Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536812043449/qm2086sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536812043449/qm2086Isup2.hkl | |
Chemdraw file https://doi.org/10.1107/S1600536812043449/qm2086Isup3.cdx | |
Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536812043449/qm2086Isup4.cml |
CCDC reference: 909888
Key indicators
- Single-crystal X-ray study
- T = 193 K
- Mean (C-C) = 0.002 Å
- Disorder in main residue
- R factor = 0.040
- wR factor = 0.108
- Data-to-parameter ratio = 18.8
checkCIF/PLATON results
No syntax errors found
Alert level C STRVA01_ALERT_4_C Flack test results are meaningless. From the CIF: _refine_ls_abs_structure_Flack 0.200 From the CIF: _refine_ls_abs_structure_Flack_su 0.700 PLAT411_ALERT_2_C Short Inter H...H Contact H21A .. H15* .. 2.14 Ang. PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 2
Alert level G REFLT03_ALERT_4_G ALERT: MoKa measured Friedel data cannot be used to determine absolute structure in a light-atom study EXCEPT under VERY special conditions. It is preferred that Friedel data is merged in such cases. From the CIF: _diffrn_reflns_theta_max 30.00 From the CIF: _reflns_number_total 6195 Count of symmetry unique reflns 3364 Completeness (_total/calc) 184.16% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2831 Fraction of Friedel pairs measured 0.842 Are heavy atom types Z>Si present no PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 11 PLAT003_ALERT_2_G Number of Uiso or Uij Restrained Atom Sites .... 10 PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF .... ? PLAT032_ALERT_4_G Std. Uncertainty on Flack Parameter Value High . 0.700 PLAT301_ALERT_3_G Note: Main Residue Disorder ................... 16 Perc. PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .......... 9 PLAT791_ALERT_4_G Note: The Model has Chirality at C2 (Verify) S PLAT791_ALERT_4_G Note: The Model has Chirality at C4 (Verify) R PLAT791_ALERT_4_G Note: The Model has Chirality at C5 (Verify) R PLAT791_ALERT_4_G Note: The Model has Chirality at C8 (Verify) R PLAT791_ALERT_4_G Note: The Model has Chirality at C9 (Verify) R PLAT791_ALERT_4_G Note: The Model has Chirality at C10 (Verify) R PLAT811_ALERT_5_G No ADDSYM Analysis: Too Many Excluded Atoms .... ! PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 181 PLAT916_ALERT_2_G Hooft y and Flack x Parameter values differ by . 0.20
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 16 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 10 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check
Compound (1) was prepared as described previously, by treatment of salvinorin B with CH3OCH2Cl and i-Pr2NEt in anhydrous CH2Cl2, and purified by flash chromatography on silica gel (Béguin et al., 2009). Amended characterization data have been reported elsewhere (Munro et al., 2008). Dissolution of 200 mg in minimal boiling methanol (~3 ml) and slow cooling gave colourless needles, mp 165–167 °C (438–440 K).
The 3-furyl substituent was treated with a two-site disorder model consisting of [O8, C13, C14, C15, C16] and [O8*, C13*, C14*, C15*, C16*] with refined site occupancy factors of 0.66 (2) and 0.34 (2), respectively. These ten atoms were included in the least-squares refinement with rigid bond, similar Uij, common plane and 1,2-distance restraints. All H atoms were allowed to ride on their respective C atoms with C—H distances constrained to the SHELXTL (Sheldrick, 2008) default values for the specified functional groups at 193 K, i.e., 0.95, 0.98, 0.99 and 1.00 Å for the olefic, methyl, methylene and methine H atoms, respectively. The Uiso(H) values were set at 1.5Ueq(C) for the methyl H atoms and 1.2Ueq(C) for all others. The Flack parameter obtained [x = 0.2 (7)] was inconclusive. The absolute stereochemistry of salvinorin B has been established via the p-bromobenzoate (Tidgewell et al., 2006).
Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and pyMOL (DeLano, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
C23H30O8 | F(000) = 928 |
Mr = 434.47 | Dx = 1.355 Mg m−3 |
Monoclinic, C2 | Melting point = 438–440 K |
Hall symbol: C 2y | Mo Kα radiation, λ = 0.71073 Å |
a = 27.8848 (7) Å | Cell parameters from 9071 reflections |
b = 6.2415 (2) Å | θ = 3.0–29.5° |
c = 12.8212 (3) Å | µ = 0.10 mm−1 |
β = 107.351 (1)° | T = 193 K |
V = 2129.9 (1) Å3 | Needle, colourless |
Z = 4 | 0.25 × 0.13 × 0.07 mm |
Bruker APEXII CCD diffractometer | 6195 independent reflections |
Radiation source: fine-focus sealed tube | 5296 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 836.6 pixels mm-1 | θmax = 30.0°, θmin = 1.9° |
ω scans, 2580 0.5° rotations | h = −38→38 |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | k = −8→8 |
Tmin = 0.975, Tmax = 0.993 | l = −18→18 |
27784 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.062P)2 + 0.2734P] where P = (Fo2 + 2Fc2)/3 |
6195 reflections | (Δ/σ)max = 0.001 |
330 parameters | Δρmax = 0.28 e Å−3 |
181 restraints | Δρmin = −0.16 e Å−3 |
C23H30O8 | V = 2129.9 (1) Å3 |
Mr = 434.47 | Z = 4 |
Monoclinic, C2 | Mo Kα radiation |
a = 27.8848 (7) Å | µ = 0.10 mm−1 |
b = 6.2415 (2) Å | T = 193 K |
c = 12.8212 (3) Å | 0.25 × 0.13 × 0.07 mm |
β = 107.351 (1)° |
Bruker APEXII CCD diffractometer | 6195 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 5296 reflections with I > 2σ(I) |
Tmin = 0.975, Tmax = 0.993 | Rint = 0.033 |
27784 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 181 restraints |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.28 e Å−3 |
6195 reflections | Δρmin = −0.16 e Å−3 |
330 parameters |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.34600 (4) | 1.0459 (2) | 0.20598 (9) | 0.0363 (3) | |
O2 | 0.37399 (4) | 1.1271 (2) | 0.02768 (10) | 0.0382 (3) | |
O3 | 0.28986 (5) | 1.1470 (3) | −0.07126 (12) | 0.0533 (3) | |
O4 | 0.50180 (4) | 0.3453 (2) | 0.13791 (9) | 0.0347 (2) | |
O5 | 0.53410 (4) | 0.6752 (2) | 0.15051 (11) | 0.0434 (3) | |
O6 | 0.31648 (4) | 0.4502 (3) | 0.48120 (9) | 0.0436 (3) | |
O7 | 0.39036 (5) | 0.3347 (3) | 0.57679 (9) | 0.0458 (3) | |
O8 | 0.1529 (2) | 0.3841 (16) | 0.3150 (5) | 0.0598 (16) | 0.66 (2) |
O8* | 0.1624 (5) | 0.306 (3) | 0.3130 (11) | 0.065 (3) | 0.34 (2) |
C1 | 0.36787 (5) | 0.9006 (2) | 0.17700 (11) | 0.0249 (3) | |
C2 | 0.38017 (5) | 0.9135 (3) | 0.06823 (11) | 0.0283 (3) | |
H2 | 0.3558 | 0.8201 | 0.0142 | 0.034* | |
C3 | 0.43320 (5) | 0.8377 (3) | 0.07636 (12) | 0.0315 (3) | |
H3A | 0.4360 | 0.8163 | 0.0019 | 0.038* | |
H3B | 0.4576 | 0.9499 | 0.1126 | 0.038* | |
C4 | 0.44644 (5) | 0.6293 (3) | 0.14044 (11) | 0.0257 (3) | |
H4 | 0.4222 | 0.5171 | 0.1007 | 0.031* | |
C5 | 0.44100 (5) | 0.6503 (2) | 0.25776 (11) | 0.0228 (2) | |
C6 | 0.45549 (5) | 0.4362 (3) | 0.31852 (12) | 0.0267 (3) | |
H6A | 0.4396 | 0.3176 | 0.2690 | 0.032* | |
H6B | 0.4924 | 0.4176 | 0.3379 | 0.032* | |
C7 | 0.43961 (5) | 0.4217 (3) | 0.42203 (11) | 0.0274 (3) | |
H7A | 0.4498 | 0.2813 | 0.4576 | 0.033* | |
H7B | 0.4565 | 0.5355 | 0.4738 | 0.033* | |
C8 | 0.38318 (5) | 0.4474 (2) | 0.39397 (11) | 0.0244 (3) | |
H8 | 0.3678 | 0.3340 | 0.3391 | 0.029* | |
C9 | 0.36365 (5) | 0.6644 (2) | 0.34072 (11) | 0.0237 (2) | |
C10 | 0.38330 (5) | 0.6924 (2) | 0.23975 (11) | 0.0223 (2) | |
H10 | 0.3658 | 0.5780 | 0.1877 | 0.027* | |
C11 | 0.30621 (5) | 0.6350 (3) | 0.30016 (11) | 0.0291 (3) | |
H11A | 0.2906 | 0.7691 | 0.2645 | 0.035* | |
H11B | 0.2980 | 0.5199 | 0.2445 | 0.035* | |
C12 | 0.28354 (5) | 0.5783 (3) | 0.39194 (12) | 0.0320 (3) | |
H12 | 0.2766 | 0.7162 | 0.4245 | 0.038* | 0.66 (2) |
H12* | 0.2744 | 0.7138 | 0.4231 | 0.038* | 0.34 (2) |
C13 | 0.2346 (2) | 0.4602 (14) | 0.3521 (11) | 0.0399 (14) | 0.66 (2) |
C14 | 0.2245 (3) | 0.2544 (13) | 0.3026 (9) | 0.0608 (16) | 0.66 (2) |
H14 | 0.2486 | 0.1629 | 0.2865 | 0.073* | 0.66 (2) |
C15 | 0.1763 (4) | 0.2117 (11) | 0.2826 (5) | 0.0577 (16) | 0.66 (2) |
H15 | 0.1602 | 0.0830 | 0.2510 | 0.069* | 0.66 (2) |
C16 | 0.1899 (2) | 0.5337 (15) | 0.3570 (8) | 0.0508 (17) | 0.66 (2) |
H16 | 0.1847 | 0.6694 | 0.3853 | 0.061* | 0.66 (2) |
C13* | 0.2374 (3) | 0.442 (2) | 0.351 (2) | 0.032 (2) | 0.34 (2) |
C14* | 0.2354 (5) | 0.241 (2) | 0.2978 (16) | 0.044 (2) | 0.34 (2) |
H14* | 0.2634 | 0.1718 | 0.2848 | 0.052* | 0.34 (2) |
C15* | 0.1891 (5) | 0.165 (2) | 0.2686 (15) | 0.062 (3) | 0.34 (2) |
H15* | 0.1769 | 0.0408 | 0.2264 | 0.075* | 0.34 (2) |
C16* | 0.1910 (4) | 0.481 (3) | 0.3591 (14) | 0.042 (2) | 0.34 (2) |
H16* | 0.1802 | 0.6040 | 0.3898 | 0.051* | 0.34 (2) |
C17 | 0.36481 (6) | 0.4082 (3) | 0.49147 (12) | 0.0321 (3) | |
C18 | 0.49892 (5) | 0.5576 (3) | 0.14339 (12) | 0.0295 (3) | |
C19 | 0.47495 (5) | 0.8301 (3) | 0.32085 (12) | 0.0293 (3) | |
H19A | 0.5088 | 0.8135 | 0.3138 | 0.044* | |
H19B | 0.4766 | 0.8225 | 0.3982 | 0.044* | |
H19C | 0.4612 | 0.9692 | 0.2909 | 0.044* | |
C20 | 0.37823 (6) | 0.8467 (3) | 0.42559 (12) | 0.0314 (3) | |
H20A | 0.3662 | 0.8125 | 0.4881 | 0.047* | |
H20B | 0.3629 | 0.9810 | 0.3921 | 0.047* | |
H20C | 0.4149 | 0.8623 | 0.4505 | 0.047* | |
C21 | 0.33854 (7) | 1.1533 (4) | −0.07497 (15) | 0.0486 (5) | |
H21A | 0.3445 | 1.2925 | −0.1060 | 0.058* | |
H21B | 0.3433 | 1.0389 | −0.1244 | 0.058* | |
C22 | 0.27678 (9) | 1.3292 (5) | −0.0192 (2) | 0.0654 (6) | |
H22A | 0.2403 | 1.3332 | −0.0332 | 0.098* | |
H22B | 0.2877 | 1.4595 | −0.0482 | 0.098* | |
H22C | 0.2933 | 1.3206 | 0.0597 | 0.098* | |
C23 | 0.55100 (6) | 0.2564 (3) | 0.14724 (16) | 0.0407 (4) | |
H23A | 0.5492 | 0.0996 | 0.1474 | 0.061* | |
H23B | 0.5751 | 0.3056 | 0.2155 | 0.061* | |
H23C | 0.5620 | 0.3039 | 0.0851 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0463 (6) | 0.0288 (5) | 0.0338 (6) | 0.0112 (5) | 0.0120 (5) | 0.0024 (4) |
O2 | 0.0313 (5) | 0.0392 (6) | 0.0420 (6) | 0.0014 (5) | 0.0073 (4) | 0.0178 (5) |
O3 | 0.0365 (6) | 0.0615 (9) | 0.0539 (8) | 0.0058 (6) | 0.0015 (5) | −0.0023 (7) |
O4 | 0.0311 (5) | 0.0329 (5) | 0.0440 (6) | 0.0031 (4) | 0.0170 (5) | −0.0081 (5) |
O5 | 0.0319 (5) | 0.0406 (7) | 0.0629 (8) | −0.0012 (5) | 0.0221 (5) | 0.0062 (6) |
O6 | 0.0355 (6) | 0.0683 (8) | 0.0309 (6) | 0.0052 (6) | 0.0160 (5) | 0.0144 (6) |
O7 | 0.0433 (6) | 0.0649 (8) | 0.0291 (6) | 0.0023 (6) | 0.0105 (5) | 0.0140 (6) |
O8 | 0.0397 (17) | 0.096 (4) | 0.0512 (16) | −0.019 (2) | 0.0254 (14) | −0.016 (2) |
O8* | 0.047 (4) | 0.086 (7) | 0.072 (5) | −0.019 (4) | 0.032 (3) | 0.007 (4) |
C1 | 0.0239 (6) | 0.0249 (6) | 0.0237 (6) | −0.0013 (5) | 0.0039 (5) | −0.0001 (5) |
C2 | 0.0283 (6) | 0.0299 (7) | 0.0266 (6) | −0.0006 (6) | 0.0081 (5) | 0.0056 (6) |
C3 | 0.0312 (7) | 0.0364 (7) | 0.0297 (7) | 0.0035 (6) | 0.0135 (6) | 0.0075 (6) |
C4 | 0.0252 (6) | 0.0288 (7) | 0.0250 (6) | −0.0006 (5) | 0.0103 (5) | 0.0000 (5) |
C5 | 0.0239 (6) | 0.0211 (6) | 0.0239 (6) | −0.0001 (5) | 0.0077 (5) | 0.0000 (5) |
C6 | 0.0291 (7) | 0.0223 (6) | 0.0301 (7) | 0.0026 (5) | 0.0109 (5) | 0.0021 (5) |
C7 | 0.0289 (6) | 0.0265 (6) | 0.0269 (6) | 0.0026 (5) | 0.0082 (5) | 0.0051 (5) |
C8 | 0.0284 (6) | 0.0227 (6) | 0.0228 (6) | −0.0021 (5) | 0.0086 (5) | −0.0002 (5) |
C9 | 0.0257 (6) | 0.0239 (6) | 0.0227 (6) | 0.0010 (5) | 0.0094 (5) | −0.0004 (5) |
C10 | 0.0247 (6) | 0.0215 (6) | 0.0213 (6) | −0.0004 (5) | 0.0078 (5) | −0.0006 (5) |
C11 | 0.0267 (6) | 0.0371 (7) | 0.0254 (7) | 0.0017 (6) | 0.0107 (5) | 0.0028 (6) |
C12 | 0.0308 (7) | 0.0376 (8) | 0.0306 (7) | 0.0020 (6) | 0.0137 (6) | 0.0021 (6) |
C13 | 0.045 (3) | 0.040 (2) | 0.037 (3) | −0.006 (2) | 0.015 (3) | 0.007 (2) |
C14 | 0.060 (3) | 0.046 (2) | 0.083 (3) | 0.001 (3) | 0.033 (3) | 0.001 (2) |
C15 | 0.064 (4) | 0.057 (3) | 0.063 (2) | −0.024 (3) | 0.035 (2) | −0.015 (2) |
C16 | 0.043 (2) | 0.071 (4) | 0.042 (3) | −0.007 (2) | 0.0173 (18) | −0.008 (3) |
C13* | 0.022 (3) | 0.043 (5) | 0.037 (5) | 0.005 (3) | 0.018 (3) | 0.003 (4) |
C14* | 0.035 (3) | 0.031 (3) | 0.070 (4) | −0.011 (3) | 0.024 (3) | −0.017 (3) |
C15* | 0.046 (5) | 0.049 (4) | 0.098 (6) | −0.022 (4) | 0.031 (4) | −0.010 (4) |
C16* | 0.034 (4) | 0.067 (5) | 0.038 (4) | 0.007 (3) | 0.030 (3) | 0.012 (4) |
C17 | 0.0345 (7) | 0.0362 (8) | 0.0271 (7) | −0.0030 (6) | 0.0114 (6) | 0.0015 (6) |
C18 | 0.0281 (7) | 0.0346 (7) | 0.0285 (7) | 0.0012 (6) | 0.0126 (6) | 0.0014 (6) |
C19 | 0.0300 (7) | 0.0259 (6) | 0.0309 (7) | −0.0046 (6) | 0.0073 (5) | −0.0023 (6) |
C20 | 0.0402 (8) | 0.0281 (7) | 0.0273 (7) | −0.0001 (6) | 0.0121 (6) | −0.0041 (6) |
C21 | 0.0445 (9) | 0.0660 (12) | 0.0357 (9) | 0.0152 (9) | 0.0126 (7) | 0.0210 (9) |
C22 | 0.0532 (12) | 0.0669 (14) | 0.0752 (15) | 0.0227 (11) | 0.0176 (11) | 0.0014 (13) |
C23 | 0.0338 (8) | 0.0450 (9) | 0.0468 (10) | 0.0088 (7) | 0.0172 (7) | −0.0058 (7) |
O1—C1 | 1.2112 (17) | C9—C11 | 1.5404 (19) |
O2—C21 | 1.400 (2) | C9—C20 | 1.543 (2) |
O2—C2 | 1.4225 (18) | C9—C10 | 1.5586 (17) |
O3—C21 | 1.373 (2) | C10—H10 | 1.0000 |
O3—C22 | 1.420 (3) | C11—C12 | 1.5340 (19) |
O4—C18 | 1.3305 (19) | C11—H11A | 0.9900 |
O4—C23 | 1.4513 (18) | C11—H11B | 0.9900 |
O5—C18 | 1.2067 (19) | C12—C13* | 1.500 (3) |
O6—C17 | 1.3404 (18) | C12—C13 | 1.501 (2) |
O6—C12 | 1.4715 (19) | C12—H12 | 1.0000 |
O7—C17 | 1.2040 (19) | C12—H12* | 1.0000 |
O8—C16 | 1.377 (3) | C13—C16 | 1.346 (3) |
O8—C15 | 1.385 (3) | C13—C14 | 1.423 (3) |
O8*—C16* | 1.378 (3) | C14—C15 | 1.320 (3) |
O8*—C15* | 1.380 (3) | C14—H14 | 0.9500 |
C1—C10 | 1.5214 (18) | C15—H15 | 0.9500 |
C1—C2 | 1.5344 (18) | C16—H16 | 0.9500 |
C2—C3 | 1.5263 (19) | C13*—C16* | 1.349 (3) |
C2—H2 | 1.0000 | C13*—C14* | 1.423 (3) |
C3—C4 | 1.524 (2) | C14*—C15* | 1.320 (3) |
C3—H3A | 0.9900 | C14*—H14* | 0.9500 |
C3—H3B | 0.9900 | C15*—H15* | 0.9500 |
C4—C18 | 1.5198 (19) | C16*—H16* | 0.9500 |
C4—C5 | 1.5617 (18) | C19—H19A | 0.9800 |
C4—H4 | 1.0000 | C19—H19B | 0.9800 |
C5—C19 | 1.5340 (19) | C19—H19C | 0.9800 |
C5—C6 | 1.5390 (19) | C20—H20A | 0.9800 |
C5—C10 | 1.5778 (17) | C20—H20B | 0.9800 |
C6—C7 | 1.5216 (19) | C20—H20C | 0.9800 |
C6—H6A | 0.9900 | C21—H21A | 0.9900 |
C6—H6B | 0.9900 | C21—H21B | 0.9900 |
C7—C8 | 1.5147 (19) | C22—H22A | 0.9800 |
C7—H7A | 0.9900 | C22—H22B | 0.9800 |
C7—H7B | 0.9900 | C22—H22C | 0.9800 |
C8—C17 | 1.5054 (18) | C23—H23A | 0.9800 |
C8—C9 | 1.5415 (19) | C23—H23B | 0.9800 |
C8—H8 | 1.0000 | C23—H23C | 0.9800 |
C21—O2—C2 | 115.33 (14) | O6—C12—C13 | 106.9 (5) |
C21—O3—C22 | 112.85 (17) | O6—C12—C11 | 114.68 (11) |
C18—O4—C23 | 116.56 (13) | C13*—C12—C11 | 111.9 (9) |
C17—O6—C12 | 123.97 (11) | C13—C12—C11 | 113.2 (5) |
C16—O8—C15 | 106.2 (4) | O6—C12—H12 | 107.2 |
C16*—O8*—C15* | 111.6 (8) | C13—C12—H12 | 107.2 |
O1—C1—C10 | 124.47 (12) | C11—C12—H12 | 107.2 |
O1—C1—C2 | 120.59 (12) | O6—C12—H12* | 108.8 |
C10—C1—C2 | 114.89 (11) | C13*—C12—H12* | 108.8 |
O2—C2—C3 | 108.95 (11) | C11—C12—H12* | 108.8 |
O2—C2—C1 | 110.23 (12) | C16—C13—C14 | 105.5 (4) |
C3—C2—C1 | 113.35 (11) | C16—C13—C12 | 125.2 (5) |
O2—C2—H2 | 108.1 | C14—C13—C12 | 129.3 (6) |
C3—C2—H2 | 108.1 | C15—C14—C13 | 108.8 (4) |
C1—C2—H2 | 108.1 | C15—C14—H14 | 125.6 |
C4—C3—C2 | 112.05 (11) | C13—C14—H14 | 125.6 |
C4—C3—H3A | 109.2 | C14—C15—O8 | 109.2 (4) |
C2—C3—H3A | 109.2 | C14—C15—H15 | 125.4 |
C4—C3—H3B | 109.2 | O8—C15—H15 | 125.4 |
C2—C3—H3B | 109.2 | C13—C16—O8 | 110.3 (4) |
H3A—C3—H3B | 107.9 | C13—C16—H16 | 124.8 |
C18—C4—C3 | 109.94 (11) | O8—C16—H16 | 124.8 |
C18—C4—C5 | 111.73 (11) | C16*—C13*—C14* | 107.1 (6) |
C3—C4—C5 | 111.70 (11) | C16*—C13*—C12 | 128.0 (8) |
C18—C4—H4 | 107.8 | C14*—C13*—C12 | 124.9 (8) |
C3—C4—H4 | 107.8 | C15*—C14*—C13* | 110.3 (8) |
C5—C4—H4 | 107.8 | C15*—C14*—H14* | 124.8 |
C19—C5—C6 | 109.92 (11) | C13*—C14*—H14* | 124.8 |
C19—C5—C4 | 110.34 (10) | C14*—C15*—O8* | 104.9 (9) |
C6—C5—C4 | 109.16 (11) | C14*—C15*—H15* | 127.6 |
C19—C5—C10 | 113.43 (11) | O8*—C15*—H15* | 127.6 |
C6—C5—C10 | 108.71 (10) | C13*—C16*—O8* | 105.6 (7) |
C4—C5—C10 | 105.12 (10) | C13*—C16*—H16* | 127.2 |
C7—C6—C5 | 113.11 (11) | O8*—C16*—H16* | 127.2 |
C7—C6—H6A | 109.0 | O7—C17—O6 | 117.96 (13) |
C5—C6—H6A | 109.0 | O7—C17—C8 | 124.09 (14) |
C7—C6—H6B | 109.0 | O6—C17—C8 | 117.89 (12) |
C5—C6—H6B | 109.0 | O5—C18—O4 | 123.31 (13) |
H6A—C6—H6B | 107.8 | O5—C18—C4 | 125.31 (14) |
C8—C7—C6 | 109.78 (11) | O4—C18—C4 | 111.38 (12) |
C8—C7—H7A | 109.7 | C5—C19—H19A | 109.5 |
C6—C7—H7A | 109.7 | C5—C19—H19B | 109.5 |
C8—C7—H7B | 109.7 | H19A—C19—H19B | 109.5 |
C6—C7—H7B | 109.7 | C5—C19—H19C | 109.5 |
H7A—C7—H7B | 108.2 | H19A—C19—H19C | 109.5 |
C17—C8—C7 | 111.86 (11) | H19B—C19—H19C | 109.5 |
C17—C8—C9 | 110.35 (11) | C9—C20—H20A | 109.5 |
C7—C8—C9 | 113.75 (11) | C9—C20—H20B | 109.5 |
C17—C8—H8 | 106.8 | H20A—C20—H20B | 109.5 |
C7—C8—H8 | 106.8 | C9—C20—H20C | 109.5 |
C9—C8—H8 | 106.8 | H20A—C20—H20C | 109.5 |
C11—C9—C8 | 103.83 (11) | H20B—C20—H20C | 109.5 |
C11—C9—C20 | 110.78 (11) | O3—C21—O2 | 113.10 (14) |
C8—C9—C20 | 110.59 (11) | O3—C21—H21A | 109.0 |
C11—C9—C10 | 108.70 (10) | O2—C21—H21A | 109.0 |
C8—C9—C10 | 107.52 (10) | O3—C21—H21B | 109.0 |
C20—C9—C10 | 114.80 (11) | O2—C21—H21B | 109.0 |
C1—C10—C9 | 114.89 (11) | H21A—C21—H21B | 107.8 |
C1—C10—C5 | 109.55 (10) | O3—C22—H22A | 109.5 |
C9—C10—C5 | 117.10 (10) | O3—C22—H22B | 109.5 |
C1—C10—H10 | 104.6 | H22A—C22—H22B | 109.5 |
C9—C10—H10 | 104.6 | O3—C22—H22C | 109.5 |
C5—C10—H10 | 104.6 | H22A—C22—H22C | 109.5 |
C12—C11—C9 | 113.17 (11) | H22B—C22—H22C | 109.5 |
C12—C11—H11A | 108.9 | O4—C23—H23A | 109.5 |
C9—C11—H11A | 108.9 | O4—C23—H23B | 109.5 |
C12—C11—H11B | 108.9 | H23A—C23—H23B | 109.5 |
C9—C11—H11B | 108.9 | O4—C23—H23C | 109.5 |
H11A—C11—H11B | 107.8 | H23A—C23—H23C | 109.5 |
O6—C12—C13* | 103.5 (10) | H23B—C23—H23C | 109.5 |
C21—O2—C2—C3 | 114.88 (14) | C20—C9—C11—C12 | −60.11 (16) |
C21—O2—C2—C1 | −120.16 (14) | C10—C9—C11—C12 | 172.88 (12) |
O1—C1—C2—O2 | 14.32 (18) | C17—O6—C12—C13* | 130.8 (6) |
C10—C1—C2—O2 | −167.98 (11) | C17—O6—C12—C13 | 134.9 (4) |
O1—C1—C2—C3 | 136.74 (15) | C17—O6—C12—C11 | 8.6 (2) |
C10—C1—C2—C3 | −45.56 (16) | C9—C11—C12—O6 | −32.17 (18) |
O2—C2—C3—C4 | 168.32 (12) | C9—C11—C12—C13* | −149.7 (8) |
C1—C2—C3—C4 | 45.19 (17) | C9—C11—C12—C13 | −155.2 (4) |
C2—C3—C4—C18 | 178.41 (12) | O6—C12—C13—C16 | 116.8 (10) |
C2—C3—C4—C5 | −56.95 (16) | C11—C12—C13—C16 | −115.9 (10) |
C18—C4—C5—C19 | 65.23 (14) | O6—C12—C13—C14 | −63.2 (12) |
C3—C4—C5—C19 | −58.40 (14) | C11—C12—C13—C14 | 64.0 (12) |
C18—C4—C5—C6 | −55.66 (14) | C16—C13—C14—C15 | −1.4 (9) |
C3—C4—C5—C6 | −179.29 (11) | C12—C13—C14—C15 | 178.7 (12) |
C18—C4—C5—C10 | −172.13 (12) | C13—C14—C15—O8 | 1.2 (9) |
C3—C4—C5—C10 | 64.24 (13) | C16—O8—C15—C14 | −0.6 (8) |
C19—C5—C6—C7 | 72.79 (14) | C14—C13—C16—O8 | 1.0 (9) |
C4—C5—C6—C7 | −166.06 (11) | C12—C13—C16—O8 | −179.0 (11) |
C10—C5—C6—C7 | −51.90 (14) | C15—O8—C16—C13 | −0.3 (9) |
C5—C6—C7—C8 | 59.29 (15) | O6—C12—C13*—C16* | 112 (2) |
C6—C7—C8—C17 | 173.22 (12) | C11—C12—C13*—C16* | −123.9 (19) |
C6—C7—C8—C9 | −60.92 (15) | O6—C12—C13*—C14* | −67.1 (19) |
C17—C8—C9—C11 | −63.99 (13) | C11—C12—C13*—C14* | 57 (2) |
C7—C8—C9—C11 | 169.34 (11) | C16*—C13*—C14*—C15* | 3.1 (17) |
C17—C8—C9—C20 | 54.87 (14) | C12—C13*—C14*—C15* | −178 (2) |
C7—C8—C9—C20 | −71.79 (14) | C13*—C14*—C15*—O8* | −5.8 (16) |
C17—C8—C9—C10 | −179.08 (11) | C16*—O8*—C15*—C14* | 6.7 (16) |
C7—C8—C9—C10 | 54.26 (14) | C14*—C13*—C16*—O8* | 1.1 (16) |
O1—C1—C10—C9 | 6.55 (19) | C12—C13*—C16*—O8* | −178 (2) |
C2—C1—C10—C9 | −171.04 (11) | C15*—O8*—C16*—C13* | −4.9 (17) |
O1—C1—C10—C5 | −127.68 (14) | C12—O6—C17—O7 | 167.27 (17) |
C2—C1—C10—C5 | 54.72 (14) | C12—O6—C17—C8 | −15.2 (2) |
C11—C9—C10—C1 | 68.63 (14) | C7—C8—C17—O7 | −10.3 (2) |
C8—C9—C10—C1 | −179.56 (11) | C9—C8—C17—O7 | −138.04 (17) |
C20—C9—C10—C1 | −56.05 (15) | C7—C8—C17—O6 | 172.30 (14) |
C11—C9—C10—C5 | −160.70 (11) | C9—C8—C17—O6 | 44.60 (18) |
C8—C9—C10—C5 | −48.89 (14) | C23—O4—C18—O5 | 3.4 (2) |
C20—C9—C10—C5 | 74.63 (15) | C23—O4—C18—C4 | −176.09 (12) |
C19—C5—C10—C1 | 58.93 (13) | C3—C4—C18—O5 | 36.7 (2) |
C6—C5—C10—C1 | −178.48 (11) | C5—C4—C18—O5 | −87.90 (17) |
C4—C5—C10—C1 | −61.70 (13) | C3—C4—C18—O4 | −143.75 (13) |
C19—C5—C10—C9 | −74.18 (14) | C5—C4—C18—O4 | 91.63 (15) |
C6—C5—C10—C9 | 48.42 (15) | C22—O3—C21—O2 | 69.8 (2) |
C4—C5—C10—C9 | 165.19 (11) | C2—O2—C21—O3 | 76.5 (2) |
C8—C9—C11—C12 | 58.63 (15) |
Experimental details
Crystal data | |
Chemical formula | C23H30O8 |
Mr | 434.47 |
Crystal system, space group | Monoclinic, C2 |
Temperature (K) | 193 |
a, b, c (Å) | 27.8848 (7), 6.2415 (2), 12.8212 (3) |
β (°) | 107.351 (1) |
V (Å3) | 2129.9 (1) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.25 × 0.13 × 0.07 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.975, 0.993 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27784, 6195, 5296 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.108, 1.04 |
No. of reflections | 6195 |
No. of parameters | 330 |
No. of restraints | 181 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.16 |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and pyMOL (DeLano, 2009).
Salvinorin B methoxymethyl ether (1) is among the most potent and selective κ (kappa) opioids known, with subnanomolar affinity and potency (Wang et al., 2008). A semisynthetic derivative of the naturally occurring κ opioid salvinorin A (2), (1) was the first derivative reported to be more potent than (2) in vitro, and also showed greater potency and duration of action in mice (Wang et al., 2008). The extreme potency of (1) has been confirmed both in vitro (Munro et al., 2008, Prevatt-Smith et al., 2011) and in rats (Baker et al., 2009, Peet & Baker, 2011). The name MOM-SalB is widely used; the incorrect name `2-methoxymethylsalvinorin B', implying that the substituent is directly attached to C2, should be avoided.
In Figure 1, the structures of (1) and (2) have been drawn to emphasize their similarity, with O2, C21 and O3 superimposable. The terminal methyl group C22 is attached to O3 in (1) but C21 in (2), and might be expected to interact with different regions of the receptor. Extensive research has been done into the structure-activity relationships of (2), especially the role of the C2 acetate. The deacetyl analogue salvinorin B is at least 60-fold less potent than (2). Deoxygenation or demethylation of the acetate causes smaller reductions in potency (Cunningham et al., 2011). This suggests that the two extremities of the acetate (O3 and C22) engage in separate, synergistic interactions with the binding pocket (Munro et al., 2008). The structure-activity relationships of (1) have also been explored. Potency is dramatically reduced by replacement of O3 with sulfur or carbon (Munro et al., 2008); this similarity to (2) is consistent with the proposed common binding pose. The ethoxymethyl ether (3) appears to be even more potent and selective than (1), both in vitro (Munro et al., 2008, Prevatt-Smith et al., 2011) and in vivo (Baker et al., 2009, Peet & Baker, 2011). Similarly, 12-epi-(3) reportedly exhibits higher affinity than 12-epi-(1) (Béguin et al., 2012). Further extension or branching of the terminal alkyl chain reduces affinity (Munro et al., 2008). Thus, the ethoxymethyl substituent appears to confer optimal affinity and potency. Like (1), (3) is also metabolized more slowly than (2) (Hooker et al., 2009). Based on the above hypothesis that the C22 methyl groups in (1) and (2) address different regions of the binding pocket, ethoxyethyl ether (4) was designed in that hope that it would interact with both of these regions, maximizing affinity. However, upon testing, (4) proved to have much lower affinity and potency than (3) (Munro et al., 2008, Prevatt-Smith et al., 2011). Indeed, all derivatives tested to date featuring substituted acetals, such as (5), exhibit reduced affinity and potency (Munro et al., 2008, Prevatt-Smith et al., 2011). These surprising and disappointing results cast doubt on the proposed binding model. We therefore determined the structure of (1) by single-crystal X-ray diffraction to obtain conformational information (Figure 2).
Other than the disordered furan ring, the neoclerodane scaffold is almost perfectly superimposable (r.m.s. < 0.1 Å) upon that of (2), as expected (Ortega et al., 1982). However, the resulting relationship between the acetate and the MOM ether was unexpected. Both O3 and C22 in (1) overlap with their counterparts in (2), being separated by just 0.9 Å (O3) and 1.2 Å (C22) – less than their atomic radii. The overlapping van der Waals surfaces of O3 and C22 are shown in Figure 3. This result was surprising, given the different point of attachment of C22 in these two compounds (Figure 1). This counterintuitive result occurs because both bonds to the acetal carbon C21 in (1) are gauche (torsion angles: 69.8° (O2—C22) and 76.5° (C2—O3)), allowing the ether to trace a part helix around the planar acetate in (2). This is known as the `classic anomeric' conformation (Anderson, 2000, Brameld et al., 2008). Generally, solid-state conformations coincide closely with the bioactive conformation of the protein-bound ligand (Brameld et al., 2008). This is because both solid-state and bound conformations tend toward the free energy minimum. The similarity is greatest in high-affinity ligands, since any change in conformation during binding requires energy, and this `energetic penalty' reduces affinity (Brameld et al., 2008). As discussed above, structure-activity studies indicate that O3 and C22 contribute substantially to binding of both (2) and (1). The near-superimposability of these atoms in the crystal structures of these two high-affinity ligands suggests that they may represent similar bioactive conformations. Alkoxymethyl ethers invariably adopt the classic anomeric conformation, due to strong anomeric interactions involving both O atoms (Anderson, 2000, Brameld et al., 2008). Interestingly, however, substitution of the acetal carbon introduces steric interactions which greatly reduce this preference. With a methyl substituent, as in (4), the classic anomeric conformation predominates, but is not exclusive. With larger substituents this conformation is strongly disfavoured, and rarely occurs (Anderson, 2000). If the classic anomeric conformation seen in (1) is optimal for binding, acetal substitution would therefore be expected to reduce affinity by this conformational influence, even if the substituents do not themselves interact unfavourably with the receptor. This may contribute to the dramatic reductions in affinity and potency seen even with small acetal substituents (Munro et al., 2008, Prevatt-Smith et al., 2011).
The recently reported crystal structure of the tetrahydropyranyl (THP) ether (5) illustrates this point (Prevatt-Smith et al., 2011). The cyclic acetal does not adopt the classic anomeric conformation, and superimposition on (2) gives much poorer overlap than seen with (1) (Figure 4). Acetal oxygen O3 is separated from its counterpart in (2) by 2.5 Å, and is instead almost coincident with C22 (<0.2 Å). Furthermore, the THP ring is disordered, consisting of a mixture of two interconvertible chair conformations. Thus, the THP ether exhibits weaker conformational preferences than the MOM ether, and much poorer overlap with (2). This may partly account for its lower potency. Our results suggest a possible conformational basis for the high binding affinity of salvinorin B alkoxymethyl ethers such as (1) and (3), and for the reduced affinity of substituted acetal derivatives such as (4) and (5). As a structurally atypical and extremely potent agonist, the structure of (1) reported here may prove useful in modelling the activation of the κ opioid receptor.