Download citation
Download citation
link to html
In the title compound, (C8H12N)2[ZnBr4], the coordination geometry of the anion is approximately tetra­hedral. The Zn—Br bond lengths range from 2.3901 (19) to 2.449 (2) Å and the Br—Zn—Br angles range from 107.09 (8) to 112.48 (8)°. In the crystal, each [ZnBr4]2− anion is connected to four cations through two N—H...Br and two C—H...Br hydrogen bonds, forming two-dimensional ...(cation)2...anion...(cation2)... sheets parallel to the bc plane. Within each sheet, the anions are arranged in stacks with no significant inter-anion Br...Br inter­actions [the shortest being > 4.3 Å], while the cations are in chains, with weak π–π stacking inter­actions [centroid–centroid distance = 3.991 Å] between cations inter­acting with the same anion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536812040925/pv2593sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536812040925/pv2593Isup2.hkl
Contains datablock I

CCDC reference: 881642

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.020 Å
  • R factor = 0.054
  • wR factor = 0.140
  • Data-to-parameter ratio = 12.8

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT341_ALERT_3_B Low Bond Precision on C-C Bonds ............... 0.0201 Ang PLAT915_ALERT_3_B Low Friedel Pair Coverage ...................... 41 Perc.
Alert level C PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Zn1 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C8 H12 N PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 2
Alert level G REFLT03_ALERT_4_G WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure From the CIF: _diffrn_reflns_theta_max 25.02 From the CIF: _reflns_number_total 2730 Count of symmetry unique reflns 1933 Completeness (_total/calc) 141.23% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 797 Fraction of Friedel pairs measured 0.412 Are heavy atom types Z>Si present yes PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF .... ? PLAT007_ALERT_5_G Note: Number of Unrefined D-H Atoms ............ 2 PLAT152_ALERT_1_G The Supplied and Calc. Volume s.u. Differ by ... 2 Units PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K PLAT794_ALERT_5_G Note: Tentative Bond Valency for Zn1 (II) 1.95 PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still 59 Perc.
0 ALERT level A = Most likely a serious problem - resolve or explain 2 ALERT level B = A potentially serious problem, consider carefully 4 ALERT level C = Check. Ensure it is not caused by an omission or oversight 8 ALERT level G = General information/check it is not something unexpected 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 3 ALERT type 5 Informative message, check

Comment top

In connection with ongoing studies of the structural aspects of halo-metal anion salts (Ali & Al-Far, 2009), we herein report the crystal structure of the title compound. The asymmetric unit contains an anion and two independent cations (Fig. 1). The geometry of ZnBr42- anion is approximately tetrahedral. In the anion, the bond distances and angles fall in the range of those reported previously (Peng & Li, 2011). In the cations, the bond lengths and angles are within normal ranges compared to the salt containing 2,4,6-trimethylpyridinium cation (Abbasi et al., 2011). The packing of the structure can be regarded as alternating stacks of anions and chains of cations. The anion stacks are parallel to the cation chains, with no significant Br···Br interactions [shortest Br···Br interactions being greater than 4.3 Å]. The anions and cations are interacting significantly through two N—H···Br—Zn and two pyC—H···Br—Zn hydrogen bonding (Table 1). These interactions link anions and cations into two-dimensional sheets of etc ···(cation)2···anion···(cation)2···etc parallel to bc plane (Fig. 2).

Related literature top

For background information, see: Ali & Al-Far (2009). For bond lengths and angles in the [ZnBr4]2- anion, see: Ali & Al-Far (2009); Peng & Li (2011). For another structure containing the 2,4,6-trimethylpyridinium cation, see: Abbasi et al. (2011).

Experimental top

To a hot solution of 2,4,6-trimethylpyridine (0.122 g, 1 mmol) and 1 ml of 60% HBr dissolved in 95% EtOH (15 ml), a hot solution of ZnCl2 (0.136 g, 1 mmol) dissolved in 95% EtOH (10 ml) was added. The resulting mixture was then treated with liquid Br2 (2 ml) and refluxed for 2 h. The resulting mixture was left undisturbed to evaporate at room temperature whereupon colorless plate crystals were formed after two days.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with N—H = 0.86 Å and C—H = 0.93 and 0.96 Å, for aryl and methyl H atoms, respectively. The Uiso(H) were allowed at 1.5Ueq(C methyl) or 1.2Ueq(N/C nonmethyl). An absolute structure was determined by using 797 Friedel pairs.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound showing alternating stacks of anions and cations. C/N—H···Br interactions are shown as dashed lines.
Bis(2,4,6-trimethylpyridinium) tetrabromidozincate top
Crystal data top
(C8H12N)2[ZnBr4]Z = 1
Mr = 629.36F(000) = 304
Triclinic, P1Dx = 1.908 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3627 (8) ÅCell parameters from 1674 reflections
b = 9.0310 (8) Åθ = 2.9–29.1°
c = 9.1854 (9) ŵ = 8.41 mm1
α = 101.741 (8)°T = 293 K
β = 110.778 (10)°Chunk, colourless
γ = 96.321 (8)°0.35 × 0.25 × 0.2 mm
V = 547.89 (9) Å3
Data collection top
Oxford Xcalibur Eos
diffractometer
2730 independent reflections
Radiation source: Enhance (Mo) X-ray Source2399 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 16.0534 pixels mm-1θmax = 25.0°, θmin = 2.9°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 107
Tmin = 0.413, Tmax = 1.000l = 1010
3637 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0933P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2730 reflectionsΔρmax = 0.75 e Å3
214 parametersΔρmin = 0.77 e Å3
3 restraintsAbsolute structure: Flack (1983), 797 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Crystal data top
(C8H12N)2[ZnBr4]γ = 96.321 (8)°
Mr = 629.36V = 547.89 (9) Å3
Triclinic, P1Z = 1
a = 7.3627 (8) ÅMo Kα radiation
b = 9.0310 (8) ŵ = 8.41 mm1
c = 9.1854 (9) ÅT = 293 K
α = 101.741 (8)°0.35 × 0.25 × 0.2 mm
β = 110.778 (10)°
Data collection top
Oxford Xcalibur Eos
diffractometer
2730 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2399 reflections with I > 2σ(I)
Tmin = 0.413, Tmax = 1.000Rint = 0.021
3637 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.140Δρmax = 0.75 e Å3
S = 1.02Δρmin = 0.77 e Å3
2730 reflectionsAbsolute structure: Flack (1983), 797 Friedel pairs
214 parametersAbsolute structure parameter: 0.02 (2)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.9260 (2)0.39402 (17)0.49611 (17)0.0439 (3)
Br40.9532 (2)0.27784 (15)0.24750 (16)0.0629 (4)
Br30.59389 (18)0.45209 (17)0.43497 (16)0.0576 (4)
Br20.9650 (2)0.22617 (15)0.67076 (16)0.0609 (4)
Br11.16750 (19)0.63427 (15)0.62829 (16)0.0617 (4)
N20.6828 (15)0.6293 (11)0.8284 (12)0.046 (2)
H2A0.65880.58390.72980.055*
C100.7852 (19)0.8528 (16)1.0355 (17)0.053 (3)
H10A0.82710.95951.07190.063*
C130.6550 (18)0.5429 (14)0.9227 (15)0.047 (3)
C90.7459 (19)0.7828 (15)0.8773 (18)0.052 (3)
C120.7024 (18)0.6132 (16)1.0853 (15)0.053 (3)
H12A0.69170.55381.15460.064*
C110.7654 (18)0.7721 (14)1.1426 (16)0.045 (3)
N10.2717 (18)0.1748 (16)0.0480 (15)0.065 (3)
H1A0.25180.21480.05110.078*
C40.2765 (16)0.1995 (15)0.3001 (15)0.046 (3)
H4A0.26190.26190.36580.056*
C20.3449 (17)0.0429 (13)0.2619 (15)0.045 (3)
H2B0.37820.14970.30190.054*
C50.2520 (17)0.2679 (15)0.1393 (14)0.045 (3)
C30.3220 (18)0.0405 (15)0.3603 (15)0.047 (3)
C10.323 (2)0.0168 (17)0.1074 (18)0.058 (3)
C150.804 (2)0.848 (2)1.3147 (17)0.067 (4)
H15A0.91210.81301.38480.100*
H15B0.68760.82211.33560.100*
H15C0.83810.95801.33380.100*
C70.350 (2)0.038 (2)0.5270 (19)0.062 (4)
H7A0.48140.09960.58230.093*
H7B0.33210.03780.58300.093*
H7C0.25470.10300.52390.093*
C140.774 (3)0.864 (2)0.758 (2)0.083 (5)
H14A0.86540.82050.71710.125*
H14B0.82530.97150.80910.125*
H14C0.64870.85040.67000.125*
C80.202 (2)0.4391 (14)0.0714 (18)0.057 (3)
H8A0.17900.46310.04110.086*
H8B0.08410.48060.08420.086*
H8C0.30940.48350.12770.086*
C160.585 (3)0.3720 (16)0.851 (2)0.064 (4)
H16A0.62200.34140.76040.097*
H16B0.44320.34670.81500.097*
H16C0.64440.31880.93030.097*
C60.353 (4)0.090 (3)0.010 (3)0.120 (9)
H6A0.25490.15310.00430.179*
H6B0.34050.03040.09410.179*
H6C0.48280.15400.06410.179*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0515 (8)0.0429 (7)0.0372 (7)0.0055 (6)0.0178 (6)0.0109 (5)
Br40.0890 (11)0.0564 (9)0.0506 (8)0.0112 (7)0.0382 (8)0.0105 (6)
Br30.0525 (8)0.0733 (9)0.0461 (7)0.0155 (7)0.0172 (6)0.0155 (6)
Br20.0802 (10)0.0601 (8)0.0521 (8)0.0160 (7)0.0292 (7)0.0279 (7)
Br10.0650 (9)0.0521 (8)0.0573 (9)0.0076 (6)0.0207 (7)0.0073 (6)
N20.055 (6)0.047 (6)0.029 (5)0.006 (5)0.012 (4)0.012 (4)
C100.042 (6)0.048 (7)0.061 (9)0.009 (5)0.013 (6)0.009 (6)
C130.047 (7)0.037 (6)0.053 (7)0.002 (5)0.019 (6)0.007 (6)
C90.051 (7)0.047 (8)0.059 (8)0.007 (6)0.020 (6)0.018 (6)
C120.049 (7)0.070 (9)0.041 (7)0.016 (7)0.017 (6)0.015 (6)
C110.036 (6)0.051 (8)0.047 (7)0.009 (5)0.016 (5)0.008 (6)
N10.059 (7)0.094 (10)0.044 (6)0.012 (6)0.020 (5)0.021 (6)
C40.041 (6)0.062 (8)0.040 (6)0.017 (6)0.016 (5)0.018 (6)
C20.047 (7)0.029 (6)0.051 (8)0.003 (5)0.011 (6)0.010 (5)
C50.035 (6)0.069 (8)0.030 (6)0.011 (5)0.010 (5)0.013 (6)
C30.045 (7)0.058 (8)0.037 (6)0.015 (6)0.014 (5)0.007 (6)
C10.051 (8)0.064 (9)0.058 (9)0.007 (6)0.014 (6)0.031 (7)
C150.064 (9)0.082 (11)0.037 (8)0.007 (8)0.018 (7)0.014 (7)
C70.066 (10)0.074 (10)0.048 (8)0.020 (8)0.027 (7)0.009 (7)
C140.109 (14)0.086 (12)0.073 (12)0.029 (10)0.035 (10)0.057 (10)
C80.070 (9)0.037 (7)0.061 (9)0.006 (6)0.024 (7)0.009 (6)
C160.087 (11)0.049 (8)0.065 (10)0.000 (7)0.039 (8)0.021 (7)
C60.120 (17)0.15 (2)0.119 (19)0.027 (15)0.047 (15)0.101 (17)
Geometric parameters (Å, º) top
Zn1—Br22.3901 (19)C2—C11.356 (19)
Zn1—Br42.398 (2)C2—H2B0.9300
Zn1—Br12.4270 (19)C5—C81.494 (18)
Zn1—Br32.449 (2)C3—C71.480 (19)
N2—C131.329 (16)C1—C61.49 (2)
N2—C91.340 (16)C15—H15A0.9600
N2—H2A0.8600C15—H15B0.9600
C10—C91.37 (2)C15—H15C0.9600
C10—C111.38 (2)C7—H7A0.9600
C10—H10A0.9300C7—H7B0.9600
C13—C121.397 (18)C7—H7C0.9600
C13—C161.501 (18)C14—H14A0.9600
C9—C141.50 (2)C14—H14B0.9600
C12—C111.387 (18)C14—H14C0.9600
C12—H12A0.9300C8—H8A0.9600
C11—C151.498 (18)C8—H8B0.9600
N1—C51.333 (18)C8—H8C0.9600
N1—C11.377 (19)C16—H16A0.9600
N1—H1A0.8600C16—H16B0.9600
C4—C31.385 (17)C16—H16C0.9600
C4—C51.418 (17)C6—H6A0.9600
C4—H4A0.9300C6—H6B0.9600
C2—C31.331 (18)C6—H6C0.9600
Br2—Zn1—Br4112.48 (8)C2—C1—N1117.5 (12)
Br2—Zn1—Br1110.92 (8)C2—C1—C6119.3 (16)
Br4—Zn1—Br1109.19 (7)N1—C1—C6123.1 (16)
Br2—Zn1—Br3107.09 (8)C11—C15—H15A109.5
Br4—Zn1—Br3108.55 (8)C11—C15—H15B109.5
Br1—Zn1—Br3108.49 (8)H15A—C15—H15B109.5
C13—N2—C9124.2 (11)C11—C15—H15C109.5
C13—N2—H2A117.9H15A—C15—H15C109.5
C9—N2—H2A117.9H15B—C15—H15C109.5
C9—C10—C11122.8 (12)C3—C7—H7A109.5
C9—C10—H10A118.6C3—C7—H7B109.5
C11—C10—H10A118.6H7A—C7—H7B109.5
N2—C13—C12118.9 (11)C3—C7—H7C109.5
N2—C13—C16118.0 (11)H7A—C7—H7C109.5
C12—C13—C16123.1 (12)H7B—C7—H7C109.5
N2—C9—C10116.9 (12)C9—C14—H14A109.5
N2—C9—C14117.8 (13)C9—C14—H14B109.5
C10—C9—C14125.2 (14)H14A—C14—H14B109.5
C11—C12—C13119.6 (12)C9—C14—H14C109.5
C11—C12—H12A120.2H14A—C14—H14C109.5
C13—C12—H12A120.2H14B—C14—H14C109.5
C10—C11—C12117.4 (12)C5—C8—H8A109.5
C10—C11—C15123.1 (12)C5—C8—H8B109.5
C12—C11—C15119.5 (13)H8A—C8—H8B109.5
C5—N1—C1122.0 (12)C5—C8—H8C109.5
C5—N1—H1A119.0H8A—C8—H8C109.5
C1—N1—H1A119.0H8B—C8—H8C109.5
C3—C4—C5120.7 (12)C13—C16—H16A109.5
C3—C4—H4A119.7C13—C16—H16B109.5
C5—C4—H4A119.7H16A—C16—H16B109.5
C3—C2—C1124.6 (12)C13—C16—H16C109.5
C3—C2—H2B117.7H16A—C16—H16C109.5
C1—C2—H2B117.7H16B—C16—H16C109.5
N1—C5—C4118.0 (12)C1—C6—H6A109.5
N1—C5—C8120.4 (12)C1—C6—H6B109.5
C4—C5—C8121.6 (12)H6A—C6—H6B109.5
C2—C3—C4117.0 (11)C1—C6—H6C109.5
C2—C3—C7119.7 (12)H6A—C6—H6C109.5
C4—C3—C7123.3 (13)H6B—C6—H6C109.5
C9—N2—C13—C123.1 (18)C1—N1—C5—C42.9 (19)
C9—N2—C13—C16179.7 (13)C1—N1—C5—C8178.3 (13)
C13—N2—C9—C100.6 (19)C3—C4—C5—N10.8 (17)
C13—N2—C9—C14178.8 (13)C3—C4—C5—C8179.6 (12)
C11—C10—C9—N21 (2)C1—C2—C3—C41.3 (19)
C11—C10—C9—C14177.0 (14)C1—C2—C3—C7179.9 (13)
N2—C13—C12—C113.9 (18)C5—C4—C3—C21.3 (17)
C16—C13—C12—C11179.7 (13)C5—C4—C3—C7179.8 (12)
C9—C10—C11—C120.1 (19)C3—C2—C1—N11 (2)
C9—C10—C11—C15178.8 (13)C3—C2—C1—C6180.0 (15)
C13—C12—C11—C102.4 (17)C5—N1—C1—C23 (2)
C13—C12—C11—C15176.3 (12)C5—N1—C1—C6177.8 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.862.793.647 (13)175
N2—H2A···Br30.862.573.433 (10)179
C2—H2B···Br30.932.793.685 (11)162
C10—H10A···Br4ii0.932.863.776 (13)168
Symmetry codes: (i) x1, y1, z1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C8H12N)2[ZnBr4]
Mr629.36
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.3627 (8), 9.0310 (8), 9.1854 (9)
α, β, γ (°)101.741 (8), 110.778 (10), 96.321 (8)
V3)547.89 (9)
Z1
Radiation typeMo Kα
µ (mm1)8.41
Crystal size (mm)0.35 × 0.25 × 0.2
Data collection
DiffractometerOxford Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.413, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3637, 2730, 2399
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.140, 1.02
No. of reflections2730
No. of parameters214
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.77
Absolute structureFlack (1983), 797 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.862.793.647 (13)175.4
N2—H2A···Br30.862.573.433 (10)178.7
C2—H2B···Br30.932.793.685 (11)162.2
C10—H10A···Br4ii0.932.863.776 (13)167.7
Symmetry codes: (i) x1, y1, z1; (ii) x, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds