Download citation
Download citation
link to html
The title compound, (C8H20N)[Tb(C5HF6O2)4], is a tetrakis β-diketonate complex of hexa­fluoro­acetyl­acetone with terbium(III), and tetra­ethyl­ammonium as the counter-ion. This compound shows typical green terbium(III) luminescence upon excitation at about 335 nm. The coordination geometry around the TbIII atom is a slightly distorted square anti­prism. One hexa­fluoro­acetyl­acetone ligand has a disordered CF3 group [occupancies of 0.575 (4) and 0.425 (4)]. A three-dimensional network is built up by linkage of TbIII complexes via C—H...F inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536811055437/pk2378sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536811055437/pk2378Isup2.hkl
Contains datablock I

CCDC reference: 868254

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.008 Å
  • Disorder in main residue
  • R factor = 0.054
  • wR factor = 0.123
  • Data-to-parameter ratio = 11.6

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT973_ALERT_2_B Large Calcd. Positive Residual Density on Tb1 1.55 eA-3
Alert level C PLAT042_ALERT_1_C Calc. and Reported MoietyFormula Strings Differ ? PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C5 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C10 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C11 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C15 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C16 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of N1 PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 6 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.595 75 PLAT975_ALERT_2_C Positive Residual Density at 1.07A from O3 . 0.52 eA-3 PLAT975_ALERT_2_C Positive Residual Density at 1.10A from O8 . 0.51 eA-3
Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 7 PLAT003_ALERT_2_G Number of Uiso or Uij Restrained Atom Sites .... 8 PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF .... ? PLAT128_ALERT_4_G Alternate Setting of Space-group P21/c ....... P21/n PLAT301_ALERT_3_G Note: Main Residue Disorder ................... 6 Perc. PLAT431_ALERT_2_G Short Inter HL..A Contact F19 .. F3B .. 2.80 Ang. PLAT432_ALERT_2_G Short Inter X...Y Contact C17 .. F3B .. 2.91 Ang. PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 90 PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still 49 Perc.
0 ALERT level A = Most likely a serious problem - resolve or explain 1 ALERT level B = A potentially serious problem, consider carefully 11 ALERT level C = Check. Ensure it is not caused by an omission or oversight 9 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 12 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

β-diketones (1,3-diketones) are able to coordinate, as conjugate bases, to rare-earth ions, forming the corresponding β-diketonate complexes. Because of the accessibility to different commercially available β-diketones and the fact that the derived rare-earth complexes are relatively easy to synthesize, these β-diketonates have become the most scientifically studied and the most popular rare-earth coordination compounds.

For instance, rare-earth β-diketonates have been investigated as extractants in solvent-solvent extraction processes, as NMR shift reagents, as active materials in liquid lasers and novel types of organic light-emitting diodes (OLEDs), as active compounds in electroluminescent devices (e.g. flat-panel displays), as luminescent probes in bioassays, as precursors for chemical vapor deposition and as catalysts in organic reactions. These rare-earth β-diketonate complexes can be grouped into three main types: tris complexes, Lewis base adducts of the tris complexes (or ternary rare-earth β-diketonates) and tetrakis complexes.

An overiew of the different types of rare-earth β-diketonate complexes, their crystal structures and applications, is given by Binnemans, 2005.

We have widely studied rare-earth β-diketonate complexes for their luminescence properties (Mech et al., 2008; Van Deun et al., 2007), either as pure materials, doped in liquid crystals (Van Deun et al., 2003; Nockemann et al., 2005), or processed into thin films (Lenaerts et al., 2005, O'Riordan et al., 2005) and have recently determined other tetrakis rare-earth β-diketonate complexes with hexafluoroacetylacetone ligands (Lunstroot et al., 2009; Mehdi et al., 2010).

Here, we describe the crystal structure of a tetrakis complex of hexafluoroacetylacetone (hfac) with the terbium cation, Tb(III), and tetraethylammonium (Et4N) as the counter ion, which shows typical green Tb(III) luminescence upon excitation at about 335 nm.

The title compound crystallizes in the monoclinic space group P21/n, with four formula units in the unit cell. The asymmetric unit consists of one Tb(III) cation, four hfac anions and one Et4N cation, which in total equals one formula unit. Each Tb(III) ion is eight-coordinated by oxygen atoms from four chelating hfac ligands. The coordination polyhedron around Tb(III) can be best described as a slightly distorted square antiprism (Figure 1). There are no solvent molecules coordinating to the Tb(III) ion. One of the CF3 groups of one of the hfac ligands is found disordered. The Tb–O distances range from 2.345 (3) to 2.373 (3) Å, which are comparable to those reported for other tetrakis(acetylacetonato)-Tb(III) complexes (Tang & Mudring, 2009) (Table 1). The O–Tb–O angles range from 73.81 (12)° to 75.19 (12)°. The only other tetrakis(acetylacetonato)-Tb(III) complex, found in the Cambridge Structural Database (CSD) has a Cs+ counterion (Danford et al., 1970). However, no coordinates are available for the latter structure (reference code QQQBZM, CSD (Version 5.32) (Allen, 2002)).

No classic hydrogen bonds are found. However, C–H···F potential hydrogen bonds can be observed within the [Tb(hfac)4]- anion itself (intraanion), between the [Tb(hfac)4]- anion and [Et4N]+ cations (interanion-cation), as well as between different [Tb(hfac)4]- anions (interanion-anion). The acidic hydrogen atom in each hfac ligand forms at least one intraanion hydrogen bond with a fluorine atom of one of its adjacent CF3 groups (C(–H)···F distances ranging from 2.713 (7) to 2.743 (6) Å). Several interanion-cation hydrogen bonds are observed between the [Tb(hfac)4]- anion and the [Et4N]+ cations ((C(–H)···F distances ranging from 3.279 (7) to 3.451 (7) Å). Furthermore, one acidic hfac proton forms a C–H···F intermolecular interanion-anion hydrogen bond with a symmetry-equivalent hfac fluorine atom (C(13)(–H)···F(20) [2 - x,1 - y,-z] distance of 3.430 (6) Å) (Figure 2). Through the linkage of these intra- and intermolecular C–H···F interactions, a two-dimensional layer is formed in the (010)-plane. These layers are further building up a three-dimensional network, with the hfac CF3 groups at the interfaces of the layers, as has been already noticed for other Tb(hfac)4 complexes, although with different C4mim and C4mpyr counterions (Tang & Mudring, 2009) (Figure 3).

Related literature top

For a review on rare-earth β-diketonate complexes, their crystal structures and applications, see: Binnemans (2005). We have widely studied rare-earth β-diketonate complexes for their luminescence properties (Mech et al., 2008; Van Deun et al., 2007), either as pure materials, doped in liquid crystals (Van Deun et al., 2003; Nockemann et al., 2005), or processed into thin films (Lenaerts et al., 2005, O'Riordan et al., 2005). For related structures, see: Tang & Mudring (2009); Danford et al. (1970); Lunstroot et al. (2009); Mehdi et al. (2010). For general procedues for the synthesis of rare-earth β-diketonate complexes, see: Melby et al. (1964). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

General synthetic procedues for the synthesis of rare-earth β-diketonate complexes are given in Melby et al., 1964.

The title compound was synthesized by mixing 3.6 ml of a 1 N sodium hydroxide solution with 9 ml of an ethanol (95%(v/v)) solution of hexafluoroacetylacetone (0.505 ml, 3.6 mmol) in a 50 ml Erlenmeyer flask at 60 °C. Subsequently, under stirring, 9 ml of aqueous Tb(NO3)3.5H2O solution (0.3906 g, 0.9 mmol) was added dropwise and finally 1.8 ml of aqueous tetraethylammonium chloride solution (0.0705 g, 0.426 mmol) was added dropwise. The mixture was concentrated by heating until the onset of crystallization. Finally, the solution was filtered and kept overnight to stand at room temperature, to allow the formation of single crystals.

Refinement top

All hydrogen atoms were placed at calculated positions and further refined with isotropic temperature factors fixed at 1.2 times Ueq of the parent atoms (1.5 times for methyl groups). 1,2 and 1,3 distance restraints to target values, together with restrained Uij components (for the fluorine atoms) had to be added to model the disorder of the CF3 group on one of the hfa ligands [refined occupancy factors were 0.575 (4) and 0.425 (4)].

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Coordination geometry of the title compound, showing 50% probability displacement ellipsoids. The disorder of one of the CF3 groups is not shown.
[Figure 2] Fig. 2. Intraanion, interanion-cation and interanion-anion C–H···F interactions (dashed lines), observed in the crystal structure of the title compound.
[Figure 3] Fig. 3. Packing diagram of the title compound along the b-axis, showing the two-dimensional layer formed in the (010)-plane (left) and along the c-axis, showing the three-dimensional network, with the hfac CF3 groups at the interfaces of the layers (right). The interanion-cation and interanion-anion C–H···F interactions are indicated. H-atoms were omitted to enhance clarity.
Tetraethylammonium tetrakis(1,1,1,5,5,5-hexafluoroacetylacetonato)terbate(III) top
Crystal data top
(C8H20N)[Tb(C5HF6O2)4]F(000) = 2176
Mr = 1117.41Dx = 1.885 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3060 reflections
a = 12.7113 (9) Åθ = 2.4–28.4°
b = 16.9355 (13) ŵ = 1.96 mm1
c = 18.3540 (11) ÅT = 100 K
β = 94.657 (6)°Needle, colourless
V = 3938.1 (5) Å30.4 × 0.1 × 0.1 mm
Z = 4
Data collection top
Agilent SuperNova Dual Cu at zero Atlas
diffractometer
6876 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4772 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.064
Detector resolution: 10.35 pixels mm-1θmax = 25.0°, θmin = 2.4°
ω scansh = 1015
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 2019
Tmin = 0.531, Tmax = 0.820l = 2121
14178 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0477P)2]
where P = (Fo2 + 2Fc2)/3
6876 reflections(Δ/σ)max = 0.001
591 parametersΔρmax = 1.51 e Å3
90 restraintsΔρmin = 1.24 e Å3
Crystal data top
(C8H20N)[Tb(C5HF6O2)4]V = 3938.1 (5) Å3
Mr = 1117.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.7113 (9) ŵ = 1.96 mm1
b = 16.9355 (13) ÅT = 100 K
c = 18.3540 (11) Å0.4 × 0.1 × 0.1 mm
β = 94.657 (6)°
Data collection top
Agilent SuperNova Dual Cu at zero Atlas
diffractometer
6876 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
4772 reflections with I > 2σ(I)
Tmin = 0.531, Tmax = 0.820Rint = 0.064
14178 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05490 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 0.98Δρmax = 1.51 e Å3
6876 reflectionsΔρmin = 1.24 e Å3
591 parameters
Special details top

Experimental. CrysAlisPro. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Agilent Technologies, 2010)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.8770 (4)0.0312 (3)0.0638 (2)0.0408 (18)
C20.8119 (5)0.0356 (3)0.0246 (3)0.0269 (14)
C30.7175 (5)0.0124 (3)0.0131 (3)0.0344 (16)
H30.69920.04200.01350.041*
C40.6495 (4)0.0647 (3)0.0499 (3)0.0262 (14)
C50.5548 (5)0.0315 (4)0.0952 (3)0.0397 (17)
C60.6132 (4)0.1453 (3)0.2003 (3)0.0259 (14)
C70.6239 (5)0.1927 (3)0.1298 (2)0.0251 (14)
C80.5408 (4)0.2398 (3)0.1044 (3)0.0206 (13)
H80.47700.23790.12800.025*
C90.5479 (5)0.2907 (3)0.0443 (3)0.0240 (14)
C100.4618 (5)0.3541 (3)0.0308 (3)0.0299 (15)
C110.8151 (6)0.4535 (3)0.1453 (3)0.0407 (18)
C120.8176 (5)0.4065 (3)0.0732 (3)0.0314 (15)
C130.8257 (5)0.4492 (3)0.0096 (3)0.0414 (18)
H130.83680.50460.01270.050*
C140.8179 (5)0.4129 (3)0.0592 (3)0.0292 (15)
C150.8325 (5)0.4656 (3)0.1259 (3)0.0400 (18)
C161.1411 (5)0.2831 (3)0.0144 (3)0.0295 (15)
C171.0321 (4)0.2525 (3)0.0428 (3)0.0227 (14)
C181.0187 (4)0.2291 (3)0.1155 (3)0.0240 (14)
H181.07450.23700.14620.029*
C190.9261 (4)0.1948 (3)0.1440 (3)0.0204 (13)
C200.9233 (5)0.1624 (3)0.2223 (3)0.0301 (15)
C210.0392 (5)0.1360 (3)0.3084 (3)0.0389 (17)
H21A0.02570.16310.35460.047*
H21B0.11170.11430.31450.047*
C220.0386 (6)0.0668 (4)0.2971 (3)0.053 (2)
H22A0.11110.08700.29460.080*
H22B0.02760.02980.33800.080*
H22C0.02680.03960.25130.080*
C230.0751 (5)0.2336 (4)0.2359 (3)0.0406 (17)
H23A0.07360.27410.19700.049*
H23B0.12550.19210.21790.049*
C240.1160 (6)0.2718 (4)0.3030 (4)0.058 (2)
H24A0.11660.23270.34230.086*
H24B0.18780.29140.29080.086*
H24C0.07000.31590.31910.086*
C250.1164 (5)0.2586 (3)0.2736 (3)0.0367 (17)
H25A0.18620.23280.28230.044*
H25B0.09760.28090.32070.044*
C270.0568 (5)0.1617 (4)0.1757 (3)0.0431 (18)
H27A0.05360.20410.13850.052*
H27B0.00070.12300.16090.052*
C280.1652 (5)0.1201 (4)0.1762 (3)0.049 (2)
H28A0.22110.15690.19400.074*
H28B0.17720.10310.12650.074*
H28C0.16620.07400.20850.074*
C260.1247 (5)0.3262 (3)0.2183 (3)0.050 (2)
H26A0.15090.30530.17340.076*
H26B0.17370.36640.23930.076*
H26C0.05500.34980.20710.076*
N10.0347 (3)0.1967 (2)0.2478 (2)0.0238 (11)
O10.8526 (3)0.1026 (2)0.03109 (17)0.0249 (9)
O20.6578 (3)0.1386 (2)0.05394 (18)0.0276 (10)
O30.7119 (3)0.1847 (2)0.10428 (17)0.0260 (9)
O40.6180 (3)0.2930 (2)0.00045 (17)0.0266 (10)
O50.8142 (3)0.3344 (2)0.08163 (17)0.0271 (10)
O60.7992 (3)0.34237 (19)0.07428 (17)0.0243 (9)
O70.9674 (3)0.24911 (18)0.00547 (17)0.0221 (9)
O80.8409 (3)0.18631 (19)0.11522 (17)0.0233 (9)
F1B0.8437 (7)0.0451 (6)0.1273 (3)0.069 (3)0.425 (4)
F2B0.9779 (5)0.0073 (4)0.0802 (4)0.044 (2)0.425 (4)
F3B0.8865 (8)0.0927 (4)0.0223 (4)0.060 (3)0.425 (4)
F1A0.8147 (5)0.0854 (3)0.0929 (3)0.0524 (18)0.575 (4)
F2A0.9494 (6)0.0096 (4)0.1126 (3)0.069 (2)0.575 (4)
F3A0.9235 (5)0.0736 (3)0.0135 (3)0.0427 (18)0.575 (4)
F40.5671 (3)0.0363 (2)0.16613 (18)0.0701 (13)
F50.5332 (3)0.0435 (2)0.07899 (19)0.0610 (12)
F60.4669 (3)0.0730 (2)0.0848 (2)0.0661 (13)
F70.6745 (3)0.17776 (19)0.25596 (15)0.0388 (9)
F80.6463 (3)0.07081 (17)0.19320 (15)0.0371 (9)
F90.5163 (3)0.14256 (19)0.22091 (16)0.0390 (9)
F100.4251 (3)0.3581 (2)0.03773 (16)0.0535 (11)
F110.5033 (3)0.4249 (2)0.0478 (2)0.0693 (14)
F120.3802 (3)0.3450 (2)0.07027 (17)0.0517 (11)
F130.8205 (4)0.5301 (2)0.13763 (19)0.0816 (15)
F140.8916 (3)0.4309 (2)0.19396 (16)0.0477 (11)
F150.7254 (3)0.4379 (3)0.17600 (19)0.0700 (13)
F160.9110 (3)0.5157 (2)0.11361 (19)0.0645 (12)
F170.8480 (4)0.4257 (2)0.18469 (18)0.0783 (15)
F180.7465 (4)0.5087 (2)0.1421 (2)0.0771 (14)
F191.1866 (3)0.2368 (2)0.03637 (18)0.0454 (10)
F201.1322 (3)0.3534 (2)0.0180 (2)0.0636 (13)
F211.2065 (3)0.2928 (3)0.06505 (18)0.0653 (13)
F220.8784 (3)0.09067 (18)0.22706 (16)0.0432 (10)
F231.0188 (3)0.1542 (2)0.24729 (15)0.0422 (10)
F240.8672 (3)0.20959 (19)0.26958 (14)0.0343 (9)
Tb10.78328 (2)0.228824 (14)0.002340 (13)0.02031 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.062 (5)0.020 (3)0.040 (3)0.002 (3)0.000 (3)0.007 (3)
C20.037 (4)0.024 (3)0.021 (3)0.008 (3)0.008 (2)0.003 (2)
C30.051 (4)0.020 (3)0.029 (3)0.002 (3)0.011 (3)0.009 (2)
C40.032 (3)0.015 (3)0.033 (3)0.001 (2)0.013 (3)0.003 (2)
C50.046 (4)0.037 (3)0.035 (3)0.020 (3)0.010 (3)0.009 (3)
C60.024 (3)0.026 (3)0.030 (3)0.002 (3)0.010 (2)0.003 (2)
C70.036 (4)0.025 (3)0.014 (2)0.007 (3)0.001 (2)0.007 (2)
C80.018 (3)0.022 (3)0.022 (3)0.003 (2)0.006 (2)0.005 (2)
C90.035 (3)0.017 (3)0.020 (3)0.002 (2)0.001 (2)0.004 (2)
C100.036 (4)0.029 (3)0.025 (3)0.003 (3)0.003 (3)0.002 (3)
C110.075 (5)0.023 (3)0.023 (3)0.012 (3)0.002 (3)0.003 (3)
C120.039 (4)0.028 (3)0.028 (3)0.003 (3)0.004 (3)0.004 (3)
C130.077 (5)0.021 (3)0.027 (3)0.001 (3)0.008 (3)0.005 (3)
C140.042 (4)0.012 (3)0.034 (3)0.005 (3)0.004 (3)0.009 (2)
C150.052 (4)0.026 (3)0.042 (3)0.001 (3)0.004 (3)0.007 (3)
C160.028 (3)0.029 (3)0.033 (3)0.012 (3)0.007 (3)0.002 (3)
C170.032 (3)0.012 (2)0.025 (3)0.001 (2)0.005 (2)0.001 (2)
C180.027 (3)0.024 (3)0.021 (3)0.005 (3)0.008 (2)0.009 (2)
C190.030 (3)0.010 (2)0.021 (3)0.001 (2)0.003 (2)0.002 (2)
C200.038 (4)0.031 (3)0.023 (3)0.002 (3)0.012 (3)0.001 (2)
C210.051 (4)0.027 (3)0.041 (3)0.008 (3)0.015 (3)0.011 (3)
C220.074 (5)0.030 (3)0.057 (4)0.022 (3)0.011 (4)0.005 (3)
C230.039 (4)0.038 (3)0.045 (3)0.003 (3)0.000 (3)0.006 (3)
C240.059 (5)0.049 (4)0.069 (4)0.008 (4)0.032 (4)0.022 (4)
C250.041 (4)0.036 (3)0.033 (3)0.007 (3)0.002 (3)0.005 (3)
C270.054 (4)0.041 (4)0.034 (3)0.012 (3)0.005 (3)0.007 (3)
C280.066 (5)0.036 (4)0.048 (4)0.001 (3)0.022 (3)0.013 (3)
C260.052 (4)0.025 (3)0.077 (4)0.004 (3)0.023 (4)0.014 (3)
N10.027 (3)0.026 (2)0.019 (2)0.006 (2)0.0032 (19)0.0013 (19)
O10.029 (2)0.0205 (19)0.0264 (18)0.0043 (17)0.0078 (16)0.0028 (16)
O20.026 (2)0.032 (2)0.0256 (18)0.0020 (18)0.0034 (16)0.0074 (17)
O30.029 (2)0.0207 (18)0.0304 (19)0.0034 (17)0.0129 (17)0.0044 (16)
O40.032 (2)0.0250 (19)0.0242 (18)0.0027 (17)0.0092 (17)0.0089 (16)
O50.034 (2)0.023 (2)0.0253 (19)0.0037 (18)0.0094 (17)0.0015 (16)
O60.025 (2)0.0208 (18)0.0280 (19)0.0021 (17)0.0061 (16)0.0069 (16)
O70.030 (2)0.0121 (17)0.0242 (18)0.0036 (16)0.0042 (17)0.0036 (15)
O80.028 (2)0.0177 (18)0.0242 (18)0.0004 (17)0.0051 (16)0.0004 (16)
F1B0.070 (5)0.081 (5)0.056 (4)0.013 (4)0.012 (4)0.028 (4)
F2B0.055 (5)0.038 (4)0.038 (4)0.014 (4)0.009 (4)0.004 (3)
F3B0.068 (5)0.033 (4)0.077 (5)0.005 (4)0.010 (4)0.003 (4)
F1A0.053 (4)0.044 (3)0.062 (3)0.010 (3)0.019 (3)0.037 (3)
F2A0.094 (5)0.045 (4)0.060 (4)0.008 (4)0.046 (4)0.003 (3)
F3A0.047 (4)0.033 (3)0.051 (3)0.014 (3)0.022 (3)0.008 (3)
F40.097 (3)0.080 (3)0.0300 (19)0.047 (2)0.013 (2)0.0041 (19)
F50.084 (3)0.0315 (19)0.062 (2)0.023 (2)0.031 (2)0.0131 (18)
F60.045 (3)0.066 (3)0.083 (3)0.020 (2)0.019 (2)0.014 (2)
F70.046 (2)0.049 (2)0.0212 (15)0.0158 (18)0.0030 (15)0.0005 (15)
F80.056 (2)0.0237 (16)0.0318 (16)0.0019 (16)0.0073 (16)0.0088 (14)
F90.034 (2)0.047 (2)0.0382 (17)0.0094 (17)0.0149 (15)0.0119 (15)
F100.047 (2)0.086 (3)0.0270 (17)0.032 (2)0.0002 (16)0.0033 (18)
F110.054 (3)0.0249 (19)0.126 (3)0.0111 (19)0.011 (2)0.012 (2)
F120.046 (2)0.069 (3)0.0436 (18)0.0258 (19)0.0239 (17)0.0135 (18)
F130.172 (4)0.030 (2)0.040 (2)0.017 (2)0.006 (2)0.0085 (17)
F140.064 (3)0.045 (2)0.0326 (18)0.0107 (19)0.0061 (18)0.0105 (16)
F150.056 (3)0.105 (3)0.050 (2)0.018 (2)0.0146 (19)0.040 (2)
F160.081 (3)0.058 (2)0.053 (2)0.036 (2)0.004 (2)0.021 (2)
F170.171 (4)0.035 (2)0.0339 (19)0.021 (3)0.036 (2)0.0034 (17)
F180.085 (3)0.070 (3)0.077 (3)0.018 (3)0.013 (2)0.051 (2)
F190.041 (2)0.047 (2)0.0453 (19)0.0115 (18)0.0128 (17)0.0125 (17)
F200.053 (3)0.033 (2)0.102 (3)0.0132 (19)0.005 (2)0.020 (2)
F210.036 (2)0.124 (4)0.0367 (19)0.038 (2)0.0125 (17)0.001 (2)
F220.067 (3)0.0304 (18)0.0317 (17)0.0021 (18)0.0037 (17)0.0135 (15)
F230.041 (2)0.059 (2)0.0284 (17)0.0141 (18)0.0105 (15)0.0070 (16)
F240.036 (2)0.049 (2)0.0180 (15)0.0086 (16)0.0026 (14)0.0032 (15)
Tb10.02640 (15)0.01570 (12)0.01963 (12)0.00014 (12)0.00668 (10)0.00082 (11)
Geometric parameters (Å, º) top
C1—F2A1.284 (6)C17—O71.258 (6)
C1—F1B1.293 (7)C17—C181.390 (7)
C1—F3B1.300 (7)C18—C191.376 (7)
C1—F3A1.344 (6)C18—H180.9500
C1—F1A1.350 (6)C19—O81.251 (6)
C1—F2B1.356 (7)C19—C201.538 (7)
C1—C21.545 (7)C20—F231.339 (6)
C2—O11.249 (6)C20—F221.341 (6)
C2—C31.393 (8)C20—F241.341 (6)
C3—C41.375 (8)C21—N11.513 (7)
C3—H30.9500C21—C221.536 (8)
C4—O21.259 (6)C21—H21A0.9900
C4—C51.514 (8)C21—H21B0.9900
C5—F41.326 (6)C22—H22A0.9800
C5—F51.338 (6)C22—H22B0.9800
C5—F61.348 (7)C22—H22C0.9800
C6—F91.318 (6)C23—C241.520 (8)
C6—F81.340 (6)C23—N11.528 (7)
C6—F71.350 (6)C23—H23A0.9900
C6—C71.537 (7)C23—H23B0.9900
C7—O31.255 (6)C24—H24A0.9800
C7—C81.375 (7)C24—H24B0.9800
C8—C91.410 (7)C24—H24C0.9800
C8—H80.9500C25—N11.524 (7)
C9—O41.249 (6)C25—C261.539 (8)
C9—C101.539 (8)C25—H25A0.9900
C10—F101.307 (6)C25—H25B0.9900
C10—F121.322 (6)C27—N11.498 (7)
C10—F111.336 (6)C27—C281.547 (9)
C11—F131.307 (6)C27—H27A0.9900
C11—F141.322 (7)C27—H27B0.9900
C11—F151.337 (8)C28—H28A0.9800
C11—C121.547 (7)C28—H28B0.9800
C12—O51.233 (6)C28—H28C0.9800
C12—C131.384 (7)C26—H26A0.9800
C13—C141.401 (7)C26—H26B0.9800
C13—H130.9500C26—H26C0.9800
C14—O61.244 (6)Tb1—O12.373 (3)
C14—C151.538 (8)Tb1—O22.351 (4)
C15—F171.302 (7)Tb1—O32.345 (3)
C15—F161.315 (7)Tb1—O42.369 (4)
C15—F181.328 (7)Tb1—O52.372 (3)
C16—F211.307 (6)Tb1—O62.351 (3)
C16—F191.315 (6)Tb1—O72.359 (4)
C16—F201.340 (6)Tb1—O82.365 (3)
C16—C171.531 (8)
F2A—C1—F1B72.1 (5)F23—C20—C19113.8 (5)
F2A—C1—F3B122.7 (6)F22—C20—C19111.2 (4)
F1B—C1—F3B115.8 (6)F24—C20—C19111.3 (4)
F2A—C1—F3A107.5 (5)N1—C21—C22115.7 (5)
F1B—C1—F3A135.8 (6)N1—C21—H21A108.4
F2A—C1—F1A109.2 (5)C22—C21—H21A108.4
F3B—C1—F1A76.9 (5)N1—C21—H21B108.4
F3A—C1—F1A102.4 (5)C22—C21—H21B108.4
F1B—C1—F2B103.2 (6)H21A—C21—H21B107.4
F3B—C1—F2B103.7 (6)C21—C22—H22A109.5
F3A—C1—F2B81.4 (5)C21—C22—H22B109.5
F1A—C1—F2B133.7 (5)H22A—C22—H22B109.5
F2A—C1—C2116.2 (5)C21—C22—H22C109.5
F1B—C1—C2110.5 (5)H22A—C22—H22C109.5
F3B—C1—C2112.7 (5)H22B—C22—H22C109.5
F3A—C1—C2108.6 (4)C24—C23—N1115.2 (5)
F1A—C1—C2111.9 (4)C24—C23—H23A108.5
F2B—C1—C2110.2 (5)N1—C23—H23A108.5
O1—C2—C3129.5 (5)C24—C23—H23B108.5
O1—C2—C1114.9 (5)N1—C23—H23B108.5
C3—C2—C1115.6 (5)H23A—C23—H23B107.5
C4—C3—C2123.0 (5)C23—C24—H24A109.5
C4—C3—H3118.5C23—C24—H24B109.5
C2—C3—H3118.5H24A—C24—H24B109.5
O2—C4—C3128.0 (5)C23—C24—H24C109.5
O2—C4—C5113.8 (5)H24A—C24—H24C109.5
C3—C4—C5118.1 (5)H24B—C24—H24C109.5
F4—C5—F5108.6 (5)N1—C25—C26112.8 (5)
F4—C5—F6105.9 (5)N1—C25—H25A109.0
F5—C5—F6106.0 (5)C26—C25—H25A109.0
F4—C5—C4111.4 (5)N1—C25—H25B109.0
F5—C5—C4113.5 (5)C26—C25—H25B109.0
F6—C5—C4111.1 (5)H25A—C25—H25B107.8
F9—C6—F8107.6 (4)N1—C27—C28113.9 (5)
F9—C6—F7107.0 (4)N1—C27—H27A108.8
F8—C6—F7106.8 (4)C28—C27—H27A108.8
F9—C6—C7114.1 (4)N1—C27—H27B108.8
F8—C6—C7111.1 (4)C28—C27—H27B108.8
F7—C6—C7109.8 (4)H27A—C27—H27B107.7
O3—C7—C8128.3 (5)C27—C28—H28A109.5
O3—C7—C6113.7 (5)C27—C28—H28B109.5
C8—C7—C6118.0 (5)H28A—C28—H28B109.5
C7—C8—C9121.7 (5)C27—C28—H28C109.5
C7—C8—H8119.2H28A—C28—H28C109.5
C9—C8—H8119.2H28B—C28—H28C109.5
O4—C9—C8128.1 (5)C25—C26—H26A109.5
O4—C9—C10114.2 (4)C25—C26—H26B109.5
C8—C9—C10117.6 (5)H26A—C26—H26B109.5
F10—C10—F12107.4 (5)C25—C26—H26C109.5
F10—C10—F11106.4 (5)H26A—C26—H26C109.5
F12—C10—F11106.8 (4)H26B—C26—H26C109.5
F10—C10—C9112.6 (4)C27—N1—C21112.4 (4)
F12—C10—C9114.2 (4)C27—N1—C25112.0 (4)
F11—C10—C9109.1 (5)C21—N1—C25104.8 (4)
F13—C11—F14108.5 (5)C27—N1—C23105.6 (4)
F13—C11—F15107.2 (5)C21—N1—C23111.3 (4)
F14—C11—F15105.3 (4)C25—N1—C23110.8 (4)
F13—C11—C12114.4 (5)C2—O1—Tb1130.7 (3)
F14—C11—C12111.3 (5)C4—O2—Tb1132.8 (3)
F15—C11—C12109.7 (5)C7—O3—Tb1134.0 (3)
O5—C12—C13129.0 (5)C9—O4—Tb1132.9 (3)
O5—C12—C11113.5 (4)C12—O5—Tb1132.2 (3)
C13—C12—C11117.5 (5)C14—O6—Tb1133.1 (3)
C12—C13—C14121.8 (5)C17—O7—Tb1131.8 (3)
C12—C13—H13119.1C19—O8—Tb1132.4 (3)
C14—C13—H13119.1O3—Tb1—O6141.84 (12)
O6—C14—C13128.3 (5)O3—Tb1—O280.42 (12)
O6—C14—C15114.4 (5)O6—Tb1—O2113.06 (12)
C13—C14—C15117.2 (5)O3—Tb1—O7116.42 (12)
F17—C15—F16108.3 (5)O6—Tb1—O777.57 (11)
F17—C15—F18106.0 (5)O2—Tb1—O7139.15 (12)
F16—C15—F18106.4 (5)O3—Tb1—O8143.35 (12)
F17—C15—C14113.2 (5)O6—Tb1—O873.15 (11)
F16—C15—C14112.2 (5)O2—Tb1—O872.40 (12)
F18—C15—C14110.3 (5)O7—Tb1—O873.80 (12)
F21—C16—F19108.1 (5)O3—Tb1—O474.01 (12)
F21—C16—F20106.6 (5)O6—Tb1—O475.75 (12)
F19—C16—F20105.3 (4)O2—Tb1—O474.53 (12)
F21—C16—C17114.3 (4)O7—Tb1—O4144.01 (11)
F19—C16—C17111.9 (4)O8—Tb1—O4119.80 (12)
F20—C16—C17110.1 (5)O3—Tb1—O575.68 (12)
O7—C17—C18128.9 (5)O6—Tb1—O574.41 (11)
O7—C17—C16113.6 (4)O2—Tb1—O5145.33 (12)
C18—C17—C16117.4 (5)O7—Tb1—O574.91 (12)
C19—C18—C17121.3 (5)O8—Tb1—O5138.75 (12)
C19—C18—H18119.4O4—Tb1—O574.97 (12)
C17—C18—H18119.4O3—Tb1—O169.99 (11)
O8—C19—C18129.2 (5)O6—Tb1—O1146.60 (12)
O8—C19—C20113.5 (4)O2—Tb1—O175.19 (12)
C18—C19—C20117.4 (5)O7—Tb1—O176.69 (12)
F23—C20—F22106.1 (4)O8—Tb1—O179.48 (11)
F23—C20—F24106.8 (4)O4—Tb1—O1135.94 (12)
F22—C20—F24107.3 (4)O5—Tb1—O1118.18 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F50.952.342.718 (7)103
C8—H8···F90.952.372.737 (6)102
C8—H8···F120.952.392.743 (6)102
C13—H13···F130.952.362.726 (6)102
C13—H13···F20i0.952.513.430 (6)164
C18—H18···F210.952.352.713 (7)102
C18—H18···F230.952.392.731 (6)101
C21—H21A···F10ii0.992.473.279 (7)139
C26—H26C···F14iii0.982.493.451 (7)169
C27—H27B···F2Aiii0.992.483.371 (9)149
Symmetry codes: (i) x+2, y+1, z; (ii) x1/2, y+1/2, z+1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula(C8H20N)[Tb(C5HF6O2)4]
Mr1117.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)12.7113 (9), 16.9355 (13), 18.3540 (11)
β (°) 94.657 (6)
V3)3938.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.96
Crystal size (mm)0.4 × 0.1 × 0.1
Data collection
DiffractometerAgilent SuperNova Dual Cu at zero Atlas
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.531, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
14178, 6876, 4772
Rint0.064
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.123, 0.98
No. of reflections6876
No. of parameters591
No. of restraints90
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.51, 1.24

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Tb1—O12.373 (3)Tb1—O52.372 (3)
Tb1—O22.351 (4)Tb1—O62.351 (3)
Tb1—O32.345 (3)Tb1—O72.359 (4)
Tb1—O42.369 (4)Tb1—O82.365 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F50.952.342.718 (7)103
C8—H8···F90.952.372.737 (6)102
C8—H8···F120.952.392.743 (6)102
C13—H13···F130.952.362.726 (6)102
C13—H13···F20i0.952.513.430 (6)164
C18—H18···F210.952.352.713 (7)102
C18—H18···F230.952.392.731 (6)101
C21—H21A···F10ii0.992.473.279 (7)139
C26—H26C···F14iii0.982.493.451 (7)169
C27—H27B···F2Aiii0.992.483.371 (9)149
Symmetry codes: (i) x+2, y+1, z; (ii) x1/2, y+1/2, z+1/2; (iii) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds