Download citation
Download citation
link to html
A compound, (CH6N3)7H9[PtMo6O24]2·7H2O, containing the well-known Anderson-structure heteropolyoxomolybdate, was obtained by recrystallization of its powdered guanidinium salt. The protonated O atoms in the polyanion were confirmed by electron-density maps, inter­polyanion hydrogen bonds and bond-valance sums (BVS).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989015002601/pk2544sup1.cif
Contains datablocks New_Global_Publ_Block, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989015002601/pk2544Isup2.hkl
Contains datablock I

CCDC reference: 1048266

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](N-C) = 0.008 Å
  • Disorder in solvent or counterion
  • R factor = 0.028
  • wR factor = 0.073
  • Data-to-parameter ratio = 14.1

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT416_ALERT_2_B Short Intra D-H..H-D H10A .. H12A .. 1.77 Ang.
Author Response: No problem. Because each other disordered Atoms.
PLAT417_ALERT_2_B Short Inter D-H..H-D       H3     ..  H2AW    ..       2.06 Ang.
Author Response: Because of strong H3...O2w HY bond (2.622 \%A) and disorder.
PLAT417_ALERT_2_B Short Inter D-H..H-D       H3     ..  H2BW    ..       2.06 Ang.
Author Response: Because of strong H3...O2w HY bond (2.622 \%A) and disorder.
PLAT417_ALERT_2_B Short Inter D-H..H-D       H2AW   ..  H3A     ..       1.98 Ang.
Author Response: Because of strong H3...O2w HY bond (2.622 \%A) and disorder.
PLAT417_ALERT_2_B Short Inter D-H..H-D       H3BW   ..  H4BW    ..       1.94 Ang.
Author Response: Because of strong H3...O2w HY bond (2.622 \%A) and disorder.
PLAT420_ALERT_2_B D-H Without Acceptor        O2W    -   H2AW   ..     Please Check
Author Response: Because the acceptor atoms were disorder atom.

Alert level C PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of C1 Check PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of C3 Check PLAT303_ALERT_2_C Full Occupancy H-Atom H6 with # Connections 2.00 Check
Author Response: Because H6 has half occupation number.
PLAT420_ALERT_2_C D-H Without Acceptor        N9     -   H9B    ..     Please Check
Author Response: Because the acceptor atoms were disorder atom.
PLAT751_ALERT_4_C Bond    Calc     1.27000, Rep    1.266(3) ......  Senseless su
              O6C  -H6      1.555   1.555                #         47
PLAT752_ALERT_4_C Angle   Calc      121.00, Rep    120.8(2) ......  Senseless su
              PT1  -O6C  -H6      1.555   1.555   1.555      #        142
PLAT752_ALERT_4_C Angle   Calc      121.00, Rep  121.27(19) ......  Senseless su
              MO6  -O6C  -H6      1.555   1.555   1.555      #        143
PLAT752_ALERT_4_C Angle   Calc      121.00, Rep  120.85(19) ......  Senseless su
              MO1  -O6C  -H6      1.555   1.555   1.555      #        144
PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L=  0.600          3 Report
PLAT971_ALERT_2_C Check Calcd Residual Density  1.10A From     Pt1       2.36 eA-3
PLAT971_ALERT_2_C Check Calcd Residual Density  1.36A From     O2C       1.51 eA-3
PLAT975_ALERT_2_C Check Calcd Residual Density  0.84A From      N1       1.44 eA-3
PLAT975_ALERT_2_C Check Calcd Residual Density  1.05A From      N3       1.24 eA-3
PLAT975_ALERT_2_C Check Calcd Residual Density  1.05A From    O16T       0.83 eA-3
PLAT975_ALERT_2_C Check Calcd Residual Density  1.07A From     O8B       0.82 eA-3
PLAT975_ALERT_2_C Check Calcd Residual Density  0.76A From     O2W       0.68 eA-3
PLAT976_ALERT_2_C Check Calcd Residual Density  0.46A From      N3      -1.13 eA-3
PLAT976_ALERT_2_C Check Calcd Residual Density  0.44A From      N1      -1.09 eA-3

Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 28 Note PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF Please Do ! PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms .............. 19 Report PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ Please Check PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large. 47.91 Why ? PLAT128_ALERT_4_G Alternate Setting for Input Space Group C2/c I2/a Note PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Mo6 -- O24T .. 6.3 su PLAT300_ALERT_4_G Atom Site Occupancy of *O4W is Constrained at 0.500 Check PLAT300_ALERT_4_G Atom Site Occupancy of *N12 is Constrained at 0.500 Check PLAT300_ALERT_4_G Atom Site Occupancy of *C4 is Constrained at 0.500 Check PLAT300_ALERT_4_G Atom Site Occupancy of *H4AW is Constrained at 0.500 Check PLAT300_ALERT_4_G Atom Site Occupancy of *H4BW is Constrained at 0.500 Check PLAT300_ALERT_4_G Atom Site Occupancy of *H12A is Constrained at 0.500 Check PLAT300_ALERT_4_G Atom Site Occupancy of *H12B is Constrained at 0.500 Check PLAT300_ALERT_4_G Atom Site Occupancy of *O4W_b is Constrained at 0.500 Check PLAT300_ALERT_4_G Atom Site Occupancy of *N12_b is Constrained at 0.500 Check PLAT300_ALERT_4_G Atom Site Occupancy of *C4_b is Constrained at 0.500 Check PLAT300_ALERT_4_G Atom Site Occupancy of *H4AW_b is Constrained at 0.500 Check PLAT300_ALERT_4_G Atom Site Occupancy of *H4BW_b is Constrained at 0.500 Check PLAT300_ALERT_4_G Atom Site Occupancy of *H12A_b is Constrained at 0.500 Check PLAT300_ALERT_4_G Atom Site Occupancy of *H12B_b is Constrained at 0.500 Check PLAT302_ALERT_4_G Anion/Solvent Disorder ............ Percentage = 15 Note PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .......... 8 Note PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF .... # 145 Check O6C -O6C -H6 7.656 1.555 1.555 0.00 Deg. PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF .... # 191 Check H12B -N12 -H4AW 1.555 1.555 1.555 20.00 Deg. PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. # 3 Note C H6 N3 PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. # 8 Note H2 O PLAT860_ALERT_3_G Number of Least-Squares Restraints ............. 22 Note PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 3 Note
0 ALERT level A = Most likely a serious problem - resolve or explain 6 ALERT level B = A potentially serious problem, consider carefully 18 ALERT level C = Check. Ensure it is not caused by an omission or oversight 29 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 20 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 28 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Chemical context top

The α (planar structure)-β (bent structure)-α geometrical isomerization, according to the stepwise protonation in the [PtMo6O24]8- polyoxometalate (POM) species, viz. ([H3.5α-PtMo6O24]4.5- (Lee & Sasaki, 1994), [H4β-PtMo6O24]4- (Lee & Sasaki, 1994; Joo et al., 1994) and [H4.5α-PtMo6O24]3.5- (Lee & Sasaki, 1994; Lee et al., 2010) is an unprecedented phenomenon in the Anderson-structure heteropolyanion (Anderson, 1937), as well as in the chemistry of polyoxometalates.

As a result of the insolubility of the guanidinium salt, replaceable counter-cations in POMs can be exchanged by guanidinium ions. It is thus possible to obtain stable POMs by precipitation from aqueous solution with guanidinium salts. The guanidinium salts of platinum-containing POM species, viz. (CH6N3)8[PtW6O24] (Lee et al., 2003), (CH6N3)5[H2PtV9O28] (Joo et al., 2011) and (CH6N3)8[α-SiPt2W10O40]·6H2O (Lee et al., 2003) have been reported our group. The position of the protonated O atoms in the {[H4.5α-PtMo6O24]2}7- polyanion were reconfirmed in the present study.

Sometimes a relatively short hydrogen bond, O···O distance < 2.60 Å, in which the H atom lies on a crystallographic center of symmetry, occurs in this class of structure. The H atom of the central hydrogen bond, O6C—H6—O6Ci (Fig. 2) in the title compound lies on a crystallographic center of symmetry (space group C2/c : 3/4, 1/4, 1/2), and thus has half-occupancy in the asymmetric unit.

Structural commentary top

The structure of the title compound POM anion has been discussed in detail (Lee et al., 2010). Fig. 1 shows the structure of the title compound and selected geometrical parameters are given in Table 1. The complete polyanion has C1 (1) symmetry. The O atoms of the cluster have been designated as OT (terminal MoO atom), OB (bridged µ2-O atom), and OC (centered µ3-O atom). The protonated O atoms in the polyanion were confirmed in electron density maps, inter­polyanion hydrogen bonds (Table 2) and by bond-valence sums (BVS; Brown & Altermatt, 1985; Brese & O'Keeffe, 1991). Fig. 2 shows a symmetric electron-density map around the position of atom H6. The heteropolyanions form inversion-generated dimers, {[H4.5PtMo6O24]2}-7 held together by each of the four µ3-O–H···µ1-O (terminal O atom), two µ2-O–H···µ2-O and one centrosymmetric µ3-O–H–µ3-O hydrogen bonds (Table 2). The H atom's occupancy, which is 0.5 in the polyanion, is due to the centrosymmetry of this latter hydrogen bond (Figs. 2 and 3). The H atom of the centrosymmetric hydrogen bond in the compound lies on a crystallographic centre of symmetry (space group C2/c : 3/4, 1/4, 1/2). The O6C—H6 and O6C···O6Ci distances are 1.266 and 2.532 (6) Å, and the O6C—H6—O6Ci angle is 180° (Table 2 and Fig. 3). Atom H3 does not contribute to dimer formation because it is located on the other side of the polyanion.

Confirmation of the protonated O atoms was strongly supported by the BVS analysis. The calculated BVS for atoms O2C, O3C, O4C, O6C and O11B are 1.40, 1.36, 1.38, 1.41 and 1.30 valence units (v.u.), respectively, if the valence of the O—H bond is not included. Since the BVS value around the µ2-O atom should be 2.0 v.u., the missing valences of O2C, O3C, O4C, O6C and O11B are 0.60, 0.64, 0.62, 0.59 and 0.70 v.u., respectively, which corresponds to the valence of the O–H bonds. The BVS value range for the unprotonated OC and OB atoms is 1.68–1.90 v.u. As a result, the protonated O atoms were O2C, O3C, O4C, O11B and O6C. The protonated features of both the {[H4.5PtMo6O24]2}7- polyanion in the title compound and in K7[H4.5PtMo6O24]2.11H2O (space group P1) are exactly the same. The bond lengths and bond angles of protonated and unprotonated O atoms in the {[H4.5PtMo6O24]2}7- polyanion are compared in Table 1. The Pt—OC bond lengths were not affected by protonation of the OC atoms.

The C4 guanidinium ion and O4W water molecule are equally disordered about a twofold rotation axis.

Supra­molecular features top

The heteropolyanions form inversion-generated dimers, {[H4.5PtMo6O24]2}-7 held together by each of the four µ3-O–H···µ1-O (terminal O atom), two µ2-O–H···µ2-O and one centrosymmetric µ3-O–H–µ3-O hydrogen bonds (Table2 and Fig. 3). Furthermore, the polyanions are linked in three dimensions via N—H···O hydrogen bonds (Table 2). All water molecules form hydrogen bonds with O atoms of the polyanions except for the O2W water molecule (Table 2).

Database survey top

A number of Anderson-structure platinum(IV)-containing heteropolyoxomolybdates have been reported: [H4.5PtMo6O24]3.5- and [H4PtMo6O24]4-, [H3.5PtMo6O24]4.5- (Lee & Sasaki, 1994); [H4β-PtM06024]4- (Joo et al., 1994); [H2PtMo6O24]6- (Lee & Joo, 2000, 2004); [H4.5PtMo6O24]3.5- (Lee et al., 2010); [H6PtMo6O24]2- (Lee & Joo, 2010); [(PtMo6O24)4H23]9-, [(PtMo6O24)3H16]8- and [(PtMo6O24)3H14]14- (Day et al., 2009).

Synthesis and crystallization top

A pale-yellow powder of the title compound was obtained by addition of a small excess of the stoichiometric qu­antity of guanidinium chloride, CH6N3Cl, to a solution of the sodium salt of hexamolybdoplatinate hydrate. Single crystals were obtained by recrystallization from a hot aqueous solution of the crude sample in an insulating chamber.

Refinement top

All the H atoms in the polyanion and all water H atoms were positioned using difference Fourier maps. All H atoms of the polyanion were refined with a distance restraint of O–H = 0.95 (3) Å using the DFIX command (Sheldrick, 2008). All H atoms of the guanidinium ions were positioned geometrically and refined using a riding model, with Uiso(H) = 1.5Ueq(N). The C4 guanidinium ion and O4W water molecule are equally disordered about a twofold rotation axis. Refinement of the site occupation factors (s.o.f) converged at values close to half occupancy. In the final refinement, the s.o.f.s were constrained to 0.5 and reasonable displacement parameters were obtained. The C—N and N—H bond lengths were restrained to 1.30 (2) and 0.90 (2) Å, respectively, and the H—N—H angles were restrained by restraining the H···H distance to 1.55 (2) Å in the disordered C4 guanidinium ion using the DFIX command. The H atoms of all water molecules (OW) were refined with a distance restraint of O—H = 0.95 (3) Å using the DFIX, and were included in the refinement with Uiso(H) = 1.5Ueq(O). The highest peak in the difference map is 0.98 Å from atom Pt1 and the largest hole is 0.36 Å from N3.

Related literature top

For related literature, see: Anderson (1937); Brese & O'Keeffe (1991); Brown & Altermatt (1985); Day et al. (2009); Joo et al. (1994, 2011); Lee & Joo (2000, 2004, 2010); Lee & Sasaki (1994); Lee, Jang, Joo & Park (2003); Lee, Joo & Park (2010); Lee, Joo, Park & Ozeki (2003); Sheldrick (2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and DIAMOND (Brandenburg,1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Disordered parts have been omitted for clarity.
[Figure 2] Fig. 2. Difference-Fourier map around atom H6 (calculated with atom H6 absent from the model).
[Figure 3] Fig. 3. Polyhedral view of the heteropolyanion in the title compound with O—H···O contacts of the interanion hydrogen bonds shown as red dashed lines. [Symmetry code: (i) -x + 3/2, -y + 1/2, -z + 1.]
Heptaguanidinium nonahydrogen bis[α-hexamolybdoplatinate(IV)] heptahydrate top
Crystal data top
(CH6N3)7H9[PtMo6O24]2·7H2OF(000) = 5416
Mr = 2865.26Dx = 2.917 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9569 reflections
a = 31.413 (10) Åθ = 2.2–28.2°
b = 10.073 (3) ŵ = 6.62 mm1
c = 23.677 (7) ÅT = 173 K
β = 119.451 (14)°Block, yellow
V = 6524 (3) Å30.30 × 0.12 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
7107 independent reflections
Radiation source: Rotating Anode6050 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.033
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 1.5°
ϕ and ω scansh = 4036
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
k = 1212
Tmin = 0.241, Tmax = 0.729l = 3030
56606 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: difference Fourier map
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0337P)2 + 47.9084P]
where P = (Fo2 + 2Fc2)/3
7107 reflections(Δ/σ)max = 0.002
505 parametersΔρmax = 2.50 e Å3
22 restraintsΔρmin = 1.30 e Å3
Crystal data top
(CH6N3)7H9[PtMo6O24]2·7H2OV = 6524 (3) Å3
Mr = 2865.26Z = 4
Monoclinic, C2/cMo Kα radiation
a = 31.413 (10) ŵ = 6.62 mm1
b = 10.073 (3) ÅT = 173 K
c = 23.677 (7) Å0.30 × 0.12 × 0.05 mm
β = 119.451 (14)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
7107 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
6050 reflections with I > 2σ(I)
Tmin = 0.241, Tmax = 0.729Rint = 0.033
56606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02822 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0337P)2 + 47.9084P]
where P = (Fo2 + 2Fc2)/3
7107 reflectionsΔρmax = 2.50 e Å3
505 parametersΔρmin = 1.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.652431 (6)0.176198 (17)0.467608 (8)0.01525 (6)
Mo10.743430 (14)0.00319 (4)0.57409 (2)0.02093 (10)
Mo20.682566 (15)0.17866 (4)0.624195 (19)0.02035 (10)
Mo30.583929 (15)0.34871 (4)0.51759 (2)0.02171 (10)
Mo40.552026 (14)0.34729 (4)0.359683 (19)0.01849 (9)
Mo50.618484 (14)0.17217 (4)0.311229 (19)0.01901 (10)
Mo60.712270 (14)0.01255 (4)0.42001 (2)0.02259 (10)
O1C0.66821 (11)0.0483 (3)0.53959 (14)0.0194 (7)
O2C0.66214 (11)0.3107 (3)0.53597 (15)0.0187 (7)
H20.6862 (17)0.378 (5)0.544 (3)0.050 (18)*
O3C0.58105 (11)0.1962 (3)0.44249 (15)0.0178 (7)
H30.568 (2)0.109 (3)0.439 (3)0.07 (2)*
O4C0.63463 (11)0.3099 (3)0.39634 (15)0.0184 (7)
H40.656 (3)0.379 (6)0.398 (4)0.10 (3)*
O5C0.64084 (11)0.0488 (3)0.39683 (14)0.0191 (7)
O6C0.72274 (11)0.1511 (3)0.49205 (15)0.0190 (7)
H60.75000.25000.50000.06 (3)*
O7B0.74507 (12)0.1539 (3)0.62431 (16)0.0229 (7)
O8B0.61194 (12)0.2010 (3)0.57683 (16)0.0243 (7)
O9B0.57705 (11)0.4420 (3)0.44128 (15)0.0226 (7)
O10B0.55913 (11)0.1971 (3)0.31241 (15)0.0212 (7)
O11B0.69300 (12)0.1458 (3)0.35603 (16)0.0235 (7)
H110.713 (3)0.222 (7)0.362 (5)0.15 (4)*
O12B0.71759 (12)0.1040 (3)0.49309 (17)0.0262 (8)
O13T0.80360 (12)0.0093 (3)0.59080 (17)0.0285 (8)
O14T0.74286 (12)0.1258 (3)0.62346 (17)0.0305 (8)
O15T0.68520 (13)0.0508 (4)0.67282 (16)0.0299 (8)
O16T0.69977 (13)0.3193 (3)0.67096 (17)0.0312 (8)
O17T0.52417 (13)0.3226 (4)0.49587 (19)0.0371 (9)
O18T0.60285 (14)0.4814 (4)0.56903 (17)0.0370 (9)
O19T0.49288 (12)0.3228 (3)0.34110 (17)0.0275 (8)
O20T0.55233 (12)0.4783 (3)0.31420 (16)0.0283 (8)
O21T0.62270 (13)0.3112 (4)0.27214 (17)0.0292 (8)
O22T0.60336 (13)0.0433 (4)0.25787 (17)0.0315 (8)
O23T0.69102 (12)0.1349 (3)0.36251 (18)0.0304 (8)
O24T0.77302 (12)0.0093 (3)0.44119 (17)0.0290 (8)
C10.5886 (2)0.1669 (7)0.5871 (3)0.0536 (18)
N10.6167 (2)0.1725 (5)0.5534 (3)0.0611 (18)
H1A0.62730.24930.54760.073*
H1B0.62300.09910.53880.073*
N20.57817 (17)0.2673 (5)0.6092 (2)0.0446 (13)
H2A0.58790.34640.60460.053*
H2B0.56110.25860.62930.053*
N30.5678 (3)0.0394 (7)0.5888 (4)0.106 (3)
H3A0.54800.03330.60520.127*
H3B0.57480.03170.57350.127*
C20.69992 (17)0.6537 (5)0.7035 (2)0.0252 (11)
N40.7180 (2)0.6254 (5)0.6658 (3)0.0482 (14)
H4A0.72100.54200.65710.058*
H4B0.72730.68960.64900.058*
N50.68617 (16)0.5573 (4)0.7284 (2)0.0310 (10)
H5A0.68920.47410.71960.037*
H5B0.67390.57600.75380.037*
N60.69567 (17)0.7785 (5)0.7166 (2)0.0355 (11)
H6A0.70500.84260.69990.043*
H6B0.68350.79760.74200.043*
C30.4036 (2)0.6616 (5)0.2726 (3)0.0290 (11)
N70.43204 (15)0.5625 (4)0.3073 (2)0.0324 (10)
H7A0.45460.57570.34790.039*
H7B0.42840.48340.28980.039*
N80.36976 (18)0.6419 (5)0.2123 (2)0.0444 (13)
H8A0.35070.70780.18940.053*
H8B0.36610.56280.19470.053*
N90.4097 (3)0.7778 (5)0.2998 (3)0.075 (2)
H9A0.39100.84480.27750.090*
H9B0.43260.78940.34030.090*
C40.5228 (3)0.8412 (9)0.2828 (4)0.028 (2)0.50
N100.50000.7313 (6)0.25000.0368 (16)
H10A0.4775 (14)0.686 (4)0.2159 (13)0.044*
N110.50000.9567 (6)0.25000.0471 (19)
H11A0.5223 (16)1.002 (4)0.2844 (14)0.057*
N120.5653 (4)0.8331 (14)0.3368 (6)0.039 (3)0.50
H12A0.579 (3)0.753 (5)0.343 (6)0.046*0.50
H12B0.584 (3)0.905 (6)0.355 (6)0.046*0.50
O1W0.51593 (15)0.6741 (4)0.42228 (19)0.0400 (10)
H1AW0.5475 (12)0.638 (6)0.446 (3)0.060*
H1BW0.507 (2)0.678 (6)0.456 (2)0.060*
O2W0.52988 (18)0.0205 (5)0.4254 (3)0.0609 (13)
H2AW0.508 (3)0.006 (8)0.3811 (14)0.091*
H2BW0.553 (2)0.091 (6)0.435 (4)0.091*
O3W0.6421 (2)0.3187 (6)0.4650 (3)0.0764 (17)
H3AW0.6747 (13)0.346 (9)0.487 (4)0.115*
H3BW0.632 (4)0.398 (6)0.441 (4)0.115*
O4W0.5802 (4)0.8321 (11)0.3704 (5)0.036 (2)0.50
H4AW0.599 (4)0.911 (8)0.381 (6)0.055*0.50
H4BW0.602 (4)0.770 (10)0.402 (5)0.055*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01074 (9)0.01946 (10)0.01597 (9)0.00051 (6)0.00690 (7)0.00191 (7)
Mo10.01368 (19)0.0186 (2)0.0308 (2)0.00080 (15)0.01116 (17)0.00340 (17)
Mo20.0199 (2)0.0212 (2)0.0193 (2)0.00066 (16)0.00908 (17)0.00091 (16)
Mo30.0190 (2)0.0282 (2)0.0213 (2)0.00438 (17)0.01255 (17)0.00020 (17)
Mo40.01413 (19)0.0230 (2)0.01809 (19)0.00203 (15)0.00773 (16)0.00188 (16)
Mo50.0170 (2)0.0242 (2)0.01814 (19)0.00386 (16)0.01039 (17)0.00427 (16)
Mo60.01442 (19)0.0212 (2)0.0358 (2)0.00414 (16)0.01523 (18)0.01035 (18)
O1C0.0188 (16)0.0194 (17)0.0189 (15)0.0004 (13)0.0083 (13)0.0001 (13)
O2C0.0175 (16)0.0200 (17)0.0203 (16)0.0025 (13)0.0107 (14)0.0044 (13)
O3C0.0110 (15)0.0224 (17)0.0212 (16)0.0003 (13)0.0089 (13)0.0007 (13)
O4C0.0157 (16)0.0218 (17)0.0194 (16)0.0030 (13)0.0099 (13)0.0016 (13)
O5C0.0160 (15)0.0227 (17)0.0195 (15)0.0018 (13)0.0093 (13)0.0053 (13)
O6C0.0086 (14)0.0223 (17)0.0225 (16)0.0019 (12)0.0049 (13)0.0056 (13)
O7B0.0182 (16)0.0249 (18)0.0228 (17)0.0009 (14)0.0077 (14)0.0004 (14)
O8B0.0213 (17)0.0329 (19)0.0235 (17)0.0006 (15)0.0149 (15)0.0021 (15)
O9B0.0224 (17)0.0214 (17)0.0241 (16)0.0033 (14)0.0116 (14)0.0006 (14)
O10B0.0144 (15)0.0283 (18)0.0201 (16)0.0035 (13)0.0079 (13)0.0024 (14)
O11B0.0180 (16)0.0287 (18)0.0271 (17)0.0031 (14)0.0135 (15)0.0036 (15)
O12B0.0200 (17)0.0226 (18)0.041 (2)0.0029 (14)0.0185 (16)0.0060 (15)
O13T0.0204 (17)0.0244 (18)0.038 (2)0.0017 (14)0.0124 (16)0.0006 (15)
O14T0.0245 (18)0.0262 (19)0.038 (2)0.0018 (15)0.0131 (16)0.0075 (16)
O15T0.0318 (19)0.032 (2)0.0264 (18)0.0031 (16)0.0144 (16)0.0078 (16)
O16T0.030 (2)0.029 (2)0.0307 (19)0.0001 (15)0.0115 (17)0.0062 (15)
O17T0.0255 (19)0.057 (3)0.037 (2)0.0066 (17)0.0210 (18)0.0066 (18)
O18T0.048 (2)0.036 (2)0.0266 (19)0.0097 (18)0.0184 (18)0.0030 (17)
O19T0.0159 (16)0.033 (2)0.0313 (19)0.0022 (14)0.0099 (15)0.0011 (15)
O20T0.0261 (18)0.031 (2)0.0254 (17)0.0023 (15)0.0112 (15)0.0051 (15)
O21T0.0292 (19)0.038 (2)0.0257 (18)0.0018 (16)0.0173 (16)0.0027 (15)
O22T0.0311 (19)0.038 (2)0.0292 (18)0.0069 (17)0.0176 (16)0.0152 (16)
O23T0.0255 (18)0.0244 (18)0.044 (2)0.0039 (15)0.0197 (17)0.0126 (17)
O24T0.0257 (18)0.0280 (19)0.040 (2)0.0018 (15)0.0208 (17)0.0045 (16)
C10.035 (3)0.063 (5)0.052 (4)0.005 (3)0.013 (3)0.013 (3)
N10.035 (3)0.035 (3)0.100 (5)0.006 (2)0.024 (3)0.000 (3)
N20.035 (3)0.049 (3)0.057 (3)0.003 (2)0.029 (3)0.012 (3)
N30.134 (7)0.078 (5)0.185 (9)0.068 (5)0.140 (7)0.066 (5)
C20.019 (2)0.030 (3)0.021 (2)0.002 (2)0.006 (2)0.000 (2)
N40.075 (4)0.040 (3)0.063 (3)0.011 (3)0.059 (3)0.005 (3)
N50.038 (3)0.029 (2)0.035 (2)0.002 (2)0.026 (2)0.003 (2)
N60.038 (3)0.032 (3)0.038 (3)0.000 (2)0.021 (2)0.003 (2)
C30.034 (3)0.030 (3)0.028 (3)0.004 (2)0.019 (2)0.005 (2)
N70.031 (2)0.032 (2)0.026 (2)0.003 (2)0.0069 (19)0.0025 (19)
N80.038 (3)0.044 (3)0.036 (3)0.005 (2)0.006 (2)0.010 (2)
N90.154 (7)0.029 (3)0.045 (3)0.016 (4)0.050 (4)0.004 (3)
C40.022 (5)0.039 (6)0.031 (6)0.007 (4)0.019 (5)0.002 (5)
N100.033 (4)0.022 (3)0.045 (4)0.0000.012 (3)0.000
N110.042 (4)0.019 (3)0.083 (6)0.0000.033 (4)0.000
N120.035 (8)0.030 (6)0.043 (7)0.007 (5)0.013 (6)0.011 (7)
O1W0.039 (2)0.055 (3)0.031 (2)0.0063 (19)0.0207 (19)0.0038 (18)
O2W0.051 (3)0.037 (3)0.091 (4)0.000 (2)0.032 (3)0.006 (3)
O3W0.069 (4)0.072 (4)0.097 (5)0.027 (3)0.048 (4)0.009 (3)
O4W0.025 (6)0.034 (6)0.050 (7)0.010 (4)0.018 (5)0.001 (6)
Geometric parameters (Å, º) top
Pt1—O1C1.995 (3)O6C—O6Ci2.532 (6)
Pt1—O2C2.015 (3)O6C—H61.266 (3)
Pt1—O3C2.027 (3)O11B—H110.95 (2)
Pt1—O4C2.011 (3)C1—N21.254 (8)
Pt1—O5C1.997 (3)C1—N11.451 (10)
Pt1—O6C2.005 (3)C1—N31.451 (10)
Mo1—O1C2.150 (3)N1—H1A0.8800
Mo1—O6C2.317 (3)N1—H1B0.8800
Mo2—O1C2.248 (3)N2—H2A0.8800
Mo2—O2C2.286 (3)N2—H2B0.8800
Mo3—O2C2.307 (3)N3—H3A0.8800
Mo3—O3C2.318 (3)N3—H3B0.8800
Mo4—O3C2.287 (3)C2—N41.304 (7)
Mo4—O4C2.327 (3)C2—N51.314 (6)
Mo5—O4C2.289 (3)C2—N61.317 (7)
Mo5—O5C2.178 (3)N4—H4A0.8800
Mo6—O5C2.123 (3)N4—H4B0.8800
Mo6—O6C2.277 (3)N5—H5A0.8800
Mo1—O7B1.965 (3)N5—H5B0.8800
Mo1—O12B1.959 (3)N6—H6A0.8800
Mo2—O7B1.978 (3)N6—H6B0.8800
Mo2—O8B1.945 (3)C3—N91.303 (7)
Mo3—O8B1.934 (3)C3—N81.310 (7)
Mo3—O9B1.952 (3)C3—N71.322 (6)
Mo4—O9B1.941 (3)N7—H7A0.8800
Mo4—O10B1.959 (3)N7—H7B0.8800
Mo5—O10B1.895 (3)N8—H8A0.8800
Mo5—O11B2.058 (3)N8—H8B0.8800
Mo6—O11B2.075 (4)N9—H9A0.8800
Mo6—O12B1.894 (4)N9—H9B0.8800
Mo1—O14T1.706 (3)C4—N121.320 (12)
Mo1—O13T1.735 (3)C4—N101.340 (10)
Mo2—O15T1.702 (3)C4—N111.387 (10)
Mo2—O16T1.713 (3)N10—H10A0.893 (17)
Mo3—O17T1.705 (4)N11—H11A0.898 (18)
Mo3—O18T1.706 (4)N12—H12A0.90 (2)
Mo4—O19T1.704 (3)N12—H12B0.90 (2)
Mo4—O20T1.706 (3)O1W—H1AW0.94 (2)
Mo5—O22T1.708 (3)O1W—H1BW0.95 (2)
Mo5—O21T1.719 (3)O2W—H2AW0.94 (2)
Mo6—O23T1.710 (3)O2W—H2BW0.95 (2)
Mo6—O24T1.732 (3)O3W—H3AW0.93 (2)
O2C—H20.96 (2)O3W—H3BW0.94 (2)
O3C—H30.96 (2)O4W—H4AW0.95 (2)
O4C—H40.95 (2)O4W—H4BW0.95 (2)
Mo1—O1C—Mo295.79 (12)O21T—Mo5—O4C86.44 (14)
Mo2—O2C—Mo393.64 (11)O10B—Mo5—O4C72.56 (12)
Mo4—O3C—Mo393.75 (12)O11B—Mo5—O4C85.46 (12)
Mo5—O4C—Mo492.64 (11)O5C—Mo5—O4C72.30 (12)
Mo6—O5C—Mo5102.87 (13)O23T—Mo6—O24T105.40 (16)
Mo6—O6C—Mo191.14 (12)O23T—Mo6—O12B101.61 (17)
Mo1—O7B—Mo2111.71 (15)O24T—Mo6—O12B101.99 (16)
Mo3—O8B—Mo2119.36 (16)O23T—Mo6—O11B96.50 (16)
Mo4—O9B—Mo3119.39 (17)O24T—Mo6—O11B89.87 (15)
Mo5—O10B—Mo4120.02 (16)O12B—Mo6—O11B154.72 (14)
Mo5—O11B—Mo6108.97 (15)O23T—Mo6—O5C93.14 (14)
Mo6—O12B—Mo1116.75 (17)O24T—Mo6—O5C155.73 (14)
O1C—Pt1—O5C99.68 (14)O12B—Mo6—O5C89.14 (13)
O1C—Pt1—O6C84.05 (13)O11B—Mo6—O5C72.28 (12)
O5C—Pt1—O6C83.21 (12)O23T—Mo6—O6C166.99 (14)
O1C—Pt1—O4C177.35 (12)O24T—Mo6—O6C87.60 (14)
O5C—Pt1—O4C82.27 (13)O12B—Mo6—O6C75.67 (13)
O6C—Pt1—O4C97.99 (13)O11B—Mo6—O6C82.71 (13)
O1C—Pt1—O2C82.64 (13)O5C—Mo6—O6C74.21 (11)
O5C—Pt1—O2C177.41 (13)Pt1—O1C—Mo1104.21 (13)
O6C—Pt1—O2C98.20 (13)Pt1—O1C—Mo2103.95 (14)
O4C—Pt1—O2C95.37 (13)Pt1—O2C—Mo2101.92 (13)
O1C—Pt1—O3C95.12 (13)Pt1—O2C—Mo3103.51 (13)
O5C—Pt1—O3C95.66 (12)Pt1—O2C—H2116 (4)
O6C—Pt1—O3C178.46 (12)Mo2—O2C—H2113 (4)
O4C—Pt1—O3C82.87 (13)Mo3—O2C—H2125 (4)
O2C—Pt1—O3C82.96 (13)Pt1—O3C—Mo4103.59 (13)
O14T—Mo1—O13T105.87 (16)Pt1—O3C—Mo3102.74 (13)
O14T—Mo1—O12B99.01 (16)Pt1—O3C—H3108 (4)
O13T—Mo1—O12B98.14 (15)Mo4—O3C—H3124 (4)
O14T—Mo1—O7B100.03 (16)Mo3—O3C—H3122 (4)
O13T—Mo1—O7B95.86 (15)Pt1—O4C—Mo5100.53 (13)
O12B—Mo1—O7B152.25 (14)Pt1—O4C—Mo4102.74 (13)
O14T—Mo1—O1C93.17 (14)Pt1—O4C—H4124 (5)
O13T—Mo1—O1C160.02 (14)Mo5—O4C—H4109 (5)
O12B—Mo1—O1C84.50 (12)Mo4—O4C—H4122 (5)
O7B—Mo1—O1C74.48 (12)Pt1—O5C—Mo6103.69 (13)
O14T—Mo1—O6C165.12 (14)Pt1—O5C—Mo5104.87 (14)
O13T—Mo1—O6C88.14 (14)Pt1—O6C—Mo698.17 (12)
O12B—Mo1—O6C73.55 (13)Pt1—O6C—Mo198.14 (13)
O7B—Mo1—O6C83.11 (12)Pt1—O6C—O6Ci120.8 (2)
O1C—Mo1—O6C73.54 (11)Mo6—O6C—O6Ci121.27 (19)
O15T—Mo2—O16T107.06 (18)Mo1—O6C—O6Ci120.85 (19)
O15T—Mo2—O8B98.04 (15)Pt1—O6C—H6120.8 (2)
O16T—Mo2—O8B100.65 (16)Mo6—O6C—H6121.27 (19)
O15T—Mo2—O7B100.70 (15)Mo1—O6C—H6120.85 (19)
O16T—Mo2—O7B96.07 (16)O6Ci—O6C—H60.00 (18)
O8B—Mo2—O7B149.93 (14)Mo5—O11B—H11118 (7)
O15T—Mo2—O1C94.74 (15)Mo6—O11B—H11125 (7)
O16T—Mo2—O1C156.95 (15)N2—C1—N1123.5 (6)
O8B—Mo2—O1C83.19 (13)N2—C1—N3119.2 (7)
O7B—Mo2—O1C72.05 (12)N1—C1—N3117.0 (6)
O15T—Mo2—O2C163.07 (14)C1—N1—H1A120.0
O16T—Mo2—O2C88.12 (15)C1—N1—H1B120.0
O8B—Mo2—O2C71.19 (12)H1A—N1—H1B120.0
O7B—Mo2—O2C84.67 (12)C1—N2—H2A120.0
O1C—Mo2—O2C71.47 (12)C1—N2—H2B120.0
O17T—Mo3—O18T106.36 (19)H2A—N2—H2B120.0
O17T—Mo3—O8B98.10 (16)C1—N3—H3A120.0
O18T—Mo3—O8B102.14 (16)C1—N3—H3B120.0
O17T—Mo3—O9B100.99 (16)H3A—N3—H3B120.0
O18T—Mo3—O9B97.16 (16)N4—C2—N5119.7 (5)
O8B—Mo3—O9B147.71 (13)N4—C2—N6120.0 (5)
O17T—Mo3—O2C160.66 (16)N5—C2—N6120.3 (5)
O18T—Mo3—O2C91.76 (16)C2—N4—H4A120.0
O8B—Mo3—O2C70.90 (12)C2—N4—H4B120.0
O9B—Mo3—O2C82.96 (12)H4A—N4—H4B120.0
O17T—Mo3—O3C92.54 (15)C2—N5—H5A120.0
O18T—Mo3—O3C159.28 (16)C2—N5—H5B120.0
O8B—Mo3—O3C83.03 (13)H5A—N5—H5B120.0
O9B—Mo3—O3C70.38 (13)C2—N6—H6A120.0
O2C—Mo3—O3C70.78 (11)C2—N6—H6B120.0
O19T—Mo4—O20T107.04 (16)H6A—N6—H6B120.0
O19T—Mo4—O9B100.65 (15)N9—C3—N8121.1 (5)
O20T—Mo4—O9B97.05 (15)N9—C3—N7118.8 (5)
O19T—Mo4—O10B99.01 (15)N8—C3—N7120.1 (5)
O20T—Mo4—O10B101.47 (15)C3—N7—H7A120.0
O9B—Mo4—O10B147.60 (13)C3—N7—H7B120.0
O19T—Mo4—O3C92.83 (14)H7A—N7—H7B120.0
O20T—Mo4—O3C158.72 (14)C3—N8—H8A120.0
O9B—Mo4—O3C71.24 (13)C3—N8—H8B120.0
O10B—Mo4—O3C82.34 (13)H8A—N8—H8B120.0
O19T—Mo4—O4C161.33 (14)C3—N9—H9A120.0
O20T—Mo4—O4C90.53 (14)C3—N9—H9B120.0
O9B—Mo4—O4C82.92 (12)H9A—N9—H9B120.0
O10B—Mo4—O4C70.65 (12)N12—C4—N10120.6 (9)
O3C—Mo4—O4C70.80 (11)N12—C4—N11126.3 (9)
O22T—Mo5—O21T106.73 (18)N10—C4—N11112.7 (7)
O22T—Mo5—O10B101.18 (15)C4—N10—H10A155 (2)
O21T—Mo5—O10B103.69 (15)C4—N12—H12A113 (7)
O22T—Mo5—O11B96.63 (15)C4—N12—H12B122 (8)
O21T—Mo5—O11B90.77 (15)H12A—N12—H4AW106 (10)
O10B—Mo5—O11B152.59 (14)H12B—N12—H4AW20 (10)
O22T—Mo5—O5C95.73 (15)H1AW—O1W—H1BW100 (6)
O21T—Mo5—O5C152.95 (14)H2AW—O2W—H2BW116 (8)
O10B—Mo5—O5C86.07 (13)H3AW—O3W—H3BW92 (8)
O11B—Mo5—O5C71.47 (12)H4AW—O4W—H4BW103 (10)
O22T—Mo5—O4C166.58 (15)
Symmetry code: (i) x+3/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2C—H2···O24Ti0.96 (2)1.61 (2)2.578 (5)179 (6)
O3C—H3···O2W0.96 (2)1.69 (3)2.622 (6)164 (7)
O4C—H4···O13Ti0.95 (2)1.63 (2)2.568 (5)173 (9)
O6C—H6···O6Ci1.271.272.532 (6)180
O11B—H11···O7Bi0.95 (2)1.74 (2)2.679 (5)173 (10)
N1—H1B···O1C0.882.052.864 (6)154
N1—H1A···O3W0.882.332.973 (9)130
N2—H2A···O18Tii0.882.082.940 (7)165
N2—H2B···O19Tiii0.882.223.043 (6)155
N3—H3B···O8B0.882.042.874 (7)157
N3—H3A···O2Wiii0.882.252.979 (9)140
N4—H4B···O14Tiv0.882.092.944 (6)164
N4—H4A···O24Ti0.882.483.006 (6)119
N5—H5A···O16T0.882.062.890 (6)157
N5—H5B···O21Tv0.882.182.973 (5)149
N6—H6A···O15Tiv0.882.192.894 (6)136
N6—H6B···O21Tv0.882.593.281 (6)136
N7—H7B···O19T0.882.402.936 (5)119
N7—H7A···O1W0.882.112.927 (6)154
N8—H8B···O13Tvi0.882.393.006 (6)128
N8—H8A···O23Tvii0.882.042.918 (6)178
N9—H9A···O22Tvii0.882.212.938 (7)140
O1W—H1AW···O9B0.94 (2)2.20 (5)2.916 (5)132 (5)
O1W—H1BW···O17Tviii0.95 (2)1.85 (3)2.783 (5)166 (6)
O2W—H2BW···O4Wii0.95 (2)2.24 (7)2.902 (12)126 (6)
O3W—H3BW···O9Bii0.94 (2)2.35 (8)3.029 (7)128 (8)
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x, y1, z; (iii) x+1, y, z+1; (iv) x, y+1, z; (v) x, y+1, z+1/2; (vi) x1/2, y+1/2, z1/2; (vii) x+1, y+1, z+1/2; (viii) x+1, y+1, z+1.
Selected geometric parameters (Å, º) top
Pt1—O1C1.995 (3)Mo5—O5C2.178 (3)
Pt1—O2C2.015 (3)Mo6—O5C2.123 (3)
Pt1—O3C2.027 (3)Mo6—O6C2.277 (3)
Pt1—O4C2.011 (3)Mo1—O7B1.965 (3)
Pt1—O5C1.997 (3)Mo1—O12B1.959 (3)
Pt1—O6C2.005 (3)Mo2—O7B1.978 (3)
Mo1—O1C2.150 (3)Mo2—O8B1.945 (3)
Mo1—O6C2.317 (3)Mo3—O8B1.934 (3)
Mo2—O1C2.248 (3)Mo3—O9B1.952 (3)
Mo2—O2C2.286 (3)Mo4—O9B1.941 (3)
Mo3—O2C2.307 (3)Mo4—O10B1.959 (3)
Mo3—O3C2.318 (3)Mo5—O10B1.895 (3)
Mo4—O3C2.287 (3)Mo5—O11B2.058 (3)
Mo4—O4C2.327 (3)Mo6—O11B2.075 (4)
Mo5—O4C2.289 (3)Mo6—O12B1.894 (4)
Mo1—O1C—Mo295.79 (12)Mo1—O7B—Mo2111.71 (15)
Mo2—O2C—Mo393.64 (11)Mo3—O8B—Mo2119.36 (16)
Mo4—O3C—Mo393.75 (12)Mo4—O9B—Mo3119.39 (17)
Mo5—O4C—Mo492.64 (11)Mo5—O10B—Mo4120.02 (16)
Mo6—O5C—Mo5102.87 (13)Mo5—O11B—Mo6108.97 (15)
Mo6—O6C—Mo191.14 (12)Mo6—O12B—Mo1116.75 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2C—H2···O24Ti0.96 (2)1.61 (2)2.578 (5)179 (6)
O3C—H3···O2W0.96 (2)1.69 (3)2.622 (6)164 (7)
O4C—H4···O13Ti0.95 (2)1.63 (2)2.568 (5)173 (9)
O6C—H6···O6Ci1.2661.2662.532 (6)180.0
O11B—H11···O7Bi0.95 (2)1.74 (2)2.679 (5)173 (10)
N1—H1B···O1C0.882.052.864 (6)153.7
N1—H1A···O3W0.882.332.973 (9)130.1
N2—H2A···O18Tii0.882.082.940 (7)165.3
N2—H2B···O19Tiii0.882.223.043 (6)154.7
N3—H3B···O8B0.882.042.874 (7)156.6
N3—H3A···O2Wiii0.882.252.979 (9)140.0
N4—H4B···O14Tiv0.882.092.944 (6)164.3
N4—H4A···O24Ti0.882.483.006 (6)118.9
N5—H5A···O16T0.882.062.890 (6)156.8
N5—H5B···O21Tv0.882.182.973 (5)149.4
N6—H6A···O15Tiv0.882.192.894 (6)136.4
N6—H6B···O21Tv0.882.593.281 (6)136.4
N7—H7B···O19T0.882.402.936 (5)119.3
N7—H7A···O1W0.882.112.927 (6)153.7
N8—H8B···O13Tvi0.882.393.006 (6)127.8
N8—H8A···O23Tvii0.882.042.918 (6)177.7
N9—H9A···O22Tvii0.882.212.938 (7)140.0
O1W—H1AW···O9B0.94 (2)2.20 (5)2.916 (5)132 (5)
O1W—H1BW···O17Tviii0.95 (2)1.85 (3)2.783 (5)166 (6)
O2W—H2BW···O4Wii0.95 (2)2.24 (7)2.902 (12)126 (6)
O3W—H3BW···O9Bii0.94 (2)2.35 (8)3.029 (7)128 (8)
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x, y1, z; (iii) x+1, y, z+1; (iv) x, y+1, z; (v) x, y+1, z+1/2; (vi) x1/2, y+1/2, z1/2; (vii) x+1, y+1, z+1/2; (viii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(CH6N3)7H9[PtMo6O24]2·7H2O
Mr2865.26
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)31.413 (10), 10.073 (3), 23.677 (7)
β (°) 119.451 (14)
V3)6524 (3)
Z4
Radiation typeMo Kα
µ (mm1)6.62
Crystal size (mm)0.30 × 0.12 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.241, 0.729
No. of measured, independent and
observed [I > 2σ(I)] reflections
56606, 7107, 6050
Rint0.033
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.073, 1.03
No. of reflections7107
No. of parameters505
No. of restraints22
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0337P)2 + 47.9084P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.50, 1.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SAINT, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and DIAMOND (Brandenburg,1998), SHELXL97.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds