Download citation
Download citation
link to html
MOLLYNX is a new crystallographic tool developed to access a more precise description of the spin-dependent electron density of magnetic crystals, taking advantage of the richness of experimental information from high-resolution X-ray diffraction (XRD), unpolarized neutron (UND) and polarized neutron diffraction (PND). This new program is based either on the well known Hansen–Coppens multipolar model (MOLLYNX-mult) or on a new expansion over a set of atomic orbitals (MOLLYNX-orb). The main difference between the two models is the basis of the expansion: in MOLLYNX-mult the expansion is over atom centered real spherical harmonics, in MOLLYNX-orb the expansion is over a set of atomic orbitals with which mono and bicentric contributions are calculated. This new approach of MOLLYNX-orb can also be applied to nonmagnetic crystals. This paper summarizes the theoretical ground of two models and describes the first applications to organic, organometallic and inorganic magnetic materials

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520621008222/px5040sup1.pdf
Supplementary material


Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds