1991); Balch et al. (1993); Suh et al. (2005, 2007, 2009); Kim & Kim (2010).

Experimental top

A water-methanolic (2:1) solution (60 ml) of sodium azide (9 mmol, 0.59 g) was added to a water-methanolic (2:1) solution (50 ml) of ZnSO4.7H2O (3 mmol, 0.87 g). To this mixture, a water-methanolic (2:1) solution (80 ml) of 2-aminobenzothiazole (10 mmol, 1.00 g) was introduced, with stirring for 1 h. The small amount of precipitates formed from the resulting solution were filtered off. The filtered solution was allowed to stand at room temperature. After a 1 week dark-yellow block crystals suitable for X-ray analysis were obtained. Elemental analysis found: C 20.73, H 2.25, N 40.22, S 18.50, Zn 18.70%; C6H8N10S2Zn requires: C 20.61, H 2.31, N 40.05, S 18.34, Zn 18.76%.

Refinement top

All H atoms were placed in calculated positions using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for hetrocyclic H atoms and N—H = 0.86 Å and Uiso(H) = 1.2 Ueq(N) for amino H atom.

Computing details top

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS (Bruker, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with the atomic numbering and 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitary radius.
[Figure 2] Fig. 2. The crystal packing diagram of the title complex, viewed down the b axis showing the N—H···N(dashed lines) hydrogen bonds.
Bis(2-amino-1,3-thiazole-κN3)diazidozinc top
Crystal data top
[Zn(N3)2(C3H4N2S)2]Z = 2
Mr = 349.71F(000) = 352
Triclinic, P1Dx = 1.756 Mg m3
Dm = 1.76 Mg m3
Dm measured by flotation method
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.096 (1) ÅCell parameters from 39 reflections
b = 8.4004 (8) Åθ = 4.7–14.6°
c = 10.066 (1) ŵ = 2.18 mm1
α = 96.489 (9)°T = 295 K
β = 100.66 (1)°Block, dark yellow
γ = 96.885 (9)°0.42 × 0.38 × 0.24 mm
V = 661.5 (1) Å3
Data collection top
Bruker P4
diffractometer
2544 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.013
Graphite monochromatorθmax = 26.5°, θmin = 2.1°
2θ/ω scansh = 110
Absorption correction: ψ scan
(North et al., 1968)
k = 1010
Tmin = 0.462, Tmax = 0.623l = 1212
3352 measured reflections3 standard reflections every 97 reflections
2747 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0243P)2 + 0.3124P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2747 reflectionsΔρmax = 0.29 e Å3
173 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0118 (11)
Crystal data top
[Zn(N3)2(C3H4N2S)2]γ = 96.885 (9)°
Mr = 349.71V = 661.5 (1) Å3
Triclinic, P1Z = 2
a = 8.096 (1) ÅMo Kα radiation
b = 8.4004 (8) ŵ = 2.18 mm1
c = 10.066 (1) ÅT = 295 K
α = 96.489 (9)°0.42 × 0.38 × 0.24 mm
β = 100.66 (1)°
Data collection top
Bruker P4
diffractometer
2544 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.013
Tmin = 0.462, Tmax = 0.6233 standard reflections every 97 reflections
3352 measured reflections intensity decay: none
2747 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.09Δρmax = 0.29 e Å3
2747 reflectionsΔρmin = 0.28 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.22961 (3)0.28874 (3)0.27010 (2)0.03913 (10)
N10.3512 (3)0.4038 (3)0.1481 (2)0.0578 (5)
N20.3327 (3)0.3684 (2)0.0289 (2)0.0479 (4)
N30.3184 (4)0.3406 (3)0.0866 (2)0.0758 (8)
N40.3014 (3)0.1005 (2)0.3536 (2)0.0496 (5)
N50.4122 (3)0.0255 (2)0.32922 (19)0.0475 (5)
N60.5156 (3)0.0496 (3)0.3098 (3)0.0689 (6)
S110.28221 (10)0.65810 (8)0.64496 (7)0.05854 (18)
C120.2849 (3)0.4728 (3)0.5514 (2)0.0407 (4)
N130.2265 (3)0.4669 (2)0.41986 (18)0.0434 (4)
C140.1766 (4)0.6139 (3)0.3920 (3)0.0646 (7)
H14A0.13190.63140.30380.077*
C150.1962 (4)0.7276 (3)0.4978 (3)0.0655 (7)
H150.16740.83100.49310.079*
N160.3412 (3)0.3506 (3)0.6102 (2)0.0649 (6)
H16A0.34100.25960.56140.078*
H16B0.37790.36230.69700.078*
S210.28571 (8)0.04332 (9)0.02647 (7)0.05992 (18)
C220.0995 (3)0.0694 (3)0.1466 (2)0.0424 (5)
N230.0062 (2)0.2108 (2)0.15549 (18)0.0408 (4)
C240.0868 (3)0.3032 (3)0.0654 (3)0.0561 (6)
H24A0.03950.40790.05890.067*
C250.2352 (4)0.2348 (3)0.0113 (3)0.0616 (7)
H250.30180.28350.07600.074*
N260.0579 (3)0.0446 (3)0.2244 (3)0.0672 (7)
H26A0.03490.02730.28470.081*
H26B0.12410.13510.21410.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.04775 (16)0.03781 (14)0.03000 (14)0.00320 (10)0.00434 (10)0.00587 (9)
N10.0701 (14)0.0594 (12)0.0389 (10)0.0144 (11)0.0145 (10)0.0049 (9)
N20.0579 (12)0.0396 (9)0.0457 (11)0.0058 (8)0.0160 (9)0.0081 (8)
N30.117 (2)0.0644 (14)0.0413 (12)0.0165 (14)0.0270 (13)0.0021 (10)
N40.0558 (12)0.0490 (11)0.0446 (10)0.0134 (9)0.0044 (9)0.0130 (8)
N50.0559 (12)0.0406 (10)0.0401 (10)0.0058 (9)0.0050 (8)0.0070 (8)
N60.0728 (16)0.0597 (14)0.0763 (16)0.0273 (12)0.0086 (13)0.0100 (12)
S110.0711 (4)0.0552 (3)0.0448 (3)0.0152 (3)0.0066 (3)0.0102 (3)
C120.0433 (11)0.0447 (11)0.0333 (10)0.0047 (9)0.0090 (8)0.0020 (8)
N130.0566 (11)0.0393 (9)0.0330 (8)0.0074 (8)0.0056 (8)0.0050 (7)
C140.096 (2)0.0496 (14)0.0472 (13)0.0235 (14)0.0030 (14)0.0101 (11)
C150.085 (2)0.0483 (14)0.0629 (16)0.0222 (14)0.0088 (15)0.0033 (12)
N160.1032 (19)0.0590 (13)0.0313 (10)0.0276 (13)0.0015 (11)0.0047 (9)
S210.0440 (3)0.0662 (4)0.0607 (4)0.0020 (3)0.0054 (3)0.0040 (3)
C220.0405 (11)0.0445 (11)0.0406 (11)0.0059 (9)0.0053 (9)0.0037 (9)
N230.0439 (10)0.0395 (9)0.0381 (9)0.0061 (7)0.0035 (7)0.0088 (7)
C240.0614 (15)0.0534 (14)0.0525 (14)0.0089 (12)0.0011 (12)0.0201 (11)
C250.0622 (16)0.0697 (17)0.0516 (14)0.0199 (13)0.0030 (12)0.0163 (12)
N260.0603 (14)0.0470 (11)0.0853 (17)0.0080 (10)0.0084 (12)0.0262 (11)
Geometric parameters (Å, º) top
Zn—N41.9711 (19)C14—H14A0.9300
Zn—N11.974 (2)C15—H150.9300
Zn—N132.0066 (18)N16—H16A0.8600
Zn—N232.0292 (18)N16—H16B0.8600
N1—N21.181 (3)S21—C251.714 (3)
N2—N31.140 (3)S21—C221.723 (2)
N4—N51.202 (3)C22—N231.313 (3)
N5—N61.138 (3)C22—N261.339 (3)
S11—C151.712 (3)N23—C241.384 (3)
S11—C121.730 (2)C24—C251.326 (4)
C12—N131.314 (3)C24—H24A0.9300
C12—N161.327 (3)C25—H250.9300
N13—C141.386 (3)N26—H26A0.8600
C14—C151.320 (4)N26—H26B0.8600
N4—Zn—N1124.47 (10)C14—C15—H15124.8
N4—Zn—N13108.49 (8)S11—C15—H15124.8
N1—Zn—N13102.24 (8)C12—N16—H16A120.0
N4—Zn—N23105.71 (8)C12—N16—H16B120.0
N1—Zn—N23104.23 (8)H16A—N16—H16B120.0
N13—Zn—N23111.56 (8)C25—S21—C2289.76 (12)
N2—N1—Zn125.88 (17)N23—C22—N26124.1 (2)
N3—N2—N1177.1 (2)N23—C22—S21113.83 (17)
N5—N4—Zn127.06 (17)N26—C22—S21122.09 (18)
N6—N5—N4177.2 (3)C22—N23—C24110.0 (2)
C15—S11—C1289.52 (12)C22—N23—Zn127.90 (15)
N13—C12—N16124.6 (2)C24—N23—Zn121.96 (16)
N13—C12—S11113.59 (17)C25—C24—N23116.5 (2)
N16—C12—S11121.83 (17)C25—C24—H24A121.7
C12—N13—C14110.16 (19)N23—C24—H24A121.7
C12—N13—Zn127.78 (16)C24—C25—S21109.9 (2)
C14—N13—Zn121.67 (16)C24—C25—H25125.1
C15—C14—N13116.3 (2)S21—C25—H25125.1
C15—C14—H14A121.9C22—N26—H26A120.0
N13—C14—H14A121.9C22—N26—H26B120.0
C14—C15—S11110.5 (2)H26A—N26—H26B120.0
N4—Zn—N1—N286.1 (3)C12—N13—C14—C150.0 (4)
N13—Zn—N1—N2151.0 (2)Zn—N13—C14—C15173.3 (2)
N23—Zn—N1—N234.7 (3)N13—C14—C15—S110.3 (4)
Zn—N1—N2—N3164 (6)C12—S11—C15—C140.4 (3)
N1—Zn—N4—N58.6 (2)C25—S21—C22—N230.86 (19)
N13—Zn—N4—N5128.7 (2)C25—S21—C22—N26178.0 (2)
N23—Zn—N4—N5111.6 (2)N26—C22—N23—C24177.6 (2)
Zn—N4—N5—N6177 (100)S21—C22—N23—C241.2 (3)
C15—S11—C12—N130.5 (2)N26—C22—N23—Zn6.5 (3)
C15—S11—C12—N16179.4 (2)S21—C22—N23—Zn174.66 (10)
N16—C12—N13—C14179.5 (3)N4—Zn—N23—C225.3 (2)
S11—C12—N13—C140.4 (3)N1—Zn—N23—C22138.0 (2)
N16—C12—N13—Zn7.8 (4)N13—Zn—N23—C22112.44 (19)
S11—C12—N13—Zn172.39 (11)N4—Zn—N23—C24170.06 (19)
N4—Zn—N13—C129.6 (2)N1—Zn—N23—C2437.4 (2)
N1—Zn—N13—C12123.5 (2)N13—Zn—N23—C2472.2 (2)
N23—Zn—N13—C12125.6 (2)C22—N23—C24—C251.0 (3)
N4—Zn—N13—C14178.4 (2)Zn—N23—C24—C25175.2 (2)
N1—Zn—N13—C1448.5 (2)N23—C24—C25—S210.3 (3)
N23—Zn—N13—C1462.3 (2)C22—S21—C25—C240.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N16—H16A···N40.862.303.080 (3)151
N16—H16A···N6i0.862.573.033 (3)115
N16—H16B···N3ii0.862.343.102 (3)148
N26—H26A···N40.862.243.005 (3)148
N26—H26B···N3iii0.862.283.071 (3)153
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y, z.

Experimental details

Crystal data
Chemical formula[Zn(N3)2(C3H4N2S)2]
Mr349.71
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.096 (1), 8.4004 (8), 10.066 (1)
α, β, γ (°)96.489 (9), 100.66 (1), 96.885 (9)
V3)661.5 (1)
Z2
Radiation typeMo Kα
µ (mm1)2.18
Crystal size (mm)0.42 × 0.38 × 0.24
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.462, 0.623
No. of measured, independent and
observed [I > 2σ(I)] reflections
3352, 2747, 2544
Rint0.013
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.068, 1.09
No. of reflections2747
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.28

Computer programs: XSCANS (Bruker, 1996), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N16—H16A···N40.862.303.080 (3)151
N16—H16A···N6i0.862.573.033 (3)115
N16—H16B···N3ii0.862.343.102 (3)148
N26—H26A···N40.862.243.005 (3)148
N26—H26B···N3iii0.862.283.071 (3)153
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds