Download citation
Download citation
link to html
The title complex, {[Cd(C7H3NO4)(C12H8N2)(H2O)]·2H2O}n, is a one-dimensional coordination polymer, wherein the Cd atom is seven-coordinated by two 1,10-phenanthroline N atoms, one N and three O atoms from two different pyridine-2,3-dicarboxyl­ate ligands, and one water mol­ecule. It is further extended to a two-dimensional layer structure by hydrogen bonds and π–π stacking inter­actions [centroid-centroid distances of 3.560 (2) and 3.666 (2) Å]. There is a C4 water chain in the structure whose repeat unit contains four water mol­ecules with O...O distances in the range 2.748 (3)–2.795 (4) Å. One of the two H atoms of each water of hydration is statistically distributed over two positions with equal occupancy.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808037203/pv2111sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808037203/pv2111Isup2.hkl
Contains datablock I

CCDC reference: 712308

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.019
  • wR factor = 0.048
  • Data-to-parameter ratio = 15.4

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Cd1 -- O1W .. 11.65 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Cd1 -- O3_b .. 20.71 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Cd1 -- O4_b .. 27.42 su
Alert level C Value of measurement temperature given = 293.000 Value of melting point given = 0.000 PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.11 Ratio PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C1 - C6 ... 1.53 Ang. PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 100 Deg.
Alert level G PLAT333_ALERT_2_G Check Large Av C6-Ring C-C Dist. C11 -C18 1.42 Ang. PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 8 PLAT180_ALERT_4_G Check Cell Rounding: # of Values Ending with 0 = 3 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .......... 8
0 ALERT level A = In general: serious problem 3 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Metal-organic coordination polymers have been of great interest due to their intriguing potential applications, such as catalysis, magnetism, electronic and chemical separation (Moulton & Zaworotko, 2001). Multidentate N– or O-donor ligands, such as pyridine- or imidazole- (di)carboxylic acids, have drawn extensive attention in the construction of coordination polymers or metal-organic formworks (MOF). For example, pyridine or imidazole dicarboxyic acid ligands, including pyridine-2,6-, 2,5- or 3,4-dicarboxylic and imidazole-3,4-dicarboxylic acids, have been extensively employed in the construction of such metal-organic formworks. Comparing with other pyridine-dicarboxylic acids, pyridine-2,3-dicarboxylic acid (2,3-pydc) has been rarely used as a linkage ligand (Gutschke et al., 1995; Yu et al., 2004; Li et al., 2006). We have synthesized a novel one-dimensional (one-dimensional) coordination polymer based on 2,3-pydc, [Cd(2,3-pydc)(H2O)(phen).2H2O]n (phen = 1,10-phenanthroline), (I), the crystal structure of which is presented in this article.

The title complex is a one-dimensional chain-like coordination polymer. In the structure of the title compound (Fig. 1), the Cd ion is seven-coordinated with two N atoms from phen, one N and three O atoms from two different pyridine-2,3-dicarboxylate and a water molecule. The 2,3-pydc affords four coordination atoms to connect two Cd ions, one as chelating bidentate through the N atom and one O atom of carboxylate in 2-position, the other with two O atoms of carboxylate in 3-position. Thus, complex (I) illustrates a one-dimensional chain structure along a axis, as shown in Fig. 2. Two adjacent chains band together by a series of hydrogen bonds involving water and carbonyl O-atoms (details are given in Table 1), π-π interaction of 1,10-phenanthroline with the shortest distance between the centroids of C11—C14/C18/C19 rings being 3.560 (2) Å and the shortest distance between the centroids of N3/C13—C17 rings are 3.666 (2) Å, thus resulting in a two-dimensional supramolecular structure. The structure also displays a short C6—O2···π(Cg(1)) interaction with a perpendicular distance between O2 and the centroid of Cg(1) being 3.562 (2) Å.

It is also worthwhile to note that there is a C4 water chain in (I), whose repeating unit contains four water molecules with O—O distances 2.750 (4) 2.782 (3), and 2.798 (4) Å (average distance = 2.777 Å), which are all close to the corresponding distance of O—O in the ice Ic (2.75 Å) and Ih (2.759 Å) determined at 143 and 183 K, respectively (Eisenberg & Kauzmann, 1969). Moreover, each water molecule links to the host by the H-bonding interaction between water of hydration and coordination water molecules. Water molecule can participate in four hydrogen bonds in a tetrahedral arrangement with two hydrogen atoms and two lone pairs, but also frequently show 3-coordinate configurations, just as in (I).

Related literature top

For potential applications of metal–organic coordination polymers, see: Moulton & Zaworotko (2001). For related structures, see: Gutschke et al. (1995); Li et al. (2006); Yu et al. (2004). For the structure of ice, see: Eisenberg & Kauzmann (1969).

Experimental top

CdO (0.05 mmol), 1,10-phenanthroline (0.05 mmol) and pyridine 2,3-dicarboxylic acid (0.10 mmol) were added into 1 ml water and stirred for 5 min in air, then transferred to a closed container. After reacting at 353 K for 7 days, the mixture was cooled to room temperature at a rate of 5 K/h. Colorless crystals suitable for X-ray analysis were obtained.

Refinement top

All H atoms attached to C atoms of were fixed geometrically and treated as riding with C—H = 0.93 Å with Uiso(H) = 1.5Ueq(parent atom). Hydrogen atoms of water molecules were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H = 0.85 (1) Å) with Uiso(H) = 1.5Ueq(O). The two hydrogen atoms were statistically distributed over two positions each (H2W2 and H3W2, H2W3 and H3W3) with occupation factors of 0.50.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of Cd in (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level; hydrogen atoms were omitted for clarity. Symmetry codes: a = x - 1, y, z; b = x + 1, y, z.
[Figure 2] Fig. 2. Unit cell packing of (I) showing (one-dimensional) chain-like structure along the a-axis; hydrogen bonds have been shown by dotted lines.
catena-Poly[[[aqua(1,10-phenanthroline- κ2N,N')cadmium(II)]-µ-pyridine-2,3-dicarboxylato- κ4N,O2:O3,O3'] dihydrate] top
Crystal data top
[Cd(C7H3NO4)(C12H8N2)(H2O)]·2H2OZ = 2
Mr = 511.76F(000) = 512
Triclinic, P1Dx = 1.795 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8154 (5) ÅCell parameters from 4951 reflections
b = 10.5854 (7) Åθ = 2.3–29.6°
c = 13.0681 (8) ŵ = 1.20 mm1
α = 70.934 (1)°T = 293 K
β = 77.940 (1)°Rod-like, colorless
γ = 68.698 (1)°0.40 × 0.16 × 0.15 mm
V = 946.98 (10) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4194 independent reflections
Radiation source: fine-focus sealed tube3979 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ϕ and ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.645, Tmax = 0.840k = 1313
6124 measured reflectionsl = 1614
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0181P)2 + 0.4298P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
4194 reflectionsΔρmax = 0.28 e Å3
272 parametersΔρmin = 0.27 e Å3
8 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0051 (5)
Crystal data top
[Cd(C7H3NO4)(C12H8N2)(H2O)]·2H2Oγ = 68.698 (1)°
Mr = 511.76V = 946.98 (10) Å3
Triclinic, P1Z = 2
a = 7.8154 (5) ÅMo Kα radiation
b = 10.5854 (7) ŵ = 1.20 mm1
c = 13.0681 (8) ÅT = 293 K
α = 70.934 (1)°0.40 × 0.16 × 0.15 mm
β = 77.940 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4194 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3979 reflections with I > 2σ(I)
Tmin = 0.645, Tmax = 0.840Rint = 0.012
6124 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0198 restraints
wR(F2) = 0.048H-atom parameters constrained
S = 1.08Δρmax = 0.28 e Å3
4194 reflectionsΔρmin = 0.27 e Å3
272 parameters
Special details top

Experimental. Elemental analysis. Cacld. for C19H17CdN3O7: C, 44.55; H, 3.35; N, 8.21; Found: C, 44.05; H, 3.44; N, 8.53.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.351199 (16)0.150242 (13)0.791379 (10)0.02558 (5)
O10.03910 (18)0.25289 (13)0.83701 (12)0.0341 (3)
O1W0.3973 (2)0.23034 (15)0.92673 (11)0.0386 (3)
H1W10.37650.17500.98970.046*
H2W10.50910.21670.91780.046*
O20.23661 (17)0.22382 (14)0.87797 (12)0.0347 (3)
O30.39081 (19)0.04132 (16)0.87081 (13)0.0444 (4)
O40.3121 (2)0.10668 (15)0.72263 (12)0.0431 (3)
N10.2029 (2)0.02383 (15)0.85619 (12)0.0271 (3)
N20.2943 (2)0.15794 (18)0.61441 (14)0.0370 (4)
N30.3212 (2)0.37684 (16)0.67259 (13)0.0325 (3)
C10.0212 (2)0.03040 (17)0.84658 (13)0.0228 (3)
C20.0784 (2)0.04976 (17)0.83637 (13)0.0242 (3)
C30.0120 (3)0.19266 (19)0.84791 (15)0.0311 (4)
H30.05190.25000.84480.037*
C40.1965 (3)0.24943 (19)0.86391 (16)0.0336 (4)
H40.25750.34550.87400.040*
C50.2886 (3)0.16083 (19)0.86460 (16)0.0319 (4)
H50.41470.19760.87110.038*
C60.0676 (2)0.18204 (17)0.85371 (13)0.0240 (3)
C70.2739 (2)0.01160 (19)0.80796 (15)0.0286 (4)
C80.2799 (4)0.0538 (3)0.5853 (2)0.0539 (6)
H80.29530.03330.63670.065*
C90.2429 (4)0.0683 (4)0.4814 (2)0.0711 (8)
H90.23600.00790.46380.085*
C100.2171 (4)0.1952 (4)0.4069 (2)0.0715 (9)
H100.19220.20670.33730.086*
C110.2277 (3)0.3097 (3)0.43373 (18)0.0540 (6)
C120.2682 (3)0.2858 (2)0.54009 (15)0.0371 (4)
C130.2814 (3)0.4003 (2)0.57072 (15)0.0353 (4)
C140.2530 (3)0.5338 (2)0.49409 (18)0.0483 (6)
C150.2690 (4)0.6423 (2)0.5264 (2)0.0581 (7)
H150.25270.73130.47760.070*
C160.3084 (4)0.6176 (2)0.6286 (2)0.0572 (7)
H160.31870.68920.65090.069*
C170.3331 (3)0.4828 (2)0.70002 (19)0.0446 (5)
H170.35920.46670.77030.054*
C180.1968 (4)0.4480 (4)0.3597 (2)0.0708 (9)
H180.16690.46430.29030.085*
C190.2102 (4)0.5535 (4)0.3882 (2)0.0674 (8)
H190.19120.64180.33800.081*
O2W0.3981 (2)0.49790 (17)0.09955 (14)0.0559 (4)
H2W20.30590.48450.08420.067*0.50
H1W20.35890.57810.10800.067*
H3W20.45620.51710.03760.067*0.50
O3W0.0437 (3)0.49496 (17)0.09995 (15)0.0593 (5)
H1W30.00280.57360.11190.071*
H2W30.00310.49960.04650.071*0.50
H3W30.15990.48140.08330.071*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02151 (8)0.02702 (8)0.02817 (8)0.00974 (5)0.00549 (5)0.00348 (5)
O10.0248 (7)0.0268 (6)0.0536 (8)0.0105 (5)0.0005 (6)0.0146 (6)
O1W0.0330 (7)0.0508 (8)0.0362 (7)0.0193 (6)0.0036 (6)0.0105 (6)
O20.0216 (7)0.0326 (7)0.0505 (8)0.0084 (5)0.0026 (6)0.0164 (6)
O30.0263 (7)0.0505 (9)0.0554 (9)0.0196 (7)0.0050 (6)0.0044 (7)
O40.0384 (8)0.0416 (8)0.0443 (8)0.0102 (7)0.0183 (6)0.0002 (6)
N10.0205 (7)0.0260 (7)0.0348 (8)0.0076 (6)0.0066 (6)0.0058 (6)
N20.0356 (9)0.0441 (9)0.0339 (9)0.0136 (7)0.0041 (7)0.0127 (7)
N30.0307 (8)0.0316 (8)0.0301 (8)0.0100 (7)0.0001 (6)0.0041 (6)
C10.0217 (8)0.0235 (8)0.0225 (8)0.0084 (6)0.0024 (6)0.0037 (6)
C20.0229 (8)0.0242 (8)0.0252 (8)0.0087 (7)0.0041 (6)0.0040 (6)
C30.0324 (10)0.0255 (8)0.0387 (10)0.0129 (7)0.0085 (8)0.0057 (7)
C40.0336 (10)0.0225 (8)0.0405 (10)0.0038 (7)0.0093 (8)0.0058 (7)
C50.0233 (9)0.0284 (9)0.0404 (10)0.0038 (7)0.0097 (7)0.0057 (8)
C60.0240 (8)0.0245 (8)0.0243 (8)0.0090 (7)0.0039 (6)0.0053 (6)
C70.0241 (9)0.0285 (9)0.0380 (10)0.0088 (7)0.0069 (7)0.0126 (7)
C80.0603 (16)0.0619 (15)0.0513 (14)0.0235 (13)0.0057 (11)0.0264 (12)
C90.078 (2)0.097 (2)0.0637 (18)0.0357 (18)0.0071 (15)0.0462 (18)
C100.0657 (18)0.123 (3)0.0417 (14)0.0371 (18)0.0068 (13)0.0351 (17)
C110.0397 (13)0.0903 (19)0.0300 (11)0.0203 (12)0.0050 (9)0.0136 (12)
C120.0250 (9)0.0547 (12)0.0268 (9)0.0103 (9)0.0025 (7)0.0077 (8)
C130.0230 (9)0.0405 (10)0.0294 (9)0.0057 (8)0.0011 (7)0.0003 (8)
C140.0336 (11)0.0488 (13)0.0380 (11)0.0065 (10)0.0012 (9)0.0092 (9)
C150.0528 (15)0.0359 (12)0.0580 (15)0.0093 (11)0.0093 (12)0.0082 (10)
C160.0682 (17)0.0346 (11)0.0593 (15)0.0195 (11)0.0141 (13)0.0098 (11)
C170.0519 (14)0.0382 (11)0.0418 (12)0.0191 (10)0.0054 (10)0.0093 (9)
C180.0593 (17)0.111 (3)0.0266 (11)0.0262 (17)0.0137 (11)0.0059 (14)
C190.0535 (16)0.080 (2)0.0391 (13)0.0158 (14)0.0086 (11)0.0176 (13)
O2W0.0545 (10)0.0439 (9)0.0604 (11)0.0030 (8)0.0024 (8)0.0191 (8)
O3W0.0714 (12)0.0408 (9)0.0740 (12)0.0219 (8)0.0031 (10)0.0247 (8)
Geometric parameters (Å, º) top
Cd1—O12.3185 (13)C4—H40.9300
Cd1—O1W2.3336 (14)C5—H50.9300
Cd1—N32.3513 (15)C8—C91.395 (4)
Cd1—N12.3616 (14)C8—H80.9300
Cd1—O3i2.4049 (15)C9—C101.351 (5)
Cd1—N22.4151 (16)C9—H90.9300
Cd1—O4i2.5189 (16)C10—C111.400 (4)
O1—C61.256 (2)C10—H100.9300
O1W—H1W10.8630C11—C121.411 (3)
O1W—H2W10.8216C11—C181.433 (4)
O2—C61.238 (2)C12—C131.437 (3)
O3—C71.257 (2)C13—C141.410 (3)
O3—Cd1ii2.4049 (15)C14—C151.399 (4)
O4—C71.238 (2)C14—C191.422 (4)
O4—Cd1ii2.5189 (16)C15—C161.353 (4)
N1—C51.336 (2)C15—H150.9300
N1—C11.341 (2)C16—C171.396 (3)
N2—C81.324 (3)C16—H160.9300
N2—C121.356 (3)C17—H170.9300
N3—C171.322 (3)C18—C191.331 (5)
N3—C131.353 (3)C18—H180.9300
C1—C21.393 (2)C19—H190.9300
C1—C61.526 (2)O2W—H2W20.8556
C2—C31.389 (2)O2W—H1W20.8277
C2—C71.501 (2)O2W—H3W20.8415
C3—C41.377 (3)O3W—H1W30.8306
C3—H30.9300O3W—H2W30.8344
C4—C51.377 (3)O3W—H3W30.8577
O1—Cd1—O1W85.50 (5)C4—C5—H5118.9
O1—Cd1—N382.48 (5)O2—C6—O1125.52 (16)
O1W—Cd1—N387.94 (5)O2—C6—C1117.87 (15)
O1—Cd1—N170.02 (5)O1—C6—C1116.58 (15)
O1W—Cd1—N1114.38 (5)O4—C7—O3122.84 (17)
N3—Cd1—N1142.12 (5)O4—C7—C2119.52 (17)
O1—Cd1—O3i139.09 (5)O3—C7—C2117.56 (16)
O1W—Cd1—O3i78.30 (5)N2—C8—C9123.3 (3)
N3—Cd1—O3i133.35 (5)N2—C8—H8118.4
N1—Cd1—O3i82.89 (5)C9—C8—H8118.4
O1—Cd1—N291.39 (5)C10—C9—C8118.7 (3)
O1W—Cd1—N2158.39 (6)C10—C9—H9120.6
N3—Cd1—N270.46 (6)C8—C9—H9120.6
N1—Cd1—N284.31 (6)C9—C10—C11120.5 (2)
O3i—Cd1—N2116.44 (6)C9—C10—H10119.8
O1—Cd1—O4i164.61 (5)C11—C10—H10119.8
O1W—Cd1—O4i88.95 (5)C10—C11—C12117.3 (2)
N3—Cd1—O4i82.98 (5)C10—C11—C18123.3 (2)
N1—Cd1—O4i125.23 (5)C12—C11—C18119.3 (3)
O3i—Cd1—O4i52.80 (5)N2—C12—C11121.9 (2)
N2—Cd1—O4i88.50 (5)N2—C12—C13119.02 (17)
C6—O1—Cd1118.77 (11)C11—C12—C13119.1 (2)
Cd1—O1W—H1W1109.3N3—C13—C14121.7 (2)
Cd1—O1W—H2W1103.1N3—C13—C12118.94 (17)
H1W1—O1W—H2W1105.8C14—C13—C12119.32 (19)
C7—O3—Cd1ii93.36 (11)C15—C14—C13117.7 (2)
C7—O4—Cd1ii88.54 (12)C15—C14—C19122.6 (2)
C5—N1—C1119.41 (15)C13—C14—C19119.7 (3)
C5—N1—Cd1124.26 (12)C16—C15—C14119.9 (2)
C1—N1—Cd1112.35 (11)C16—C15—H15120.0
C8—N2—C12118.31 (19)C14—C15—H15120.0
C8—N2—Cd1127.04 (16)C15—C16—C17118.9 (2)
C12—N2—Cd1114.59 (13)C15—C16—H16120.5
C17—N3—C13118.51 (18)C17—C16—H16120.5
C17—N3—Cd1124.53 (14)N3—C17—C16123.2 (2)
C13—N3—Cd1116.90 (13)N3—C17—H17118.4
N1—C1—C2121.67 (15)C16—C17—H17118.4
N1—C1—C6115.02 (14)C19—C18—C11121.4 (2)
C2—C1—C6123.23 (15)C19—C18—H18119.3
C3—C2—C1117.80 (16)C11—C18—H18119.3
C3—C2—C7118.66 (15)C18—C19—C14121.2 (2)
C1—C2—C7123.46 (15)C18—C19—H19119.4
C4—C3—C2120.00 (17)C14—C19—H19119.4
C4—C3—H3120.0H2W2—O2W—H1W2105.8
C2—C3—H3120.0H2W2—O2W—H3W2101.4
C3—C4—C5118.55 (16)H1W2—O2W—H3W297.7
C3—C4—H4120.7H1W3—O3W—H2W3106.6
C5—C4—H4120.7H1W3—O3W—H3W3107.2
N1—C5—C4122.22 (17)H2W3—O3W—H3W3109.5
N1—C5—H5118.9
O1W—Cd1—O1—C6131.03 (14)Cd1—N1—C5—C4155.90 (15)
N3—Cd1—O1—C6140.47 (14)C3—C4—C5—N13.7 (3)
N1—Cd1—O1—C613.05 (13)Cd1—O1—C6—O2179.59 (14)
O3i—Cd1—O1—C664.70 (16)Cd1—O1—C6—C12.4 (2)
N2—Cd1—O1—C670.38 (14)N1—C1—C6—O2158.83 (16)
O4i—Cd1—O1—C6159.78 (16)C2—C1—C6—O218.1 (2)
O1—Cd1—N1—C5179.92 (16)N1—C1—C6—O119.4 (2)
O1W—Cd1—N1—C5104.93 (15)C2—C1—C6—O1163.76 (16)
N3—Cd1—N1—C5133.86 (14)Cd1ii—O4—C7—O315.87 (19)
O3i—Cd1—N1—C531.25 (15)Cd1ii—O4—C7—C2167.34 (15)
N2—Cd1—N1—C586.36 (15)Cd1ii—O3—C7—O416.7 (2)
O4i—Cd1—N1—C52.24 (17)Cd1ii—O3—C7—C2166.48 (13)
O1—Cd1—N1—C122.61 (11)C3—C2—C7—O4119.5 (2)
O1W—Cd1—N1—C197.76 (12)C1—C2—C7—O457.2 (3)
N3—Cd1—N1—C123.44 (17)C3—C2—C7—O357.5 (2)
O3i—Cd1—N1—C1171.45 (13)C1—C2—C7—O3125.86 (19)
N2—Cd1—N1—C170.95 (12)C12—N2—C8—C91.3 (4)
O4i—Cd1—N1—C1155.06 (11)Cd1—N2—C8—C9178.6 (2)
O1—Cd1—N2—C898.04 (19)N2—C8—C9—C101.2 (4)
O1W—Cd1—N2—C8179.31 (17)C8—C9—C10—C110.0 (5)
N3—Cd1—N2—C8179.6 (2)C9—C10—C11—C120.8 (4)
N1—Cd1—N2—C828.28 (19)C9—C10—C11—C18178.2 (3)
O3i—Cd1—N2—C850.9 (2)C8—N2—C12—C110.4 (3)
O4i—Cd1—N2—C897.4 (2)Cd1—N2—C12—C11178.00 (16)
O1—Cd1—N2—C1279.33 (14)C8—N2—C12—C13179.3 (2)
O1W—Cd1—N2—C121.9 (2)Cd1—N2—C12—C131.7 (2)
N3—Cd1—N2—C122.19 (13)C10—C11—C12—N20.6 (3)
N1—Cd1—N2—C12149.10 (14)C18—C11—C12—N2178.4 (2)
O3i—Cd1—N2—C12131.76 (13)C10—C11—C12—C13179.6 (2)
O4i—Cd1—N2—C1285.28 (14)C18—C11—C12—C131.3 (3)
O1—Cd1—N3—C1785.52 (17)C17—N3—C13—C140.1 (3)
O1W—Cd1—N3—C170.21 (17)Cd1—N3—C13—C14177.42 (15)
N1—Cd1—N3—C17128.57 (16)C17—N3—C13—C12179.96 (18)
O3i—Cd1—N3—C1771.96 (19)Cd1—N3—C13—C122.7 (2)
N2—Cd1—N3—C17179.69 (18)N2—C12—C13—N30.6 (3)
O4i—Cd1—N3—C1789.41 (17)C11—C12—C13—N3179.66 (18)
O1—Cd1—N3—C1391.62 (13)N2—C12—C13—C14179.52 (18)
O1W—Cd1—N3—C13177.35 (13)C11—C12—C13—C140.2 (3)
N1—Cd1—N3—C1348.57 (17)N3—C13—C14—C150.6 (3)
O3i—Cd1—N3—C13110.90 (14)C12—C13—C14—C15179.3 (2)
N2—Cd1—N3—C132.56 (13)N3—C13—C14—C19179.6 (2)
O4i—Cd1—N3—C1393.46 (13)C12—C13—C14—C190.6 (3)
C5—N1—C1—C25.2 (3)C13—C14—C15—C160.8 (4)
Cd1—N1—C1—C2153.32 (13)C19—C14—C15—C16179.4 (2)
C5—N1—C1—C6171.73 (16)C14—C15—C16—C170.3 (4)
Cd1—N1—C1—C629.74 (17)C13—N3—C17—C160.6 (3)
N1—C1—C2—C36.6 (3)Cd1—N3—C17—C16177.74 (18)
C6—C1—C2—C3170.04 (16)C15—C16—C17—N30.5 (4)
N1—C1—C2—C7170.04 (16)C10—C11—C18—C19179.3 (3)
C6—C1—C2—C713.3 (3)C12—C11—C18—C191.7 (4)
C1—C2—C3—C42.9 (3)C11—C18—C19—C141.0 (4)
C7—C2—C3—C4173.96 (17)C15—C14—C19—C18179.6 (3)
C2—C3—C4—C52.0 (3)C13—C14—C19—C180.2 (4)
C1—N1—C5—C40.1 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H3W3···O2W0.861.992.780 (3)152
O3W—H2W3···O3Wiii0.831.982.795 (4)164
O3W—H1W3···O1iv0.832.062.860 (2)161
O2W—H1W2···O2iv0.832.022.840 (2)173
O2W—H3W2···O2Wv0.841.932.748 (3)163
O2W—H2W2···O3W0.861.982.780 (3)155
O1W—H2W1···O2i0.821.972.7784 (19)168
O1W—H1W1···O3vi0.861.902.751 (2)167
Symmetry codes: (i) x+1, y, z; (iii) x, y+1, z; (iv) x, y+1, z+1; (v) x+1, y+1, z; (vi) x, y, z+2.

Experimental details

Crystal data
Chemical formula[Cd(C7H3NO4)(C12H8N2)(H2O)]·2H2O
Mr511.76
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.8154 (5), 10.5854 (7), 13.0681 (8)
α, β, γ (°)70.934 (1), 77.940 (1), 68.698 (1)
V3)946.98 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.40 × 0.16 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.645, 0.840
No. of measured, independent and
observed [I > 2σ(I)] reflections
6124, 4194, 3979
Rint0.012
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.048, 1.08
No. of reflections4194
No. of parameters272
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.27

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H3W3···O2W0.861.992.780 (3)152.3
O3W—H2W3···O3Wi0.831.982.795 (4)164.1
O3W—H1W3···O1ii0.832.062.860 (2)161.4
O2W—H1W2···O2ii0.832.022.840 (2)173.4
O2W—H3W2···O2Wiii0.841.932.748 (3)162.8
O2W—H2W2···O3W0.861.982.780 (3)154.7
O1W—H2W1···O2iv0.821.972.7784 (19)168.4
O1W—H1W1···O3v0.861.902.751 (2)166.7
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x, y, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds