Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989015001516/pk2543sup1.cif | |
MDL mol file https://doi.org/10.1107/S2056989015001516/pk2543RhP3Cl3watersup4.mol | |
Structure factor file (CIF format) https://doi.org/10.1107/S2056989015001516/pk2543RhP3Cl3MeOHsup3.hkl | |
MDL mol file https://doi.org/10.1107/S2056989015001516/pk2543RhP3Cl3MeOHsup5.mol |
CCDC references: 1045021; 1045022
Key indicators
Structure: RhP3Cl3water- Single-crystal X-ray study
- T = 298 K
- Mean (P-C) = 0.007 Å
- R factor = 0.023
- wR factor = 0.059
- Data-to-parameter ratio = 10.5
- Single-crystal X-ray study
- T = 298 K
- R factor = 0.029
- wR factor = 0.071
- Data-to-parameter ratio = 14.8
checkCIF/PLATON results
No syntax errors found Datablock: RhP3Cl3water
Alert level A PLAT900_ALERT_1_A No Matching Reflection File (FCF) Found ........ Please Check
Alert level B PLAT420_ALERT_2_B D-H Without Acceptor O1 - H1A .. Please Check
Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 3 Note PLAT128_ALERT_4_G Alternate Setting for Input Space Group Cc Ia Note PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records 2 Report PLAT173_ALERT_4_G The CIF-Embedded .res File Contains DANG Records 1 Report PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. # 2 Note H2 O PLAT860_ALERT_3_G Number of Least-Squares Restraints ............. 5 Note
1 ALERT level A = Most likely a serious problem - resolve or explain 1 ALERT level B = A potentially serious problem, consider carefully 0 ALERT level C = Check. Ensure it is not caused by an omission or oversight 6 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
Datablock: RhP3Cl3MeOH
Alert level A THETM01_ALERT_3_A The value of sine(theta_max)/wavelength is less than 0.550 Calculated sin(theta_max)/wavelength = 0.5384
Author Response: These data were collected some years ago on a point detector diffractometer at a time when 45 degree in 2theta was the norm. For all of that, the data appears to be of average to above average quality. |
PLAT023_ALERT_3_A Resolution (too) Low [sin(theta)/Lambda < 0.6].. 22.50 Degree
Author Response: These data were collected some years ago on a point detector diffractometer at a time when 45 degree in 2theta was the norm. For all of that, the data appears to be of average to above average quality. |
Alert level C PLAT041_ALERT_1_C Calc. and Reported SumFormula Strings Differ Please Check PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.53 Report
Author Response: There is residual electron density near the rhodium, a not unusual occurrence, that is making this ratio high |
PLAT242_ALERT_2_C Low Ueq as Compared to Neighbors for ..... Rh1 Check
Author Response: Heavy metals such as rhodium at the center of a metal complex are held more fixed in the lattice and have little libration. |
PLAT242_ALERT_2_C Low Ueq as Compared to Neighbors for ..... P1 Check
Author Response: Heavy metals such as rhodium at the center of a metal complex are held more fixed in the lattice and have little libration. |
PLAT242_ALERT_2_C Low Ueq as Compared to Neighbors for ..... P2 Check
Author Response: Heavy metals such as rhodium at the center of a metal complex are held more fixed in the lattice and have little libration. |
PLAT242_ALERT_2_C Low Ueq as Compared to Neighbors for ..... P3 Check
Author Response: Heavy metals such as rhodium at the center of a metal complex are held more fixed in the lattice and have little libration. |
PLAT242_ALERT_2_C Low Ueq as Compared to Neighbors for ..... Rh2 Check
Author Response: Heavy metals such as rhodium at the center of a metal complex are held more fixed in the lattice and have little libration. |
PLAT242_ALERT_2_C Low Ueq as Compared to Neighbors for ..... P4 Check
Author Response: Heavy metals such as rhodium at the center of a metal complex are held more fixed in the lattice and have little libration. |
PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.538 22 Report PLAT976_ALERT_2_C Check Calcd Residual Density 0.83A From O1 -0.45 eA-3
Alert level G PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms .............. 1 Report PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ Please Check PLAT045_ALERT_1_G Calculated and Reported Z Differ by ............ 0.50 Ratio PLAT152_ALERT_1_G The Supplied and Calc. Volume s.u. Differ by ... 2 Units PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still 74 % PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Th(Min) ... 1 Report
2 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 10 ALERT level C = Check. Ensure it is not caused by an omission or oversight 6 ALERT level G = General information/check it is not something unexpected 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 8 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check
Phosphane complexes of noble metals, especially those of rhodium and iridium, have proven to be important in catalysis as well as in studying fundamental reactions at metal surfaces. Chloro compounds of rhodium and iridium with phosphane ligands provide important starting materials for other metal complexes of that family through replacement of the chlorine. For example, we have shown that (Me3P)3IrCl3 can be converted into (Me3P)3IrMe3 through reaction with methylmagnesiumchloride. This trimethyliridium compound can, in turn, be used to study organometallic reactions at the iridium center (Merola et al., 2013). Thus, the fundamental study of crystal structures of phosphane–chloro complexes of iridium and rhodium is important to help understand the structures, the bonding and the stereochemistry of this class of compounds. This paper adds to the body of knowledge of rhodium complexes that complement the already published structures of the analogous iridium compounds. It contributes to the information on crystal structures of L3MCl3 compounds, comparing the rhodium structures to the iridium structures as well as confirming the nature of solvate formation in both the iridium and rhodium structures.
The title complexes fac-trichloridotris(trimethylphosphane-κP)rhodium(III) monohydrate, RhP3Cl3water, and fac-trichloridotris(trimethylphosphane-κP)rhodium(III) methanol hemihydrate, Rh3PCl3MeOH, are isomorphous with their iridium counterparts (CCDC 896072, 896073; Merola et al., 2013). Isomorphism in rhodium and iridium complexes is not unusual, largely owing to the lanthanide contraction resulting in very similar radii for both second- and third-row transition elements (Cordero et al., 2008).
Fig. 1 is a thermal displacement ellipsoid rendering of compound RhP3Cl3water and Fig. 2 is a thermal displacement ellipsoid rendering of compound RhP3Cl3MeOH. For compounds RhP3Cl3water and RhP3Cl3MeOH reported here, the comparison with their iridium analogs can be found in Tables 1 and 2 which list the corresponding unit-cell parameters for the rhodium and iridium water solvates (Table 1) and the rhodium and iridium methanol solvate (Table 2). The iridium compounds show a very slight lengthening of the unit-cell dimensions compared to rhodium but they are clearly isomorphous overall. Table 3 lists the important bond distances for RhP3Cl3water and IrP3Cl3water and while Table 4 lists these for RhP3Cl3MeOH and IrP3Cl3MeOH. Bond-distance comparisons show little significant difference between rhodium and iridium analogues.
It is not surprising that fac-tris(trimethylphosphane)trichloridium(III) and -rhodium(III) complexes form lattice solvates since the shape of the individual molecules leads to packing with voids in the lattice. Thus, every structure we have determined with the iridium compounds, as well as the ones reported here, contains a solvent. In the case of the water solvate, Fig. 3 shows the packing diagram for RhP3Cl3water looking down the c axis. One can see that the packing involves alternating layers of rhodium molecules and water molecules. The water molecules show close, hydrogen-bonding interactions (Table 5) between the water and the chlorines on one layer of the rhodium compound as well as close C—H···O interactions between the phosphane methyl groups and the water oxygen. One should not make much of the hydrogen positions on the water since, although they were originally found in difference maps, the O—H bond distances and the H—O—H angle were restrained with DFIX and DANG commands (Sheldrick, 2015). Fig. 4 shows the packing diagram for RhP3Cl3MeOH looking down the c axis illustrating the O—H···Cl hydrogen bonding (Table 6) and the location of the methanol molecules in a channel in the crystal.
A search of the Cambridge Structural Database (Groom & Allen, 2014) surprisingly shows very few structurally characterized trichloridotrisphosphaneiridium or rhodium compounds. In the case of iridium, beside the structures we recently published (CCDC 896072–896076; Merola et al., 2013), there are only three other P3IrCl3 compounds in the database – the mer and fac isomers with P = phenyldimethylphosphane (refcodes CTPIRA01, CTPIRC: Marsh, 1997; Robertson & Tucker, 1981) and one entry where P3 is cis,cis-1,3,5-tris(diphenylphosphino)cyclohexane (refcode LEXFAV; Mayer et al., 1994). For rhodium, P3RhCl3 structurally characterized compounds are also rare with one mixed-ligand complex (two tri-n-butylphosphane ligands and one trimethylphosphite ligand; refcode CBPMRH; Allen et al., 1970), a complex with 3 hydroxymethylphosphane ligands (CCDC 189926; Raghuraman et al., 2002), a complex with the tripodal ligand, 1,1,1-tris(Dimethylphosphinomethyl)ethane (refcode NAHXID; Suzuki et al., 1996), a complex with the tridentate ligand, 1,5,9-tris(2-propyl)-1,5,9-triphosphacyclododecane (refcode NOLPIN; Edwards et al., 1997), a mer-tris-dimethylphenylphosphane compound (CCDC 247871; Parsons et al., 2004) and a mer-tris-diethylphenylphosphane compound (refcode TCPERH; Skapski & Stephens, 1973). Of those, the only directly comparable structures are the mer isomer complexes of rhodium and iridium with dimethylphenylphosphane ligands and those two are indeed isostructural with each other.
The rhodium complexes described herein could not be characterized spectroscopically as pure materials, but were isolated as crystals from complex mixtures. In contrast to the iridium complex [IrCOD(PMe3)3]Cl (COD = cyclooctadiene) (Frazier & Merola, 1992) which is the starting material for much of our iridium work, attempts to synthesize the analogous rhodium compound met with no success. Reaction between various RhI olefin complexes, including COD, especially in dichloromethane solvent, led to complex mixtures of Rh(PMe3)n compounds in all cases. That these compounds are compounds of Rh is clearly seen in the Rh—P chemical coupling in the complicated 31P NMR spectra. Attempts at extracting a pure compound from the complex mixture with various solvents including dichloromethane, water, methanol and acetone did not yield clean materials. Following extraction, the solutions were allowed to sit in the open air for several days and, in the case of water and methanol, a few crystals suitable for X-ray crystallography were formed and used for the data collection described in this communication.
Crystal data, data collection and structure refinement details are summarized in Table 7. The hydrogens on the lattice water molecule in RhP3Cl3water were initially assigned based on residual electron density but were then restrained with DFIX and DANG instructions in SHELXL (Sheldrick, 2015) during refinement.
For both compounds, data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for RhP3Cl3water; SHELXS87 (Sheldrick, 2008) for RhP3Cl3MeOH. For both compounds, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).
[RhCl3(C3H9P)3]·H2O | F(000) = 928 |
Mr = 455.49 | Dx = 1.657 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
a = 15.8650 (12) Å | Cell parameters from 35 reflections |
b = 9.0396 (3) Å | θ = 3–20° |
c = 14.8223 (18) Å | µ = 1.62 mm−1 |
β = 120.820 (7)° | T = 298 K |
V = 1825.5 (3) Å3 | Prism, clear colourless |
Z = 4 | 0.4 × 0.4 × 0.3 mm |
Siemens P4 diffractometer | 1763 reflections with I > 2σ(I) |
Radiation source: Sealed X-ray tube | Rint = 0.021 |
Graphite monochromator | θmax = 25.0°, θmin = 2.7° |
Wyckoff scans | h = −1→18 |
Absorption correction: ψ scan (North et al., 1968) | k = −1→10 |
Tmin = 0.762, Tmax = 0.974 | l = −17→15 |
2034 measured reflections | 3 standard reflections every 300 reflections |
1784 independent reflections | intensity decay: 0.0(2) |
Refinement on F2 | H atoms treated by a mixture of independent and constrained refinement |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0359P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.023 | (Δ/σ)max < 0.001 |
wR(F2) = 0.059 | Δρmax = 0.47 e Å−3 |
S = 1.08 | Δρmin = −0.60 e Å−3 |
1784 reflections | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
170 parameters | Extinction coefficient: 0.0052 (3) |
5 restraints | Absolute structure: Classical Flack (1983) method preferred over Parsons because s.u. lower. |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.06 (3) |
Hydrogen site location: mixed |
[RhCl3(C3H9P)3]·H2O | V = 1825.5 (3) Å3 |
Mr = 455.49 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 15.8650 (12) Å | µ = 1.62 mm−1 |
b = 9.0396 (3) Å | T = 298 K |
c = 14.8223 (18) Å | 0.4 × 0.4 × 0.3 mm |
β = 120.820 (7)° |
Siemens P4 diffractometer | 1763 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.021 |
Tmin = 0.762, Tmax = 0.974 | 3 standard reflections every 300 reflections |
2034 measured reflections | intensity decay: 0.0(2) |
1784 independent reflections |
R[F2 > 2σ(F2)] = 0.023 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.059 | Δρmax = 0.47 e Å−3 |
S = 1.08 | Δρmin = −0.60 e Å−3 |
1784 reflections | Absolute structure: Classical Flack (1983) method preferred over Parsons because s.u. lower. |
170 parameters | Absolute structure parameter: −0.06 (3) |
5 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Rh1 | 0.38961 (3) | 0.77430 (4) | 0.26210 (3) | 0.01905 (13) | |
Cl1 | 0.55310 (9) | 0.86978 (16) | 0.31510 (10) | 0.0352 (3) | |
Cl2 | 0.46887 (10) | 0.59591 (16) | 0.40575 (10) | 0.0377 (3) | |
Cl3 | 0.39164 (11) | 0.94682 (18) | 0.38953 (10) | 0.0416 (3) | |
P1 | 0.41363 (10) | 0.63338 (15) | 0.14978 (10) | 0.0255 (3) | |
P2 | 0.24900 (9) | 0.65676 (15) | 0.23097 (9) | 0.0246 (3) | |
P3 | 0.30855 (10) | 0.95935 (15) | 0.14271 (10) | 0.0283 (3) | |
C11 | 0.3120 (5) | 0.5348 (7) | 0.0413 (5) | 0.0426 (14) | |
H11A | 0.2644 | 0.6048 | −0.0062 | 0.064* | |
H11B | 0.2820 | 0.4703 | 0.0682 | 0.064* | |
H11C | 0.3362 | 0.4775 | 0.0048 | 0.064* | |
C12 | 0.4653 (6) | 0.7274 (7) | 0.0813 (6) | 0.0435 (16) | |
H12A | 0.5270 | 0.7710 | 0.1315 | 0.065* | |
H12B | 0.4210 | 0.8033 | 0.0372 | 0.065* | |
H12C | 0.4753 | 0.6576 | 0.0388 | 0.065* | |
C13 | 0.5027 (5) | 0.4886 (7) | 0.2167 (5) | 0.0454 (15) | |
H13A | 0.4804 | 0.4245 | 0.2518 | 0.068* | |
H13B | 0.5645 | 0.5318 | 0.2673 | 0.068* | |
H13C | 0.5107 | 0.4327 | 0.1665 | 0.068* | |
C21 | 0.2580 (5) | 0.4567 (7) | 0.2475 (5) | 0.0399 (14) | |
H21A | 0.3094 | 0.4328 | 0.3175 | 0.060* | |
H21B | 0.2725 | 0.4136 | 0.1978 | 0.060* | |
H21C | 0.1968 | 0.4182 | 0.2358 | 0.060* | |
C22 | 0.2117 (5) | 0.7170 (7) | 0.3217 (5) | 0.0380 (14) | |
H22A | 0.1904 | 0.8181 | 0.3073 | 0.057* | |
H22B | 0.2662 | 0.7088 | 0.3924 | 0.057* | |
H22C | 0.1588 | 0.6559 | 0.3137 | 0.057* | |
C23 | 0.1367 (4) | 0.6719 (8) | 0.1054 (4) | 0.0415 (14) | |
H23A | 0.1448 | 0.6243 | 0.0524 | 0.062* | |
H23B | 0.1212 | 0.7744 | 0.0878 | 0.062* | |
H23C | 0.0843 | 0.6250 | 0.1091 | 0.062* | |
C31 | 0.3893 (5) | 1.1078 (7) | 0.1529 (5) | 0.0521 (17) | |
H31A | 0.4393 | 1.0695 | 0.1411 | 0.078* | |
H31B | 0.4193 | 1.1509 | 0.2217 | 0.078* | |
H31C | 0.3522 | 1.1820 | 0.1011 | 0.078* | |
C32 | 0.2160 (5) | 1.0542 (7) | 0.1596 (6) | 0.0531 (17) | |
H32A | 0.2457 | 1.0911 | 0.2302 | 0.080* | |
H32B | 0.1645 | 0.9862 | 0.1466 | 0.080* | |
H32C | 0.1892 | 1.1352 | 0.1111 | 0.080* | |
C33 | 0.2405 (4) | 0.9229 (7) | 0.0029 (4) | 0.0403 (13) | |
H33A | 0.1990 | 0.8382 | −0.0110 | 0.060* | |
H33B | 0.2854 | 0.9038 | −0.0209 | 0.060* | |
H33C | 0.2008 | 1.0073 | −0.0335 | 0.060* | |
O1 | 0.5879 (6) | 1.1825 (10) | 0.4533 (7) | 0.102 (3) | |
H1A | 0.542 (2) | 1.263 (3) | 0.418 (7) | 0.123* | |
H1B | 0.546 (2) | 1.096 (2) | 0.435 (7) | 0.123* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rh1 | 0.01842 (18) | 0.02103 (18) | 0.01697 (18) | −0.00103 (18) | 0.00854 (13) | −0.00138 (16) |
Cl1 | 0.0244 (6) | 0.0419 (7) | 0.0363 (6) | −0.0104 (5) | 0.0135 (5) | −0.0040 (5) |
Cl2 | 0.0330 (7) | 0.0425 (7) | 0.0269 (6) | −0.0004 (6) | 0.0076 (5) | 0.0103 (6) |
Cl3 | 0.0456 (8) | 0.0473 (8) | 0.0356 (7) | −0.0046 (7) | 0.0235 (6) | −0.0184 (6) |
P1 | 0.0274 (6) | 0.0260 (6) | 0.0259 (6) | 0.0006 (5) | 0.0158 (5) | −0.0042 (5) |
P2 | 0.0209 (6) | 0.0295 (7) | 0.0235 (6) | −0.0014 (5) | 0.0115 (5) | 0.0028 (5) |
P3 | 0.0306 (6) | 0.0232 (6) | 0.0305 (6) | 0.0020 (5) | 0.0153 (5) | 0.0045 (5) |
C11 | 0.046 (3) | 0.045 (3) | 0.039 (3) | −0.015 (3) | 0.024 (3) | −0.024 (3) |
C12 | 0.052 (4) | 0.048 (4) | 0.048 (4) | 0.001 (3) | 0.038 (4) | 0.003 (3) |
C13 | 0.046 (3) | 0.039 (3) | 0.049 (4) | 0.018 (3) | 0.023 (3) | 0.002 (3) |
C21 | 0.042 (3) | 0.031 (3) | 0.048 (3) | −0.008 (3) | 0.024 (3) | 0.002 (3) |
C22 | 0.043 (4) | 0.042 (3) | 0.046 (3) | −0.001 (3) | 0.035 (3) | 0.002 (2) |
C23 | 0.023 (3) | 0.057 (4) | 0.034 (3) | −0.008 (3) | 0.008 (2) | 0.011 (3) |
C31 | 0.053 (4) | 0.037 (3) | 0.053 (4) | −0.012 (3) | 0.018 (3) | 0.007 (3) |
C32 | 0.062 (4) | 0.045 (3) | 0.059 (4) | 0.027 (3) | 0.036 (4) | 0.010 (3) |
C33 | 0.038 (3) | 0.043 (3) | 0.035 (3) | 0.000 (3) | 0.015 (2) | 0.007 (3) |
O1 | 0.092 (5) | 0.123 (6) | 0.113 (6) | −0.030 (5) | 0.067 (5) | −0.048 (5) |
Rh1—Cl1 | 2.4499 (13) | C13—H13B | 0.9600 |
Rh1—Cl2 | 2.4437 (13) | C13—H13C | 0.9600 |
Rh1—Cl3 | 2.4369 (13) | C21—H21A | 0.9600 |
Rh1—P1 | 2.2781 (13) | C21—H21B | 0.9600 |
Rh1—P2 | 2.2942 (13) | C21—H21C | 0.9600 |
Rh1—P3 | 2.2917 (13) | C22—H22A | 0.9600 |
P1—C11 | 1.822 (6) | C22—H22B | 0.9600 |
P1—C12 | 1.810 (6) | C22—H22C | 0.9600 |
P1—C13 | 1.805 (6) | C23—H23A | 0.9600 |
P2—C21 | 1.820 (6) | C23—H23B | 0.9600 |
P2—C22 | 1.809 (6) | C23—H23C | 0.9600 |
P2—C23 | 1.806 (6) | C31—H31A | 0.9600 |
P3—C31 | 1.808 (6) | C31—H31B | 0.9600 |
P3—C32 | 1.825 (6) | C31—H31C | 0.9600 |
P3—C33 | 1.810 (6) | C32—H32A | 0.9600 |
C11—H11A | 0.9600 | C32—H32B | 0.9600 |
C11—H11B | 0.9600 | C32—H32C | 0.9600 |
C11—H11C | 0.9600 | C33—H33A | 0.9600 |
C12—H12A | 0.9600 | C33—H33B | 0.9600 |
C12—H12B | 0.9600 | C33—H33C | 0.9600 |
C12—H12C | 0.9600 | O1—H1A | 0.9700 (11) |
C13—H13A | 0.9600 | O1—H1B | 0.9700 (11) |
Cl2—Rh1—Cl1 | 88.02 (5) | P1—C13—H13A | 109.5 |
Cl3—Rh1—Cl1 | 86.25 (5) | P1—C13—H13B | 109.5 |
Cl3—Rh1—Cl2 | 87.16 (5) | P1—C13—H13C | 109.5 |
P1—Rh1—Cl1 | 83.42 (5) | H13A—C13—H13B | 109.5 |
P1—Rh1—Cl2 | 93.65 (5) | H13A—C13—H13C | 109.5 |
P1—Rh1—Cl3 | 169.60 (5) | H13B—C13—H13C | 109.5 |
P1—Rh1—P2 | 95.94 (5) | P2—C21—H21A | 109.5 |
P1—Rh1—P3 | 94.68 (5) | P2—C21—H21B | 109.5 |
P2—Rh1—Cl1 | 171.22 (5) | P2—C21—H21C | 109.5 |
P2—Rh1—Cl2 | 83.28 (5) | H21A—C21—H21B | 109.5 |
P2—Rh1—Cl3 | 94.45 (5) | H21A—C21—H21C | 109.5 |
P3—Rh1—Cl1 | 94.22 (5) | H21B—C21—H21C | 109.5 |
P3—Rh1—Cl2 | 171.57 (5) | P2—C22—H22A | 109.5 |
P3—Rh1—Cl3 | 84.88 (5) | P2—C22—H22B | 109.5 |
P3—Rh1—P2 | 94.57 (5) | P2—C22—H22C | 109.5 |
C11—P1—Rh1 | 121.0 (2) | H22A—C22—H22B | 109.5 |
C12—P1—Rh1 | 116.1 (2) | H22A—C22—H22C | 109.5 |
C12—P1—C11 | 100.6 (3) | H22B—C22—H22C | 109.5 |
C13—P1—Rh1 | 112.4 (2) | P2—C23—H23A | 109.5 |
C13—P1—C11 | 102.7 (3) | P2—C23—H23B | 109.5 |
C13—P1—C12 | 101.3 (3) | P2—C23—H23C | 109.5 |
C21—P2—Rh1 | 115.6 (2) | H23A—C23—H23B | 109.5 |
C22—P2—Rh1 | 111.5 (2) | H23A—C23—H23C | 109.5 |
C22—P2—C21 | 103.4 (3) | H23B—C23—H23C | 109.5 |
C23—P2—Rh1 | 121.1 (2) | P3—C31—H31A | 109.5 |
C23—P2—C21 | 100.5 (3) | P3—C31—H31B | 109.5 |
C23—P2—C22 | 102.6 (3) | P3—C31—H31C | 109.5 |
C31—P3—Rh1 | 112.6 (2) | H31A—C31—H31B | 109.5 |
C31—P3—C32 | 103.0 (4) | H31A—C31—H31C | 109.5 |
C31—P3—C33 | 102.3 (3) | H31B—C31—H31C | 109.5 |
C32—P3—Rh1 | 114.2 (2) | P3—C32—H32A | 109.5 |
C33—P3—Rh1 | 121.4 (2) | P3—C32—H32B | 109.5 |
C33—P3—C32 | 101.1 (3) | P3—C32—H32C | 109.5 |
P1—C11—H11A | 109.5 | H32A—C32—H32B | 109.5 |
P1—C11—H11B | 109.5 | H32A—C32—H32C | 109.5 |
P1—C11—H11C | 109.5 | H32B—C32—H32C | 109.5 |
H11A—C11—H11B | 109.5 | P3—C33—H33A | 109.5 |
H11A—C11—H11C | 109.5 | P3—C33—H33B | 109.5 |
H11B—C11—H11C | 109.5 | P3—C33—H33C | 109.5 |
P1—C12—H12A | 109.5 | H33A—C33—H33B | 109.5 |
P1—C12—H12B | 109.5 | H33A—C33—H33C | 109.5 |
P1—C12—H12C | 109.5 | H33B—C33—H33C | 109.5 |
H12A—C12—H12B | 109.5 | H1A—O1—H1B | 104.12 (17) |
H12A—C12—H12C | 109.5 | H1B—O1—H1A | 104.12 (17) |
H12B—C12—H12C | 109.5 |
[RhCl3(C3H9P)3]·0.5CH4O | F(000) = 1848 |
Mr = 453.50 | Dx = 1.614 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 16.0993 (16) Å | Cell parameters from 50 reflections |
b = 15.5910 (9) Å | θ = 3–20° |
c = 16.4152 (14) Å | µ = 1.59 mm−1 |
β = 115.084 (13)° | T = 298 K |
V = 3731.7 (5) Å3 | Prism, clear light yellow |
Z = 8 | 0.6 × 0.6 × 0.3 mm |
Siemens P4 diffractometer | 4171 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.034 |
Graphite monochromator | θmax = 22.5°, θmin = 1.9° |
sea;ed X–ray tube scans | h = −1→17 |
Absorption correction: ψ scan (North et al., 1968) | k = −1→16 |
Tmin = 0.807, Tmax = 0.915 | l = −17→16 |
5957 measured reflections | 3 standard reflections every 200 reflections |
4858 independent reflections | intensity decay: 0.0(2) |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.071 | w = 1/[σ2(Fo2) + (0.0286P)2 + 4.1793P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.003 |
4858 reflections | Δρmax = 1.03 e Å−3 |
328 parameters | Δρmin = −0.41 e Å−3 |
0 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00519 (17) |
[RhCl3(C3H9P)3]·0.5CH4O | V = 3731.7 (5) Å3 |
Mr = 453.50 | Z = 8 |
Monoclinic, P21/n | Mo Kα radiation |
a = 16.0993 (16) Å | µ = 1.59 mm−1 |
b = 15.5910 (9) Å | T = 298 K |
c = 16.4152 (14) Å | 0.6 × 0.6 × 0.3 mm |
β = 115.084 (13)° |
Siemens P4 diffractometer | 4171 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.034 |
Tmin = 0.807, Tmax = 0.915 | θmax = 22.5° |
5957 measured reflections | 3 standard reflections every 200 reflections |
4858 independent reflections | intensity decay: 0.0(2) |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 1.08 | Δρmax = 1.03 e Å−3 |
4858 reflections | Δρmin = −0.41 e Å−3 |
328 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Rh1 | 0.76635 (2) | 0.66132 (2) | 0.08786 (2) | 0.02237 (12) | |
Cl1 | 0.82866 (8) | 0.79954 (7) | 0.07477 (9) | 0.0435 (3) | |
Cl2 | 0.65651 (8) | 0.67764 (8) | −0.06932 (7) | 0.0445 (3) | |
Cl3 | 0.87487 (8) | 0.60045 (8) | 0.03606 (8) | 0.0449 (3) | |
P1 | 0.72796 (9) | 0.52126 (7) | 0.09374 (8) | 0.0361 (3) | |
P2 | 0.87465 (8) | 0.66934 (7) | 0.23406 (8) | 0.0308 (3) | |
P3 | 0.64873 (8) | 0.71971 (7) | 0.11404 (8) | 0.0314 (3) | |
C11 | 0.8230 (4) | 0.4462 (3) | 0.1382 (4) | 0.0583 (15) | |
H11A | 0.8605 | 0.4524 | 0.1061 | 0.087* | |
H11B | 0.7996 | 0.3887 | 0.1311 | 0.087* | |
H11C | 0.8590 | 0.4577 | 0.2009 | 0.087* | |
C12 | 0.6631 (5) | 0.4911 (4) | 0.1567 (5) | 0.076 (2) | |
H12A | 0.6949 | 0.5102 | 0.2178 | 0.114* | |
H12B | 0.6565 | 0.4298 | 0.1557 | 0.114* | |
H12C | 0.6035 | 0.5172 | 0.1299 | 0.114* | |
C13 | 0.6596 (4) | 0.4779 (3) | −0.0171 (4) | 0.0614 (16) | |
H13A | 0.6011 | 0.5060 | −0.0426 | 0.092* | |
H13B | 0.6509 | 0.4175 | −0.0125 | 0.092* | |
H13C | 0.6907 | 0.4872 | −0.0550 | 0.092* | |
C21 | 0.8719 (4) | 0.5969 (4) | 0.3203 (3) | 0.0588 (15) | |
H21A | 0.8132 | 0.6008 | 0.3222 | 0.088* | |
H21B | 0.9191 | 0.6127 | 0.3778 | 0.088* | |
H21C | 0.8818 | 0.5391 | 0.3063 | 0.088* | |
C22 | 0.9893 (3) | 0.6550 (4) | 0.2430 (4) | 0.0567 (15) | |
H22A | 0.9979 | 0.5962 | 0.2310 | 0.085* | |
H22B | 1.0329 | 0.6699 | 0.3027 | 0.085* | |
H22C | 0.9983 | 0.6914 | 0.2002 | 0.085* | |
C23 | 0.8810 (4) | 0.7718 (3) | 0.2882 (4) | 0.0536 (14) | |
H23A | 0.8582 | 0.8160 | 0.2434 | 0.080* | |
H23B | 0.9436 | 0.7839 | 0.3282 | 0.080* | |
H23C | 0.8445 | 0.7699 | 0.3217 | 0.080* | |
C31 | 0.5349 (3) | 0.6773 (4) | 0.0457 (4) | 0.0572 (15) | |
H31A | 0.5217 | 0.6830 | −0.0169 | 0.086* | |
H31B | 0.4902 | 0.7086 | 0.0580 | 0.086* | |
H31C | 0.5327 | 0.6178 | 0.0597 | 0.086* | |
C32 | 0.6344 (4) | 0.8316 (3) | 0.0863 (5) | 0.071 (2) | |
H32A | 0.6892 | 0.8621 | 0.1238 | 0.107* | |
H32B | 0.5835 | 0.8537 | 0.0958 | 0.107* | |
H32C | 0.6228 | 0.8391 | 0.0243 | 0.107* | |
C33 | 0.6502 (4) | 0.7160 (4) | 0.2248 (3) | 0.0554 (15) | |
H33A | 0.6542 | 0.6574 | 0.2442 | 0.083* | |
H33B | 0.5950 | 0.7413 | 0.2227 | 0.083* | |
H33C | 0.7023 | 0.7473 | 0.2664 | 0.083* | |
Rh2 | 0.29937 (2) | 0.83004 (2) | 0.11738 (2) | 0.02531 (12) | |
Cl4 | 0.44698 (8) | 0.89262 (9) | 0.14246 (9) | 0.0497 (3) | |
Cl5 | 0.29238 (9) | 0.77329 (8) | −0.02441 (8) | 0.0480 (3) | |
Cl6 | 0.38403 (10) | 0.69898 (8) | 0.18403 (9) | 0.0534 (4) | |
P4 | 0.15796 (9) | 0.76893 (8) | 0.07421 (9) | 0.0412 (3) | |
P5 | 0.31781 (8) | 0.86191 (7) | 0.26057 (7) | 0.0309 (3) | |
P6 | 0.24255 (8) | 0.96155 (7) | 0.05702 (7) | 0.0277 (3) | |
C41 | 0.0844 (4) | 0.7767 (4) | −0.0452 (4) | 0.0686 (17) | |
H41A | 0.0786 | 0.8357 | −0.0634 | 0.103* | |
H41B | 0.0250 | 0.7539 | −0.0571 | 0.103* | |
H41C | 0.1108 | 0.7445 | −0.0782 | 0.103* | |
C42 | 0.0818 (4) | 0.8051 (4) | 0.1233 (4) | 0.0610 (16) | |
H42A | 0.1085 | 0.7920 | 0.1864 | 0.092* | |
H42B | 0.0237 | 0.7766 | 0.0943 | 0.092* | |
H42C | 0.0729 | 0.8660 | 0.1152 | 0.092* | |
C43 | 0.1622 (5) | 0.6541 (3) | 0.0936 (5) | 0.0735 (19) | |
H43A | 0.1949 | 0.6269 | 0.0635 | 0.110* | |
H43B | 0.1010 | 0.6317 | 0.0706 | 0.110* | |
H43C | 0.1931 | 0.6429 | 0.1570 | 0.110* | |
C51 | 0.2460 (4) | 0.9416 (3) | 0.2801 (3) | 0.0477 (13) | |
H51A | 0.2562 | 0.9965 | 0.2596 | 0.072* | |
H51B | 0.2612 | 0.9444 | 0.3432 | 0.072* | |
H51C | 0.1828 | 0.9258 | 0.2477 | 0.072* | |
C52 | 0.4313 (3) | 0.9011 (4) | 0.3307 (3) | 0.0522 (14) | |
H52A | 0.4761 | 0.8607 | 0.3302 | 0.078* | |
H52B | 0.4376 | 0.9082 | 0.3911 | 0.078* | |
H52C | 0.4406 | 0.9553 | 0.3080 | 0.078* | |
C53 | 0.3059 (4) | 0.7705 (3) | 0.3231 (3) | 0.0480 (13) | |
H53A | 0.2448 | 0.7482 | 0.2937 | 0.072* | |
H53B | 0.3177 | 0.7882 | 0.3830 | 0.072* | |
H53C | 0.3491 | 0.7269 | 0.3256 | 0.072* | |
C61 | 0.2455 (4) | 0.9750 (3) | −0.0508 (3) | 0.0470 (13) | |
H61A | 0.3062 | 0.9631 | −0.0452 | 0.071* | |
H61B | 0.2292 | 1.0329 | −0.0711 | 0.071* | |
H61C | 0.2028 | 0.9362 | −0.0934 | 0.071* | |
C62 | 0.3089 (4) | 1.0522 (3) | 0.1198 (3) | 0.0516 (14) | |
H62A | 0.3124 | 1.0511 | 0.1797 | 0.077* | |
H62B | 0.2798 | 1.1045 | 0.0905 | 0.077* | |
H62C | 0.3696 | 1.0493 | 0.1226 | 0.077* | |
C63 | 0.1272 (3) | 0.9971 (3) | 0.0347 (3) | 0.0425 (12) | |
H63A | 0.0832 | 0.9593 | −0.0082 | 0.064* | |
H63B | 0.1180 | 1.0543 | 0.0108 | 0.064* | |
H63C | 0.1196 | 0.9965 | 0.0896 | 0.064* | |
O1 | 0.0306 (5) | 1.0413 (3) | 0.1833 (4) | 0.1076 (18) | |
H1 | 0.0327 | 1.0913 | 0.1996 | 0.161* | |
C2 | −0.0030 (4) | 0.9903 (4) | 0.2311 (4) | 0.0705 (17) | |
H2A | −0.0355 | 0.9425 | 0.1946 | 0.106* | |
H2B | −0.0439 | 1.0232 | 0.2476 | 0.106* | |
H2C | 0.0471 | 0.9696 | 0.2845 | 0.106* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rh1 | 0.0230 (2) | 0.02200 (19) | 0.02360 (19) | 0.00153 (14) | 0.01137 (15) | 0.00271 (14) |
Cl1 | 0.0405 (7) | 0.0301 (6) | 0.0631 (8) | −0.0004 (5) | 0.0251 (6) | 0.0148 (6) |
Cl2 | 0.0390 (7) | 0.0641 (8) | 0.0261 (6) | 0.0069 (6) | 0.0096 (5) | 0.0060 (5) |
Cl3 | 0.0452 (7) | 0.0563 (8) | 0.0423 (7) | 0.0173 (6) | 0.0273 (6) | 0.0041 (6) |
P1 | 0.0411 (7) | 0.0244 (6) | 0.0434 (7) | −0.0039 (5) | 0.0186 (6) | −0.0009 (5) |
P2 | 0.0303 (6) | 0.0311 (6) | 0.0282 (6) | 0.0023 (5) | 0.0095 (5) | 0.0005 (5) |
P3 | 0.0265 (6) | 0.0341 (6) | 0.0373 (7) | 0.0029 (5) | 0.0172 (5) | 0.0018 (5) |
C11 | 0.065 (4) | 0.027 (3) | 0.068 (4) | 0.011 (3) | 0.015 (3) | 0.004 (3) |
C12 | 0.102 (5) | 0.042 (3) | 0.114 (6) | −0.013 (3) | 0.076 (5) | 0.013 (3) |
C13 | 0.062 (4) | 0.043 (3) | 0.064 (4) | −0.009 (3) | 0.012 (3) | −0.015 (3) |
C21 | 0.078 (4) | 0.060 (4) | 0.036 (3) | 0.002 (3) | 0.022 (3) | 0.009 (3) |
C22 | 0.025 (3) | 0.081 (4) | 0.050 (3) | 0.010 (3) | 0.002 (2) | 0.003 (3) |
C23 | 0.057 (3) | 0.044 (3) | 0.046 (3) | −0.009 (3) | 0.008 (3) | −0.018 (3) |
C31 | 0.029 (3) | 0.086 (4) | 0.054 (3) | −0.004 (3) | 0.016 (3) | −0.004 (3) |
C32 | 0.069 (4) | 0.042 (3) | 0.131 (6) | 0.026 (3) | 0.070 (4) | 0.022 (3) |
C33 | 0.049 (3) | 0.081 (4) | 0.043 (3) | 0.007 (3) | 0.027 (3) | −0.010 (3) |
Rh2 | 0.0255 (2) | 0.0244 (2) | 0.0276 (2) | 0.00468 (14) | 0.01264 (16) | 0.00091 (14) |
Cl4 | 0.0295 (6) | 0.0641 (8) | 0.0616 (8) | 0.0000 (6) | 0.0253 (6) | 0.0014 (7) |
Cl5 | 0.0720 (9) | 0.0401 (7) | 0.0366 (7) | 0.0102 (6) | 0.0275 (6) | −0.0030 (5) |
Cl6 | 0.0707 (9) | 0.0416 (7) | 0.0518 (8) | 0.0308 (7) | 0.0297 (7) | 0.0140 (6) |
P4 | 0.0372 (7) | 0.0310 (7) | 0.0511 (8) | −0.0076 (6) | 0.0145 (6) | −0.0006 (6) |
P5 | 0.0313 (7) | 0.0342 (7) | 0.0281 (6) | 0.0046 (5) | 0.0134 (5) | 0.0024 (5) |
P6 | 0.0283 (6) | 0.0244 (6) | 0.0297 (6) | 0.0011 (5) | 0.0118 (5) | 0.0003 (5) |
C41 | 0.050 (3) | 0.068 (4) | 0.062 (4) | −0.019 (3) | −0.001 (3) | −0.013 (3) |
C42 | 0.040 (3) | 0.071 (4) | 0.079 (4) | −0.009 (3) | 0.031 (3) | 0.004 (3) |
C43 | 0.079 (5) | 0.033 (3) | 0.101 (5) | −0.013 (3) | 0.032 (4) | 0.002 (3) |
C51 | 0.061 (3) | 0.047 (3) | 0.043 (3) | 0.016 (3) | 0.030 (3) | 0.000 (2) |
C52 | 0.045 (3) | 0.066 (4) | 0.033 (3) | −0.003 (3) | 0.004 (2) | 0.002 (3) |
C53 | 0.063 (3) | 0.044 (3) | 0.045 (3) | 0.005 (3) | 0.031 (3) | 0.013 (2) |
C61 | 0.064 (3) | 0.039 (3) | 0.047 (3) | 0.011 (3) | 0.032 (3) | 0.009 (2) |
C62 | 0.058 (3) | 0.030 (3) | 0.053 (3) | −0.013 (2) | 0.012 (3) | −0.006 (2) |
C63 | 0.035 (3) | 0.042 (3) | 0.050 (3) | 0.011 (2) | 0.017 (2) | 0.006 (2) |
O1 | 0.145 (5) | 0.095 (4) | 0.077 (3) | −0.022 (4) | 0.040 (3) | −0.020 (3) |
C2 | 0.063 (4) | 0.084 (5) | 0.063 (4) | −0.003 (4) | 0.026 (3) | 0.001 (4) |
Rh1—Cl1 | 2.4248 (11) | Rh2—P4 | 2.2857 (13) |
Rh1—Cl2 | 2.4455 (12) | Rh2—P5 | 2.2952 (12) |
Rh1—Cl3 | 2.4363 (12) | Rh2—P6 | 2.2922 (11) |
Rh1—P1 | 2.2825 (12) | P4—C41 | 1.814 (6) |
Rh1—P2 | 2.2951 (12) | P4—C42 | 1.819 (5) |
Rh1—P3 | 2.2998 (12) | P4—C43 | 1.815 (5) |
P1—C11 | 1.816 (5) | P5—C51 | 1.815 (5) |
P1—C12 | 1.816 (5) | P5—C52 | 1.804 (5) |
P1—C13 | 1.811 (5) | P5—C53 | 1.812 (5) |
P2—C21 | 1.827 (5) | P6—C61 | 1.802 (5) |
P2—C22 | 1.803 (5) | P6—C62 | 1.808 (5) |
P2—C23 | 1.810 (5) | P6—C63 | 1.820 (4) |
P3—C31 | 1.820 (5) | C41—H41A | 0.9600 |
P3—C32 | 1.793 (5) | C41—H41B | 0.9600 |
P3—C33 | 1.810 (5) | C41—H41C | 0.9600 |
C11—H11A | 0.9600 | C42—H42A | 0.9600 |
C11—H11B | 0.9600 | C42—H42B | 0.9600 |
C11—H11C | 0.9600 | C42—H42C | 0.9600 |
C12—H12A | 0.9600 | C43—H43A | 0.9600 |
C12—H12B | 0.9600 | C43—H43B | 0.9600 |
C12—H12C | 0.9600 | C43—H43C | 0.9600 |
C13—H13A | 0.9600 | C51—H51A | 0.9600 |
C13—H13B | 0.9600 | C51—H51B | 0.9600 |
C13—H13C | 0.9600 | C51—H51C | 0.9600 |
C21—H21A | 0.9600 | C52—H52A | 0.9600 |
C21—H21B | 0.9600 | C52—H52B | 0.9600 |
C21—H21C | 0.9600 | C52—H52C | 0.9600 |
C22—H22A | 0.9600 | C53—H53A | 0.9600 |
C22—H22B | 0.9600 | C53—H53B | 0.9600 |
C22—H22C | 0.9600 | C53—H53C | 0.9600 |
C23—H23A | 0.9600 | C61—H61A | 0.9600 |
C23—H23B | 0.9600 | C61—H61B | 0.9600 |
C23—H23C | 0.9600 | C61—H61C | 0.9600 |
C31—H31A | 0.9600 | C62—H62A | 0.9600 |
C31—H31B | 0.9600 | C62—H62B | 0.9600 |
C31—H31C | 0.9600 | C62—H62C | 0.9600 |
C32—H32A | 0.9600 | C63—H63A | 0.9600 |
C32—H32B | 0.9600 | C63—H63B | 0.9600 |
C32—H32C | 0.9600 | C63—H63C | 0.9600 |
C33—H33A | 0.9600 | O1—H1 | 0.8200 |
C33—H33B | 0.9600 | O1—C2 | 1.379 (7) |
C33—H33C | 0.9600 | C2—H2A | 0.9600 |
Rh2—Cl4 | 2.4371 (12) | C2—H2B | 0.9600 |
Rh2—Cl5 | 2.4477 (12) | C2—H2C | 0.9600 |
Rh2—Cl6 | 2.4424 (12) | ||
Cl1—Rh1—Cl2 | 87.44 (4) | P4—Rh2—Cl5 | 85.19 (5) |
Cl1—Rh1—Cl3 | 86.01 (4) | P4—Rh2—Cl6 | 94.79 (5) |
Cl3—Rh1—Cl2 | 88.69 (4) | P4—Rh2—P5 | 95.00 (5) |
P1—Rh1—Cl1 | 169.61 (4) | P4—Rh2—P6 | 94.38 (4) |
P1—Rh1—Cl2 | 93.24 (5) | P5—Rh2—Cl4 | 92.68 (5) |
P1—Rh1—Cl3 | 83.64 (5) | P5—Rh2—Cl5 | 170.38 (4) |
P1—Rh1—P2 | 96.15 (4) | P5—Rh2—Cl6 | 85.24 (4) |
P1—Rh1—P3 | 96.41 (4) | P6—Rh2—Cl4 | 84.07 (4) |
P2—Rh1—Cl1 | 83.39 (4) | P6—Rh2—Cl5 | 93.63 (4) |
P2—Rh1—Cl2 | 170.60 (4) | P6—Rh2—Cl6 | 170.61 (5) |
P2—Rh1—Cl3 | 92.69 (4) | P6—Rh2—P5 | 95.95 (4) |
P2—Rh1—P3 | 95.95 (4) | C41—P4—Rh2 | 114.5 (2) |
P3—Rh1—Cl1 | 93.96 (4) | C41—P4—C42 | 101.8 (3) |
P3—Rh1—Cl2 | 82.62 (4) | C41—P4—C43 | 102.4 (3) |
P3—Rh1—Cl3 | 171.30 (4) | C42—P4—Rh2 | 120.21 (19) |
C11—P1—Rh1 | 115.90 (18) | C43—P4—Rh2 | 113.5 (2) |
C11—P1—C12 | 101.2 (3) | C43—P4—C42 | 102.2 (3) |
C12—P1—Rh1 | 120.2 (2) | C51—P5—Rh2 | 120.87 (17) |
C13—P1—Rh1 | 112.00 (19) | C52—P5—Rh2 | 112.52 (18) |
C13—P1—C11 | 102.3 (3) | C52—P5—C51 | 101.8 (3) |
C13—P1—C12 | 103.0 (3) | C52—P5—C53 | 103.1 (2) |
C21—P2—Rh1 | 121.30 (19) | C53—P5—Rh2 | 114.25 (18) |
C22—P2—Rh1 | 112.11 (18) | C53—P5—C51 | 102.1 (2) |
C22—P2—C21 | 102.8 (3) | C61—P6—Rh2 | 110.90 (16) |
C22—P2—C23 | 103.1 (3) | C61—P6—C62 | 102.3 (2) |
C23—P2—Rh1 | 114.92 (18) | C61—P6—C63 | 102.5 (2) |
C23—P2—C21 | 100.4 (3) | C62—P6—Rh2 | 114.98 (17) |
C31—P3—Rh1 | 115.75 (18) | C62—P6—C63 | 100.5 (2) |
C32—P3—Rh1 | 111.43 (18) | C63—P6—Rh2 | 123.06 (16) |
C32—P3—C31 | 102.1 (3) | P4—C41—H41A | 109.5 |
C32—P3—C33 | 103.4 (3) | P4—C41—H41B | 109.5 |
C33—P3—Rh1 | 120.93 (18) | P4—C41—H41C | 109.5 |
C33—P3—C31 | 100.9 (3) | H41A—C41—H41B | 109.5 |
P1—C11—H11A | 109.5 | H41A—C41—H41C | 109.5 |
P1—C11—H11B | 109.5 | H41B—C41—H41C | 109.5 |
P1—C11—H11C | 109.5 | P4—C42—H42A | 109.5 |
H11A—C11—H11B | 109.5 | P4—C42—H42B | 109.5 |
H11A—C11—H11C | 109.5 | P4—C42—H42C | 109.5 |
H11B—C11—H11C | 109.5 | H42A—C42—H42B | 109.5 |
P1—C12—H12A | 109.5 | H42A—C42—H42C | 109.5 |
P1—C12—H12B | 109.5 | H42B—C42—H42C | 109.5 |
P1—C12—H12C | 109.5 | P4—C43—H43A | 109.5 |
H12A—C12—H12B | 109.5 | P4—C43—H43B | 109.5 |
H12A—C12—H12C | 109.5 | P4—C43—H43C | 109.5 |
H12B—C12—H12C | 109.5 | H43A—C43—H43B | 109.5 |
P1—C13—H13A | 109.5 | H43A—C43—H43C | 109.5 |
P1—C13—H13B | 109.5 | H43B—C43—H43C | 109.5 |
P1—C13—H13C | 109.5 | P5—C51—H51A | 109.5 |
H13A—C13—H13B | 109.5 | P5—C51—H51B | 109.5 |
H13A—C13—H13C | 109.5 | P5—C51—H51C | 109.5 |
H13B—C13—H13C | 109.5 | H51A—C51—H51B | 109.5 |
P2—C21—H21A | 109.5 | H51A—C51—H51C | 109.5 |
P2—C21—H21B | 109.5 | H51B—C51—H51C | 109.5 |
P2—C21—H21C | 109.5 | P5—C52—H52A | 109.5 |
H21A—C21—H21B | 109.5 | P5—C52—H52B | 109.5 |
H21A—C21—H21C | 109.5 | P5—C52—H52C | 109.5 |
H21B—C21—H21C | 109.5 | H52A—C52—H52B | 109.5 |
P2—C22—H22A | 109.5 | H52A—C52—H52C | 109.5 |
P2—C22—H22B | 109.5 | H52B—C52—H52C | 109.5 |
P2—C22—H22C | 109.5 | P5—C53—H53A | 109.5 |
H22A—C22—H22B | 109.5 | P5—C53—H53B | 109.5 |
H22A—C22—H22C | 109.5 | P5—C53—H53C | 109.5 |
H22B—C22—H22C | 109.5 | H53A—C53—H53B | 109.5 |
P2—C23—H23A | 109.5 | H53A—C53—H53C | 109.5 |
P2—C23—H23B | 109.5 | H53B—C53—H53C | 109.5 |
P2—C23—H23C | 109.5 | P6—C61—H61A | 109.5 |
H23A—C23—H23B | 109.5 | P6—C61—H61B | 109.5 |
H23A—C23—H23C | 109.5 | P6—C61—H61C | 109.5 |
H23B—C23—H23C | 109.5 | H61A—C61—H61B | 109.5 |
P3—C31—H31A | 109.5 | H61A—C61—H61C | 109.5 |
P3—C31—H31B | 109.5 | H61B—C61—H61C | 109.5 |
P3—C31—H31C | 109.5 | P6—C62—H62A | 109.5 |
H31A—C31—H31B | 109.5 | P6—C62—H62B | 109.5 |
H31A—C31—H31C | 109.5 | P6—C62—H62C | 109.5 |
H31B—C31—H31C | 109.5 | H62A—C62—H62B | 109.5 |
P3—C32—H32A | 109.5 | H62A—C62—H62C | 109.5 |
P3—C32—H32B | 109.5 | H62B—C62—H62C | 109.5 |
P3—C32—H32C | 109.5 | P6—C63—H63A | 109.5 |
H32A—C32—H32B | 109.5 | P6—C63—H63B | 109.5 |
H32A—C32—H32C | 109.5 | P6—C63—H63C | 109.5 |
H32B—C32—H32C | 109.5 | H63A—C63—H63B | 109.5 |
P3—C33—H33A | 109.5 | H63A—C63—H63C | 109.5 |
P3—C33—H33B | 109.5 | H63B—C63—H63C | 109.5 |
P3—C33—H33C | 109.5 | C2—O1—H1 | 109.5 |
H33A—C33—H33B | 109.5 | O1—C2—H2A | 109.5 |
H33A—C33—H33C | 109.5 | O1—C2—H2B | 109.5 |
H33B—C33—H33C | 109.5 | O1—C2—H2C | 109.5 |
Cl4—Rh2—Cl5 | 87.35 (5) | H2A—C2—H2B | 109.5 |
Cl4—Rh2—Cl6 | 86.57 (5) | H2A—C2—H2C | 109.5 |
Cl6—Rh2—Cl5 | 85.15 (4) | H2B—C2—H2C | 109.5 |
P4—Rh2—Cl4 | 172.28 (5) | ||
Cl1—Rh1—P1—C11 | 36.4 (4) | P3—Rh1—P2—C23 | −47.9 (2) |
Cl1—Rh1—P1—C12 | 158.6 (3) | Cl4—Rh2—P5—C51 | 111.9 (2) |
Cl1—Rh1—P1—C13 | −80.4 (3) | Cl4—Rh2—P5—C52 | −8.4 (2) |
Cl1—Rh1—P2—C21 | 166.5 (2) | Cl4—Rh2—P5—C53 | −125.53 (19) |
Cl1—Rh1—P2—C22 | −71.8 (2) | Cl4—Rh2—P6—C61 | 72.9 (2) |
Cl1—Rh1—P2—C23 | 45.5 (2) | Cl4—Rh2—P6—C62 | −42.6 (2) |
Cl1—Rh1—P3—C31 | 130.6 (2) | Cl4—Rh2—P6—C63 | −165.5 (2) |
Cl1—Rh1—P3—C32 | 14.5 (3) | Cl5—Rh2—P4—C41 | −38.0 (2) |
Cl1—Rh1—P3—C33 | −107.1 (2) | Cl5—Rh2—P4—C42 | −159.7 (2) |
Cl2—Rh1—P1—C11 | 129.9 (2) | Cl5—Rh2—P4—C43 | 79.1 (3) |
Cl2—Rh1—P1—C12 | −108.0 (3) | Cl5—Rh2—P6—C61 | −14.1 (2) |
Cl2—Rh1—P1—C13 | 13.1 (2) | Cl5—Rh2—P6—C62 | −129.6 (2) |
Cl2—Rh1—P3—C31 | 43.7 (2) | Cl5—Rh2—P6—C63 | 107.5 (2) |
Cl2—Rh1—P3—C32 | −72.3 (3) | Cl6—Rh2—P4—C41 | −122.7 (2) |
Cl2—Rh1—P3—C33 | 166.0 (2) | Cl6—Rh2—P4—C42 | 115.6 (2) |
Cl3—Rh1—P1—C11 | 41.5 (2) | Cl6—Rh2—P4—C43 | −5.6 (3) |
Cl3—Rh1—P1—C12 | 163.7 (3) | Cl6—Rh2—P5—C51 | −161.7 (2) |
Cl3—Rh1—P1—C13 | −75.3 (2) | Cl6—Rh2—P5—C52 | 77.9 (2) |
Cl3—Rh1—P2—C21 | −107.9 (2) | Cl6—Rh2—P5—C53 | −39.2 (2) |
Cl3—Rh1—P2—C22 | 13.9 (2) | P4—Rh2—P5—C51 | −67.3 (2) |
Cl3—Rh1—P2—C23 | 131.1 (2) | P4—Rh2—P5—C52 | 172.3 (2) |
P1—Rh1—P2—C21 | −24.0 (2) | P4—Rh2—P5—C53 | 55.2 (2) |
P1—Rh1—P2—C22 | 97.7 (2) | P4—Rh2—P6—C61 | −99.5 (2) |
P1—Rh1—P2—C23 | −145.0 (2) | P4—Rh2—P6—C62 | 145.0 (2) |
P1—Rh1—P3—C31 | −48.7 (2) | P4—Rh2—P6—C63 | 22.1 (2) |
P1—Rh1—P3—C32 | −164.8 (3) | P5—Rh2—P4—C41 | 151.7 (2) |
P1—Rh1—P3—C33 | 73.5 (2) | P5—Rh2—P4—C42 | 30.0 (2) |
P2—Rh1—P1—C11 | −50.5 (2) | P5—Rh2—P4—C43 | −91.3 (3) |
P2—Rh1—P1—C12 | 71.7 (3) | P5—Rh2—P6—C61 | 164.96 (19) |
P2—Rh1—P1—C13 | −167.3 (2) | P5—Rh2—P6—C62 | 49.5 (2) |
P2—Rh1—P3—C31 | −145.7 (2) | P5—Rh2—P6—C63 | −73.4 (2) |
P2—Rh1—P3—C32 | 98.3 (3) | P6—Rh2—P4—C41 | 55.3 (2) |
P2—Rh1—P3—C33 | −23.4 (2) | P6—Rh2—P4—C42 | −66.4 (2) |
P3—Rh1—P1—C11 | −147.2 (2) | P6—Rh2—P4—C43 | 172.4 (3) |
P3—Rh1—P1—C12 | −25.0 (3) | P6—Rh2—P5—C51 | 27.6 (2) |
P3—Rh1—P1—C13 | 96.0 (2) | P6—Rh2—P5—C52 | −92.7 (2) |
P3—Rh1—P2—C21 | 73.1 (2) | P6—Rh2—P5—C53 | 150.16 (19) |
P3—Rh1—P2—C22 | −165.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Cl6i | 0.82 | 2.47 | 3.184 (5) | 147 |
Symmetry code: (i) −x+1/2, y+1/2, −z+1/2. |
Compound | space group | a | b | c | α | β | γ |
RhP3Cl3water | Cc | 15.8650 (12) | 9.0396 (3) | 14.8223 (18) | 90 | 120.820 (7) | 90 |
IrP3Cl3water | Cc | 15.8830 (10) | 9.0590 (10) | 14.829 (2) | 90 | 120.530 (8) | 90 |
Compound | space group | a | b | c | α | β | γ |
RhP3Cl3MeOH | P21/n | 16.0993 (16) | 15.5910 (9) | 16.4152 (14) | 90 | 115.084 (13) | 90 |
IrP3Cl3MeOH | P21/n | 16.144 (3) | 15.631 (4) | 16.469 (4) | 90 | 115.400 (17) | 90 |
Compound | M—P1 | M—P2 | M—P3 | M—Cl1 | M—Cl2 | M—Cl3 |
RhP3Cl3water | 2.279 (2) | 2.295 (3) | 2.292 (2) | 2.450 (2) | 2.444 (3) | 2.436 (3) |
IrP3Cl3water | 2.2787 (18) | 2.2880 (19) | 2.2912 (17) | 2.4320 (19) | 2.4469 (18) | 2.4451 (19) |
Compound | M—P1 | M—P2 | M—P3 | M—Cl1 | M—Cl2 | M—Cl3 |
RhP3Cl3MeOH a | 2.2824 (12) | 2.2950 (13) | 2.2995 (12) | 2.4246 (11) | 2.4453 (12) | 2.4364 (12) |
RhP3Cl3MeOH b | 2.2860 (13) | 2.2954 (12) | 2.2923 (11) | 2.4372 (12) | 2.4476 (12) | 2.4426 (12) |
IrP3Cl3MeOH a | 2.2809 (16) | 2.2847 (17) | 2.2964 (15) | 2.4245 (16) | 2.4368 (17) | 2.4394 (15) |
IrP3Cl3MeOH b | 2.2932 (16) | 2.2795 (17) | 2.2869 (16) | 2.4442 (16) | 2.4316 (17) | 2.4405 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···Cl3 | 0.9700 | 2.57 | 3.481 | 157 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Cl6i | 0.82 | 2.47 | 3.184 (5) | 146.5 |
Symmetry code: (i) −x+1/2, y+1/2, −z+1/2. |
Experimental details
(RhP3Cl3water) | (RhP3Cl3MeOH) | |
Crystal data | ||
Chemical formula | [RhCl3(C3H9P)3]·H2O | [RhCl3(C3H9P)3]·0.5CH4O |
Mr | 455.49 | 453.50 |
Crystal system, space group | Monoclinic, Cc | Monoclinic, P21/n |
Temperature (K) | 298 | 298 |
a, b, c (Å) | 15.8650 (12), 9.0396 (3), 14.8223 (18) | 16.0993 (16), 15.5910 (9), 16.4152 (14) |
β (°) | 120.820 (7) | 115.084 (13) |
V (Å3) | 1825.5 (3) | 3731.7 (5) |
Z | 4 | 8 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 1.62 | 1.59 |
Crystal size (mm) | 0.4 × 0.4 × 0.3 | 0.6 × 0.6 × 0.3 |
Data collection | ||
Diffractometer | Siemens P4 diffractometer | Siemens P4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.762, 0.974 | 0.807, 0.915 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2034, 1784, 1763 | 5957, 4858, 4171 |
Rint | 0.021 | 0.034 |
θmax (°) | 25.0 | 22.5 |
(sin θ/λ)max (Å−1) | 0.595 | 0.538 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.059, 1.08 | 0.029, 0.071, 1.08 |
No. of reflections | 1784 | 4858 |
No. of parameters | 170 | 328 |
No. of restraints | 5 | 0 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.47, −0.60 | 1.03, −0.41 |
Absolute structure | Classical Flack (1983) method preferred over Parsons because s.u. lower. | ? |
Absolute structure parameter | −0.06 (3) | ? |
Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXS87 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009).