The title compound, [Ni{N(CH2CH2OH)3}2](CH3COO)2, was prepared and the structure determined. It is isostructural with the copper(II) analogue.
Supporting information
CCDC reference: 145627
The synthesis of the title compound was carried out by dissolving nickel(II)
acetate tetrahydrate in a tenfold excess of triethanolamine at 423 K.
Polycrystalline bis(triethanolamine)nickel(II) acetate precipitated when the
solution was cooled down. After removing the excess of triethanolamine the
product was washed with acetone. Single crystals of
bis(triethanolamine)nickel(II) acetate were obtained by fractional
crystallization from a triethanolamine solution. The IR spectrum was recorded
using a potassium bromide matrix on a Perkin Elmer FT–IR 2000 spectrometer.
Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: HELENA (Spek, 1992); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: DIAMOND (Branderburg, 1996); software used to prepare material for publication: DIAMOND.
Bis(triethanolamine)nickel(II) acetate
top
Crystal data top
[Ni(C6H15NO3)2](C2H3O2)2 | Dx = 1.439 Mg m−3 |
Mr = 475.18 | Melting point: not measured K |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.123 (1) Å | Cell parameters from 25 reflections |
b = 13.219 (2) Å | θ = 12.4–18.7° |
c = 9.820 (1) Å | µ = 0.94 mm−1 |
β = 112.17 (6)° | T = 296 K |
V = 1096.7 (2) Å3 | Prism, clear light blue |
Z = 2 | 0.40 × 0.40 × 0.40 mm |
F(000) = 508 | |
Data collection top
Enraf-Nonius CAD-4 diffractometer | Rint = 0.017 |
Radiation source: fine-focus sealed tube | θmax = 26.9°, θmin = 2.4° |
Graphite monochromator | h = 0→11 |
ω–2θ scans | k = 0→16 |
2524 measured reflections | l = −12→11 |
2379 independent reflections | 3 standard reflections every 250 reflections |
2048 reflections with I > 2σ(I) | intensity decay: none |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 0.98 | Calculated w = 1/[σ2(Fo2) + (0.0492P)2 + 0.4638P] where P = (Fo2 + 2Fc2)/3 |
2379 reflections | (Δ/σ)max < 0.001 |
136 parameters | Δρmax = 0.51 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
Crystal data top
[Ni(C6H15NO3)2](C2H3O2)2 | V = 1096.7 (2) Å3 |
Mr = 475.18 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.123 (1) Å | µ = 0.94 mm−1 |
b = 13.219 (2) Å | T = 296 K |
c = 9.820 (1) Å | 0.40 × 0.40 × 0.40 mm |
β = 112.17 (6)° | |
Data collection top
Enraf-Nonius CAD-4 diffractometer | Rint = 0.017 |
2524 measured reflections | 3 standard reflections every 250 reflections |
2379 independent reflections | intensity decay: none |
2048 reflections with I > 2σ(I) | |
Refinement top
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 0.98 | Δρmax = 0.51 e Å−3 |
2379 reflections | Δρmin = −0.27 e Å−3 |
136 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement on F2 for ALL reflections except for 0 with very negative
F2 or flagged by the user for potential systematic errors. Weighted
R-factors wR and all goodnesses of fit S are based on
F2, conventional R-factors R are based on F,
with F set to zero for negative F2. The observed criterion of
F2 > σ(F2) is used only for calculating R-factor-obs
etc. and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Ni1 | 0.0000 | 0.0000 | 0.0000 | 0.02587 (10) | |
O1 | −0.2945 (2) | −0.08394 (12) | 0.34039 (15) | 0.0516 (4) | |
H1 | −0.3766 | −0.1143 | 0.2940 | 0 | |
O2 | 0.21979 (15) | −0.00995 (9) | 0.17099 (13) | 0.0344 (3) | |
H2 | 0.2757 | −0.0548 | 0.1587 | 0 | |
O3 | 0.01338 (14) | 0.15305 (9) | 0.04444 (14) | 0.0342 (3) | |
H3 | −0.0701 | 0.1846 | 0.0170 | 0 | |
O4 | 0.4124 (2) | 0.84668 (11) | 0.1654 (2) | 0.0549 (4) | |
O5 | 0.2379 (2) | 0.74044 (11) | 0.0168 (2) | 0.0580 (4) | |
N1 | −0.0782 (2) | −0.04235 (11) | 0.16804 (14) | 0.0302 (3) | |
C1 | 0.2085 (2) | −0.0224 (2) | 0.3124 (2) | 0.0422 (4) | |
H1A | 0.2834 | 0.0222 | 0.3834 | 0 | |
H1B | 0.2348 | −0.0915 | 0.3458 | 0 | |
C2 | 0.0422 (2) | 0.00191 (14) | 0.3017 (2) | 0.0391 (4) | |
H2A | 0.0272 | −0.02427 | 0.3878 | 0 | |
H2B | 0.0286 | 0.07473 | 0.3001 | 0 | |
C3 | −0.2384 (2) | −0.00026 (13) | 0.1397 (2) | 0.0381 (4) | |
H3A | −0.3150 | −0.04178 | 0.0650 | 0 | |
H3B | −0.2432 | 0.06687 | 0.0984 | 0 | |
C4 | −0.2912 (3) | 0.0078 (2) | 0.2693 (2) | 0.0462 (5) | |
H4A | −0.2206 | 0.0541 | 0.3409 | 0 | |
H4B | −0.3964 | 0.0372 | 0.2346 | 0 | |
C5 | 0.0768 (2) | 0.15532 (13) | −0.1723 (2) | 0.0363 (4) | |
H5A | −0.0269 | 0.17908 | −0.2365 | 0 | |
H5B | 0.1538 | 0.17929 | −0.2111 | 0 | |
C6 | 0.1162 (2) | 0.19649 (13) | −0.0191 (2) | 0.0382 (4) | |
H6A | 0.2253 | 0.18070 | 0.0414 | 0 | |
H6B | 0.1043 | 0.26948 | −0.0232 | 0 | |
C7 | 0.3762 (2) | 0.76707 (14) | 0.0914 (2) | 0.0402 (4) | |
C8 | 0.5091 (3) | 0.6992 (2) | 0.0898 (3) | 0.0572 (6) | |
H8A | 0.6089 | 0.7279 | 0.1511 | 0 | |
H8B | 0.5050 | 0.6932 | −0.0091 | 0 | |
H8C | 0.4978 | 0.6335 | 0.1262 | 0 | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Ni1 | 0.0305 (2) | 0.0236 (2) | 0.0225 (2) | −0.00088 (10) | 0.00886 (11) | −0.00019 (10) |
O1 | 0.0476 (8) | 0.0707 (10) | 0.0385 (7) | −0.0038 (7) | 0.0185 (6) | 0.0085 (7) |
O2 | 0.0351 (6) | 0.0365 (7) | 0.0292 (6) | 0.0019 (5) | 0.0093 (5) | 0.0005 (5) |
O3 | 0.0392 (6) | 0.0273 (6) | 0.0364 (6) | 0.0015 (5) | 0.0145 (5) | −0.0022 (5) |
O4 | 0.0431 (8) | 0.0475 (8) | 0.0633 (9) | 0.0062 (6) | 0.0081 (7) | −0.0122 (7) |
O5 | 0.0369 (7) | 0.0445 (8) | 0.0835 (11) | 0.0044 (6) | 0.0126 (7) | −0.0126 (7) |
N1 | 0.0345 (7) | 0.0287 (7) | 0.0266 (6) | −0.0012 (6) | 0.0105 (6) | 0.0002 (5) |
C1 | 0.0410 (10) | 0.0524 (11) | 0.0264 (8) | −0.0084 (8) | 0.0050 (7) | 0.0019 (7) |
C2 | 0.0464 (10) | 0.0448 (10) | 0.0254 (8) | −0.0083 (8) | 0.0128 (7) | −0.0042 (7) |
C3 | 0.0400 (9) | 0.0406 (10) | 0.0355 (9) | 0.0059 (7) | 0.0164 (8) | 0.0040 (7) |
C4 | 0.0465 (11) | 0.0544 (12) | 0.0428 (10) | 0.0017 (9) | 0.0228 (9) | −0.0040 (8) |
C5 | 0.0416 (9) | 0.0308 (8) | 0.0368 (9) | −0.0025 (7) | 0.0151 (7) | 0.0057 (7) |
C6 | 0.0415 (10) | 0.0293 (8) | 0.0432 (10) | −0.0056 (7) | 0.0153 (8) | −0.0033 (7) |
C7 | 0.0385 (9) | 0.0361 (9) | 0.0459 (10) | 0.0039 (7) | 0.0159 (8) | 0.0037 (8) |
C8 | 0.0399 (11) | 0.0516 (12) | 0.078 (2) | 0.0046 (9) | 0.0203 (10) | −0.0091 (11) |
Geometric parameters (Å, º) top
Ni1—O3i | 2.0636 (12) | N1—C2 | 1.477 (2) |
Ni1—O2i | 2.078 (2) | N1—C3 | 1.489 (2) |
Ni1—N1i | 2.1055 (14) | N1—C5i | 1.494 (2) |
Ni1—N1 | 2.1055 (14) | C1—C2 | 1.515 (3) |
O1—C4 | 1.405 (2) | C3—C4 | 1.525 (3) |
O2—C1 | 1.440 (2) | C5—N1i | 1.494 (2) |
O3—C6 | 1.429 (2) | C5—C6 | 1.510 (2) |
O4—C7 | 1.251 (2) | C7—C8 | 1.513 (3) |
O5—C7 | 1.247 (2) | | |
| | | |
O3i—Ni1—O2i | 85.93 (5) | C5i—N1—Ni1 | 106.61 (10) |
O3i—Ni1—N1i | 96.05 (5) | O2—C1—C2 | 110.1 (2) |
O2i—Ni1—N1i | 81.88 (5) | N1—C2—C1 | 111.5 (2) |
O3i—Ni1—N1 | 83.95 (5) | N1—C3—C4 | 117.9 (2) |
O2i—Ni1—N1 | 98.12 (5) | O1—C4—C3 | 115.2 (2) |
N1i—Ni1—N1 | 180.0 | N1i—C5—C6 | 109.64 (14) |
C2—N1—C3 | 111.49 (15) | O3—C6—C5 | 109.98 (14) |
C2—N1—C5i | 112.05 (13) | O5—C7—O4 | 124.4 (2) |
C3—N1—C5i | 112.09 (13) | O5—C7—C8 | 117.6 (2) |
C2—N1—Ni1 | 103.46 (10) | O4—C7—C8 | 117.9 (2) |
C3—N1—Ni1 | 110.68 (11) | | |
| | | |
O3i—Ni1—N1—C2 | 125.78 (11) | C3—N1—C2—C1 | −167.35 (15) |
O2i—Ni1—N1—C2 | −149.22 (11) | C5i—N1—C2—C1 | 66.1 (2) |
N1i—Ni1—N1—C2 | −103 (3) | Ni1—N1—C2—C1 | −48.4 (2) |
O3i—Ni1—N1—C3 | −114.68 (12) | O2—C1—C2—N1 | 43.2 (2) |
O2i—Ni1—N1—C3 | −29.68 (12) | C2—N1—C3—C4 | −45.4 (2) |
N1i—Ni1—N1—C3 | 17 (3) | C5i—N1—C3—C4 | 81.1 (2) |
O3i—Ni1—N1—C5i | 7.47 (10) | Ni1—N1—C3—C4 | −160.03 (13) |
O2i—Ni1—N1—C5i | 92.47 (10) | N1—C3—C4—O1 | −59.0 (2) |
N1i—Ni1—N1—C5i | 139 (3) | N1i—C5—C6—O3 | −53.3 (2) |
Symmetry code: (i) −x, −y, −z. |
Experimental details
Crystal data |
Chemical formula | [Ni(C6H15NO3)2](C2H3O2)2 |
Mr | 475.18 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 9.123 (1), 13.219 (2), 9.820 (1) |
β (°) | 112.17 (6) |
V (Å3) | 1096.7 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.94 |
Crystal size (mm) | 0.40 × 0.40 × 0.40 |
|
Data collection |
Diffractometer | Enraf-Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2524, 2379, 2048 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.637 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.077, 0.98 |
No. of reflections | 2379 |
No. of parameters | 136 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.51, −0.27 |
Selected geometric parameters (Å, º) topNi1—O3i | 2.0636 (12) | Ni1—N1i | 2.1055 (14) |
Ni1—O2i | 2.078 (2) | | |
| | | |
O3i—Ni1—O2i | 85.93 (5) | O3i—Ni1—N1 | 83.95 (5) |
O2i—Ni1—N1i | 81.88 (5) | | |
Symmetry code: (i) −x, −y, −z. |
The Ni2+ cation is coordinated by two molecules of triethanolamine,forming an octahedron. This octahedron shows only a slight distortion compared with the Jahn–Teller distortion of Cu2+ in the isostructural compound [Cu{N(CH2CH2OH)3}2](CH3COO)2 (Krabbes et al., 1999). Acetate ions are linked by hydrogen bonds to the triethanolamine hydroxyl groups of the [Ni{N(CH2CH2OH)3}2]2+ complex cation. Each acetate ion is linked by two hydrogen bonds to the coordinated hydroxyl groups of the complex cation and by a third hydrogen bond to the free hydroxyl group of a second complex cation species. This causes the formation of chains along the a axis. Table 1 contains the interatomic distances and angles of the title compound, (I). The IR spectrum of the complex shows absorption bands of associated hydroxyl groups at 3260 and 3035 cm-1. Between 3000 and 2400 cm-1, the typical absorption bands of O—H···O-chelates are observed. Valence vibrations of carboxyl groups occur at 1545 (νas) and 1415 cm-1 (νs).