Download citation
Download citation
link to html
The absolute configuration has been determined for the title compound, C14H20N2OS. There are two independent mol­ecules in the asymmetric unit. Inter­molecular N—H...O hydrogen bonds are observed in the crystal packing, forming infinite chains with the base vectors [100] and [010]. Each chain contains only one of the two independent mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536809041245/pv2213sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536809041245/pv2213Isup2.hkl
Contains datablock I

CCDC reference: 754315

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.046
  • wR factor = 0.074
  • Data-to-parameter ratio = 15.1

checkCIF/PLATON results

No syntax errors found



Alert level C GOODF01_ALERT_2_C The least squares goodness of fit parameter lies outside the range 0.80 <> 2.00 Goodness of fit given = 0.772 PLAT230_ALERT_2_C Hirshfeld Test Diff for S21 -- O21 .. 5.85 su PLAT230_ALERT_2_C Hirshfeld Test Diff for N22 -- C23 .. 5.04 su PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang .. 5
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.00 From the CIF: _reflns_number_total 5160 Count of symmetry unique reflns 2968 Completeness (_total/calc) 173.85% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2192 Fraction of Friedel pairs measured 0.739 Are heavy atom types Z>Si present yes PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 5 N21 -C21 -C23 -N22 -17.00 8.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 6 C22 -C21 -C23 -N22 105.00 7.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 33 N1 -C1 -C3 -N2 -44.00 10.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 34 C2 -C1 -C3 -N2 80.00 10.00 1.555 1.555 1.555 1.555 PLAT791_ALERT_4_G The Model has Chirality at C1 (Verify) .... S PLAT791_ALERT_4_G The Model has Chirality at C2 (Verify) .... S PLAT791_ALERT_4_G The Model has Chirality at C21 (Verify) .... S PLAT791_ALERT_4_G The Model has Chirality at C22 (Verify) .... S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 10 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 9 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Chiral sulfinimines have proven to be powerful and versatile precursors for the synthesis of nonproteinogenic amino acids (Ferreira et al., 2008). They allow the stereoselective introduction of cyanide therefore representing an asymmetric modification of the Strecker reaction (Davis et al., 1994); Li et al., 2003). We have synthesized the title compound, (I), that can be hydrolyzed to give (2S,3S)-β-methylphenylalanine which is an amino acid found in the antibiotic families of the bottromycins and the mannopeptimycins (Singh et al., 2003); Kaneda, 1992; and Kaneda, 2002). In this paper we report the crystal structure and absolute configuration of (I).

The molecular structure of (I) is presented in Fig. 1. There are two independent molecules in the asymmetric unit. The structure exhibits intermolecular N—H···O hydrogen bonds resulting in infinite one dimensional chains with the base vectors [1 0 0] and [0 1 0], respectively (details have have been provided in Table 1 and Fig. 2). Each chain contains only one of the two independent molecules.

The crystal structure and absolute configuration of a closely related compound has just been reported (Harms et al., 2009).

Related literature top

For uses of tert-butanesulfinimines, see: Ferreira et al. (2009). For asymmetric Strecker reactions utilizing this auxiliary, see: Davis et al. (1994); Li et al. (2003). For natural sources of (2S,3S)-β-methylphenylalanine, see: Singh et al. (2003); Kaneda (1992, 2002). For a related structure, see: Harms et al. (2009).

Experimental top

Trimethylsilyl cyanide (TMSCN) (706 µL, 5.64 mmol) was added dropwise to a solution of (SS)-(2-phenylpropyliden)-2-methyl-2-propansulfinylimin (1.12 g, 4.70 mmol) and CsF (858 mg, 5.64 mmol) in 50 ml n-hexane at 243 K. The mixture was stirred at this temperature for 14 h and subsequently quenched with semisaturated aqueous NH4Cl solution. Extraction with EtOAc (2×50 mL) and drying of the combined organic phases (MgSO4) yielded the crude mixture of 3S / 3R epimers. Crystallization from petrolether/EtOAc yielded 370 mg (1.41 mmol, 35%) of a 1:1 mixture of the diastereomers. Flash column chromatography of the mother liquor yielded 80 mg (303 mmol, 6%) of the pure 3S isomer, which had a slightly higher Rf-value (Rf=0.30 in petrol ether/EtOAc 2:1) than the 3R isomer of which 60 mg (227 mmol, 5%) could be isolated. The remaining fractions afforded 400 mg (1.53 mmol, 32%) of a roughly 1:1 mixture of the epimers. (SS,2S,3S)-(2-Methylpropansulfinyl)-2-amino-3-phenylbutyronitrile was crystallized from petrol ether/THF.

Refinement top

The amino H atoms were isotropically refined with a restraint (0.85 Å) N—H distance. The other H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and allowed to ride on their parent atoms, with 1.5 Ueq(Cmethyl) or 1.2 Ueq(C).

Structure description top

Chiral sulfinimines have proven to be powerful and versatile precursors for the synthesis of nonproteinogenic amino acids (Ferreira et al., 2008). They allow the stereoselective introduction of cyanide therefore representing an asymmetric modification of the Strecker reaction (Davis et al., 1994); Li et al., 2003). We have synthesized the title compound, (I), that can be hydrolyzed to give (2S,3S)-β-methylphenylalanine which is an amino acid found in the antibiotic families of the bottromycins and the mannopeptimycins (Singh et al., 2003); Kaneda, 1992; and Kaneda, 2002). In this paper we report the crystal structure and absolute configuration of (I).

The molecular structure of (I) is presented in Fig. 1. There are two independent molecules in the asymmetric unit. The structure exhibits intermolecular N—H···O hydrogen bonds resulting in infinite one dimensional chains with the base vectors [1 0 0] and [0 1 0], respectively (details have have been provided in Table 1 and Fig. 2). Each chain contains only one of the two independent molecules.

The crystal structure and absolute configuration of a closely related compound has just been reported (Harms et al., 2009).

For uses of tert-butanesulfinimines, see: Ferreira et al. (2009). For asymmetric Strecker reactions utilizing this auxiliary, see: Davis et al. (1994); Li et al. (2003). For natural sources of (2S,3S)-β-methylphenylalanine, see: Singh et al. (2003); Kaneda (1992, 2002). For a related structure, see: Harms et al. (2009).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. A view of the two molecules in the asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level. Symmetry operations, (i): x-1/2, -y+3/2, -z; (ii): -x, y+1/2, -z+1/2.
[Figure 2] Fig. 2. Unit cell packing of (I) viewed down the b-axis. Dotted lines indicate hydrogen bonds.
(SS,2S,3S)-2-(2-Methylpropane-2-sulfinamido)-3- phenylbutyronitrile top
Crystal data top
C14H20N2OSF(000) = 1136
Mr = 264.38Dx = 1.199 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 10131 reflections
a = 9.0344 (4) Åθ = 2.3–25°
b = 9.0617 (5) ŵ = 0.21 mm1
c = 35.767 (3) ÅT = 100 K
V = 2928.1 (3) Å3Prism, colourless
Z = 80.36 × 0.08 × 0.06 mm
Data collection top
Stoe IPDS II
diffractometer
5160 independent reflections
Radiation source: sealed tube3413 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
area detetor, ω scansθmax = 25°, θmin = 2.3°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1010
Tmin = 0.936, Tmax = 1.041k = 910
15474 measured reflectionsl = 4142
Refinement top
Refinement on F2Hydrogen site location: CH inferred from neighbouring sites, NH located
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0105P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max < 0.001
S = 0.77Δρmax = 0.19 e Å3
5160 reflectionsΔρmin = 0.24 e Å3
342 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
2 restraintsExtinction coefficient: 0.0011 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2183 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.04 (9)
Crystal data top
C14H20N2OSV = 2928.1 (3) Å3
Mr = 264.38Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 9.0344 (4) ŵ = 0.21 mm1
b = 9.0617 (5) ÅT = 100 K
c = 35.767 (3) Å0.36 × 0.08 × 0.06 mm
Data collection top
Stoe IPDS II
diffractometer
5160 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3413 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 1.041Rint = 0.093
15474 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074Δρmax = 0.19 e Å3
S = 0.77Δρmin = 0.24 e Å3
5160 reflectionsAbsolute structure: Flack (1983), 2183 Friedel pairs
342 parametersAbsolute structure parameter: 0.04 (9)
2 restraints
Special details top

Experimental. νmax/cm-1 3232 (br), 2963 (w), 2930 (w), 2872(w), 1492 (w), 1454 (m), 1422 (m), 1364 (w), 1113 (w), 1085 (m), 1054 (s), 1016(m); δH (300 MHz; DMSO) 0.75 (s, 9H, tBu), 1.37 (d, 3H, 3JMe,CH = 7.1 Hz, CH3), 3.10 (dq, 1H, 3JCH,CHN = 10.3, JCH,Me = 7.1 Hz, CH), 4.51 (pt, 1H, 3JCHN,CH = 10.3 Hz, CHN), 6.24 (d, 1H, 3JNH,CHN = 10.5 Hz, NH), 7.14 – 7.32 (m, 5H, CHarom); δC (75 MHz; DMSO-d6)18.4 (CH3), 21.9 (C(CH3)3), 43.2 (CH), 52.8 (CHN), 55.9 (C(CH3)3), 120.2 (CN), 126.7 (p-CHarom), 127.7 (CHarom), 128.2 (CHarom), 141.9 (i-Carom); [α]D23 -1.0 (c 1.00 in CHCl3).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C210.2714 (4)0.3582 (4)0.27085 (9)0.0236 (9)
H210.360.29460.26620.028*
C220.3222 (4)0.5196 (4)0.27258 (10)0.0270 (9)
H220.2320.58120.27690.032*
C230.2020 (4)0.3113 (5)0.30640 (10)0.0288 (9)
C240.4285 (4)0.5485 (5)0.30544 (10)0.0336 (10)
H24A0.51890.49030.3020.05*
H24B0.38050.51980.32890.05*
H24C0.45370.65360.30630.05*
C250.3851 (4)0.5647 (4)0.23521 (10)0.0251 (9)
C260.3155 (4)0.6706 (4)0.21346 (10)0.0310 (9)
H260.2290.71790.22270.037*
C270.3702 (4)0.7092 (4)0.17816 (10)0.0332 (10)
H270.32170.7830.16380.04*
C280.4935 (4)0.6406 (4)0.16434 (11)0.0354 (11)
H280.53030.66590.14030.042*
C290.5647 (4)0.5341 (4)0.18560 (10)0.0308 (9)
H290.65010.48610.1760.037*
C2100.5117 (4)0.4971 (4)0.22081 (11)0.0265 (9)
H2100.56220.4250.23530.032*
C2110.0856 (4)0.2374 (4)0.17447 (11)0.0281 (9)
C2120.0540 (4)0.3289 (5)0.17864 (10)0.0370 (10)
H21A0.10070.34130.15410.056*
H21B0.02870.42590.18890.056*
H21C0.12270.27850.19560.056*
C2130.0538 (5)0.0964 (5)0.15275 (11)0.0448 (11)
H21D0.02140.03860.1660.067*
H21E0.14490.03830.15050.067*
H21F0.01750.12160.12770.067*
C2140.2103 (4)0.3255 (5)0.15608 (10)0.0322 (9)
H21G0.30060.26570.15560.048*
H21H0.22830.41580.17040.048*
H21I0.18170.35140.13050.048*
N210.1689 (3)0.3395 (3)0.23975 (7)0.0228 (7)
N220.1415 (4)0.2754 (4)0.33308 (9)0.0399 (9)
O210.0331 (3)0.0854 (3)0.23728 (7)0.0316 (6)
S210.15503 (10)0.17532 (11)0.22032 (3)0.0260 (2)
C10.8730 (4)0.4752 (4)0.02331 (10)0.0228 (8)
H10.94040.39110.01710.027*
C20.7114 (3)0.4153 (4)0.02369 (10)0.0252 (8)
H20.64490.49990.030.03*
C30.9145 (4)0.5311 (4)0.06101 (11)0.0268 (9)
C40.6885 (4)0.2967 (4)0.05361 (10)0.0325 (10)
H4A0.74810.20970.04750.049*
H4B0.71890.33540.0780.049*
H4C0.58360.26910.05450.049*
C50.6698 (4)0.3632 (4)0.01507 (9)0.0242 (9)
C60.5653 (4)0.4409 (4)0.03603 (10)0.0283 (9)
H60.51810.52540.02580.034*
C70.5311 (4)0.3941 (5)0.07186 (10)0.0320 (9)
H70.45860.44670.08570.038*
C80.5988 (4)0.2738 (4)0.08799 (11)0.0333 (10)
H80.57520.24420.11280.04*
C90.7019 (4)0.1975 (4)0.06715 (11)0.0317 (9)
H90.74960.11390.07770.038*
C100.7372 (4)0.2407 (4)0.03095 (11)0.0297 (9)
H100.80790.18610.0170.036*
C110.9830 (4)0.6723 (4)0.07127 (9)0.0234 (8)
C120.8840 (4)0.8074 (4)0.06764 (10)0.0320 (9)
H12A0.79220.780.05480.048*
H12B0.93550.88360.05320.048*
H12C0.86060.84560.09260.048*
C130.9020 (4)0.5441 (4)0.08954 (11)0.0317 (10)
H13A0.87190.57210.11490.047*
H13B0.96770.45820.09070.047*
H13C0.8140.51940.07480.047*
C141.1218 (4)0.7103 (4)0.09391 (10)0.0326 (10)
H14A1.09350.73470.11960.049*
H14B1.17170.79510.08250.049*
H14C1.1890.62540.09410.049*
N10.8892 (3)0.5844 (3)0.00524 (8)0.0215 (7)
N20.9438 (4)0.5784 (4)0.08972 (9)0.0397 (8)
O11.1317 (2)0.7367 (3)0.00919 (7)0.0304 (6)
S11.05045 (10)0.60907 (10)0.02574 (3)0.0241 (2)
H2110.087 (2)0.384 (4)0.2437 (9)0.031 (11)*
H1A0.831 (3)0.658 (2)0.0059 (9)0.027 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C210.0206 (18)0.025 (2)0.025 (2)0.0023 (15)0.0032 (14)0.0016 (16)
C220.023 (2)0.027 (2)0.031 (2)0.0031 (16)0.0027 (16)0.0024 (17)
C230.029 (2)0.030 (2)0.027 (2)0.0060 (18)0.0026 (17)0.001 (2)
C240.030 (2)0.039 (3)0.032 (2)0.0029 (19)0.0009 (18)0.0053 (18)
C250.027 (2)0.021 (2)0.0267 (19)0.0030 (16)0.0063 (16)0.0001 (16)
C260.024 (2)0.026 (2)0.043 (2)0.0047 (18)0.0068 (16)0.002 (2)
C270.041 (2)0.029 (2)0.030 (2)0.0087 (19)0.0113 (19)0.0050 (18)
C280.036 (2)0.040 (3)0.031 (2)0.0128 (19)0.0006 (17)0.0053 (19)
C290.026 (2)0.026 (2)0.041 (2)0.0049 (18)0.0029 (19)0.0031 (18)
C2100.019 (2)0.022 (2)0.038 (2)0.0009 (15)0.0020 (17)0.0003 (19)
C2110.025 (2)0.029 (2)0.031 (2)0.0043 (17)0.0041 (16)0.0008 (17)
C2120.031 (2)0.041 (2)0.039 (2)0.003 (2)0.0036 (18)0.015 (2)
C2130.048 (2)0.038 (3)0.049 (3)0.016 (2)0.004 (2)0.002 (2)
C2140.029 (2)0.033 (2)0.035 (2)0.0036 (19)0.0043 (16)0.004 (2)
N210.0181 (17)0.0239 (17)0.0263 (15)0.0025 (14)0.0009 (13)0.0021 (14)
N220.039 (2)0.038 (2)0.043 (2)0.0162 (17)0.0033 (18)0.0054 (17)
O210.0292 (14)0.0269 (15)0.0386 (15)0.0126 (12)0.0023 (11)0.0106 (13)
S210.0233 (5)0.0241 (5)0.0306 (5)0.0019 (4)0.0000 (4)0.0011 (4)
C10.0180 (18)0.0209 (19)0.030 (2)0.0025 (14)0.0008 (16)0.0009 (17)
C20.0179 (18)0.030 (2)0.0282 (19)0.0001 (15)0.0006 (15)0.0043 (19)
C30.016 (2)0.033 (2)0.032 (2)0.0072 (16)0.0033 (16)0.0015 (18)
C40.023 (2)0.040 (3)0.035 (2)0.0018 (17)0.0022 (16)0.005 (2)
C50.0168 (18)0.026 (2)0.030 (2)0.0042 (16)0.0004 (15)0.0012 (16)
C60.0199 (19)0.027 (2)0.038 (2)0.0019 (17)0.0033 (17)0.0041 (17)
C70.027 (2)0.037 (2)0.032 (2)0.010 (2)0.0006 (17)0.002 (2)
C80.028 (2)0.040 (3)0.032 (2)0.0152 (18)0.0005 (17)0.004 (2)
C90.031 (2)0.024 (2)0.041 (2)0.0078 (17)0.0058 (17)0.005 (2)
C100.0200 (19)0.028 (2)0.041 (2)0.0025 (16)0.0004 (18)0.0013 (19)
C110.026 (2)0.0224 (19)0.0222 (19)0.0018 (16)0.0003 (14)0.0002 (17)
C120.036 (2)0.029 (2)0.031 (2)0.0051 (18)0.0019 (16)0.0009 (19)
C130.029 (2)0.035 (2)0.031 (2)0.0019 (17)0.0029 (17)0.0009 (19)
C140.026 (2)0.035 (3)0.037 (2)0.0069 (17)0.0029 (17)0.0021 (19)
N10.0145 (16)0.0214 (18)0.0287 (16)0.0009 (13)0.0041 (12)0.0014 (14)
N20.0345 (19)0.044 (2)0.041 (2)0.0121 (17)0.0020 (17)0.0041 (18)
O10.0252 (13)0.0318 (15)0.0342 (15)0.0099 (12)0.0069 (12)0.0021 (12)
S10.0194 (4)0.0229 (5)0.0300 (5)0.0018 (4)0.0001 (4)0.0006 (5)
Geometric parameters (Å, º) top
C21—N211.457 (4)C1—N11.429 (4)
C21—C231.480 (5)C1—C31.488 (5)
C21—C221.535 (5)C1—C21.557 (4)
C21—H211C1—H11
C22—C251.509 (5)C2—C51.512 (5)
C22—C241.540 (5)C2—C41.530 (5)
C22—H221C2—H21
C23—N221.146 (4)C3—N21.144 (4)
C24—H24A0.98C4—H4A0.98
C24—H24B0.98C4—H4B0.98
C24—H24C0.98C4—H4C0.98
C25—C261.386 (5)C5—C101.387 (5)
C25—C2101.396 (5)C5—C61.396 (5)
C26—C271.400 (5)C6—C71.385 (5)
C26—H260.95C6—H60.95
C27—C281.369 (5)C7—C81.377 (5)
C27—H270.95C7—H70.95
C28—C291.387 (5)C8—C91.379 (5)
C28—H280.95C8—H80.95
C29—C2101.388 (5)C9—C101.390 (5)
C29—H290.95C9—H90.95
C210—H2100.95C10—H100.95
C211—C2121.516 (5)C11—C131.520 (5)
C211—C2131.523 (5)C11—C121.522 (5)
C211—C2141.529 (5)C11—C141.532 (4)
C211—S211.843 (4)C11—S11.831 (3)
C212—H21A0.98C12—H12A0.98
C212—H21B0.98C12—H12B0.98
C212—H21C0.98C12—H12C0.98
C213—H21D0.98C13—H13A0.98
C213—H21E0.98C13—H13B0.98
C213—H21F0.98C13—H13C0.98
C214—H21G0.98C14—H14A0.98
C214—H21H0.98C14—H14B0.98
C214—H21I0.98C14—H14C0.98
N21—S211.647 (3)N1—S11.646 (3)
N21—H2110.85 (2)N1—H1A0.85 (2)
O21—S211.498 (2)O1—S11.493 (2)
N21—C21—C23110.7 (3)N1—C1—C3112.7 (3)
N21—C21—C22109.4 (3)N1—C1—C2110.1 (3)
C23—C21—C22111.5 (3)C3—C1—C2110.3 (3)
N21—C21—H21108.4N1—C1—H1107.9
C23—C21—H21108.4C3—C1—H1107.9
C22—C21—H21108.4C2—C1—H1107.9
C25—C22—C21109.6 (3)C5—C2—C4112.8 (3)
C25—C22—C24113.3 (3)C5—C2—C1109.5 (3)
C21—C22—C24112.3 (3)C4—C2—C1112.2 (3)
C25—C22—H22107.1C5—C2—H2107.3
C21—C22—H22107.1C4—C2—H2107.3
C24—C22—H22107.1C1—C2—H2107.3
N22—C23—C21176.6 (4)N2—C3—C1177.7 (4)
C22—C24—H24A109.5C2—C4—H4A109.5
C22—C24—H24B109.5C2—C4—H4B109.5
H24A—C24—H24B109.5H4A—C4—H4B109.5
C22—C24—H24C109.5C2—C4—H4C109.5
H24A—C24—H24C109.5H4A—C4—H4C109.5
H24B—C24—H24C109.5H4B—C4—H4C109.5
C26—C25—C210117.9 (4)C10—C5—C6118.7 (3)
C26—C25—C22120.9 (3)C10—C5—C2121.1 (3)
C210—C25—C22121.1 (3)C6—C5—C2120.2 (3)
C25—C26—C27121.3 (4)C7—C6—C5119.6 (4)
C25—C26—H26119.4C7—C6—H6120.2
C27—C26—H26119.4C5—C6—H6120.2
C28—C27—C26120.0 (4)C8—C7—C6122.1 (4)
C28—C27—H27120C8—C7—H7119
C26—C27—H27120C6—C7—H7119
C27—C28—C29119.7 (4)C7—C8—C9118.1 (4)
C27—C28—H28120.1C7—C8—H8121
C29—C28—H28120.1C9—C8—H8121
C28—C29—C210120.4 (4)C8—C9—C10121.1 (4)
C28—C29—H29119.8C8—C9—H9119.4
C210—C29—H29119.8C10—C9—H9119.4
C29—C210—C25120.8 (4)C5—C10—C9120.4 (4)
C29—C210—H210119.6C5—C10—H10119.8
C25—C210—H210119.6C9—C10—H10119.8
C212—C211—C213110.6 (3)C13—C11—C12111.6 (3)
C212—C211—C214111.7 (3)C13—C11—C14109.8 (3)
C213—C211—C214110.9 (3)C12—C11—C14110.2 (3)
C212—C211—S21111.2 (2)C13—C11—S1107.7 (3)
C213—C211—S21105.2 (3)C12—C11—S1111.8 (2)
C214—C211—S21107.0 (2)C14—C11—S1105.5 (2)
C211—C212—H21A109.5C11—C12—H12A109.5
C211—C212—H21B109.5C11—C12—H12B109.5
H21A—C212—H21B109.5H12A—C12—H12B109.5
C211—C212—H21C109.5C11—C12—H12C109.5
H21A—C212—H21C109.5H12A—C12—H12C109.5
H21B—C212—H21C109.5H12B—C12—H12C109.5
C211—C213—H21D109.5C11—C13—H13A109.5
C211—C213—H21E109.5C11—C13—H13B109.5
H21D—C213—H21E109.5H13A—C13—H13B109.5
C211—C213—H21F109.5C11—C13—H13C109.5
H21D—C213—H21F109.5H13A—C13—H13C109.5
H21E—C213—H21F109.5H13B—C13—H13C109.5
C211—C214—H21G109.5C11—C14—H14A109.5
C211—C214—H21H109.5C11—C14—H14B109.5
H21G—C214—H21H109.5H14A—C14—H14B109.5
C211—C214—H21I109.5C11—C14—H14C109.5
H21G—C214—H21I109.5H14A—C14—H14C109.5
H21H—C214—H21I109.5H14B—C14—H14C109.5
C21—N21—S21118.4 (2)C1—N1—S1120.2 (2)
C21—N21—H211112 (2)C1—N1—H1A120 (2)
S21—N21—H211115 (3)S1—N1—H1A115 (2)
O21—S21—N21112.12 (15)O1—S1—N1111.33 (15)
O21—S21—C211106.03 (15)O1—S1—C11105.92 (16)
N21—S21—C21197.20 (16)N1—S1—C1198.29 (15)
N21—C21—C22—C2554.4 (4)N1—C1—C2—C553.4 (4)
C23—C21—C22—C25177.1 (3)C3—C1—C2—C5178.3 (3)
N21—C21—C22—C24178.7 (3)N1—C1—C2—C4179.5 (3)
C23—C21—C22—C2456.0 (4)C3—C1—C2—C455.6 (4)
N21—C21—C23—N2217 (8)N1—C1—C3—N244 (10)
C22—C21—C23—N22105 (7)C2—C1—C3—N280 (10)
C21—C22—C25—C26114.1 (4)C4—C2—C5—C1058.2 (4)
C24—C22—C25—C26119.7 (4)C1—C2—C5—C1067.5 (4)
C21—C22—C25—C21063.4 (4)C4—C2—C5—C6123.8 (3)
C24—C22—C25—C21062.8 (4)C1—C2—C5—C6110.4 (3)
C210—C25—C26—C270.1 (5)C10—C5—C6—C70.3 (5)
C22—C25—C26—C27177.7 (3)C2—C5—C6—C7178.3 (3)
C25—C26—C27—C280.8 (5)C5—C6—C7—C81.1 (5)
C26—C27—C28—C290.6 (5)C6—C7—C8—C91.1 (5)
C27—C28—C29—C2100.2 (5)C7—C8—C9—C100.2 (5)
C28—C29—C210—C250.9 (5)C6—C5—C10—C90.5 (5)
C26—C25—C210—C290.8 (5)C2—C5—C10—C9177.5 (3)
C22—C25—C210—C29176.8 (3)C8—C9—C10—C50.5 (5)
C23—C21—N21—S2183.2 (3)C3—C1—N1—S185.7 (3)
C22—C21—N21—S21153.6 (2)C2—C1—N1—S1150.7 (2)
C21—N21—S21—O2193.0 (3)C1—N1—S1—O198.6 (3)
C21—N21—S21—C211156.4 (2)C1—N1—S1—C11150.6 (3)
C212—C211—S21—O2159.6 (3)C13—C11—S1—O1178.8 (2)
C213—C211—S21—O2160.2 (3)C12—C11—S1—O158.2 (3)
C214—C211—S21—O21178.2 (2)C14—C11—S1—O161.6 (3)
C212—C211—S21—N2156.0 (3)C13—C11—S1—N166.1 (3)
C213—C211—S21—N21175.7 (2)C12—C11—S1—N156.9 (3)
C214—C211—S21—N2166.2 (3)C14—C11—S1—N1176.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.85 (2)2.11 (2)2.882 (3)151 (3)
N21—H211···O21ii0.85 (2)2.23 (2)2.995 (4)149 (3)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H20N2OS
Mr264.38
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.0344 (4), 9.0617 (5), 35.767 (3)
V3)2928.1 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.36 × 0.08 × 0.06
Data collection
DiffractometerStoe IPDS II
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.936, 1.041
No. of measured, independent and
observed [I > 2σ(I)] reflections
15474, 5160, 3413
Rint0.093
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.074, 0.77
No. of reflections5160
No. of parameters342
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.24
Absolute structureFlack (1983), 2183 Friedel pairs
Absolute structure parameter0.04 (9)

Computer programs: X-AREA (Stoe & Cie, 2002), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.85 (2)2.110 (17)2.882 (3)151 (3)
N21—H211···O21ii0.85 (2)2.23 (2)2.995 (4)149 (3)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds