Download citation
Download citation
link to html
In the structure of the title compound, [Mn(C11H8N5O)(N3)]n, the Mn atoms are hexa­coordinated by five N atoms and one O atom. The coordination polyhedron of the Mn atom is a slightly distorted octa­hedron. The Mn atoms are connected by azide anions with a μ2-1,1 mode and by 5-(8-quinolyloxymeth­yl)tetra­zolate ligands in a μ21(N),η3-(N,N,O) fashion to form a two-dimensional framework parallel to the (100) plane. Geometric parameters of the organic ligand are in the normal ranges and the dihedral angle between the quinoline ring system and the tetra­zole unit is 7.41 (15)°. The structure involves intra- and inter­molecular C—H...N hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808022617/rk2100sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808022617/rk2100Isup2.hkl
Contains datablock I

CCDC reference: 700379

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.047
  • wR factor = 0.106
  • Data-to-parameter ratio = 16.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for N6 -- N7 .. 5.93 su PLAT230_ALERT_2_C Hirshfeld Test Diff for N7 -- N8 .. 5.48 su
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In the past five years, we have focused on the chemistry of 5–substituted tetrazole because of their multiple coordination modes as ligand to metal ions and the construction of novel metal–organic framework (Wang et al. 2005; Xiong et al. 2002). As part of our on going studies of the chemistry of tetrazole, we determined the crystal structure of the title compound, catena–[(µ2–1,1–azido)–(µ2η1(N), η3–(N,N,O)–((tetrazol–5–yl)methoxy) quinoline)–Manganese], I (Fig. 1).

As shown in Fig. 1, Mn1 is hexa–coordinated by five N and one O atoms, of which two N atoms and one O atom are from one organic ligand (tetrazol–5–yl)methoxy–quinoline, one N atom is from the tetrazole unit of another symmetry–related organic ligand (symmetry code: (iv) x, 3/2-y, 1/2+z) and two N atoms are from two azido anions which are symmetry–related (symmetry code: (iii) 1-x, 2-y, -z). The coordinated geometry of Mn1 is a distorted octahedron. The N4, N5, O1 and N6 atoms form the equatorial plane with mean deviation 0.1615Å of the plane (N4, N5, N6, O1 and Mn1). Geometry parameters of organic ligand are in normal ranges (Wang & Ye, 2007), dihedral angle of quinoline unit and the tetrazole unit is 7.41 (15)°. The Mn atoms are connected by azido anions and by (tetrazol–5–yl)methoxy–quinoline) ligands to form two–dimensional net framework parallel to the (1 0 0) plane (Fig.2). Beside the van der Waals forces, the crystal structure of I is also stabilized by intermolecular C—H···Nii hydrogen bonds. Symmetry code: (ii) x-1, y, z (Fig. 3).

Related literature top

For the use of tetrazole derivatives in coordination chemisty, see: Wang et al. (2005); Xiong et al. (2002). For crystal data of a tetrazole derivative, see: Wang & Ye (2007); For synthesis of 8–cyanatoquinoline, see: Luo & Ye (2008).

Experimental top

The precusor organic compound 8–cyanatoquinoline is was synthesized by using a similar procedure described by us before (Luo & Ye, 2008).A mixture of the organic ligand (34 mg, 0.2 mmol), NaN3 (20 mg, 0.3 mmol), MnCl2(25 mg, 0.2 mmol) and water (1 ml) sealed in a glass tube was maintained at 423 K. Yellow crystals suitable for X–ray analysis were obtained after 2 days.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with d(C—H)methine = 0.98Å, d(C—H)aryl = 0.93Å, Uiso = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The fragment structure of I showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The hydrogen atoms are presented as small spheres of arbitrary radius. Symmetry codes: (iii) 1-x, 2-y, -z; (iv) x, 3/2-y, 1/2+z.
[Figure 2] Fig. 2. Two–dimensional net framework of the title compound view along a axis and all hydrogen atoms are omitted for clarity.
[Figure 3] Fig. 3. Crystal packing of the title compound viewed along the c axis. Hydrogen atoms not included in intermolecular hydrogen bonds are omitted for clarity. Dashed lines show the intermolecular hydrogen bonds.
Poly[(µ2-azido-κ2N1:N1)[µ2-5-(8-quinolyloxymethyl)tetrazolato- κ4N1,O,N5:N4]manganese(II)] top
Crystal data top
[Mn(C11H8N5O)(N3)]F(000) = 652
Mr = 323.19Dx = 1.661 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3074 reflections
a = 10.431 (2) Åθ = 2.8–27.9°
b = 14.431 (3) ŵ = 1.03 mm1
c = 8.589 (2) ÅT = 293 K
β = 90.676 (18)°Block, yellow
V = 1292.8 (5) Å30.20 × 0.16 × 0.12 mm
Z = 4
Data collection top
Rigaku, SCXmini
diffractometer
3074 independent reflections
Radiation source: Fine-focus sealed tube2472 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 13.6612 pixels mm-1θmax = 27.9°, θmin = 2.8°
ω scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1919
Tmin = 0.820, Tmax = 0.886l = 1111
13382 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.2319P]
where P = (Fo2 + 2Fc2)/3
3074 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Mn(C11H8N5O)(N3)]V = 1292.8 (5) Å3
Mr = 323.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.431 (2) ŵ = 1.03 mm1
b = 14.431 (3) ÅT = 293 K
c = 8.589 (2) Å0.20 × 0.16 × 0.12 mm
β = 90.676 (18)°
Data collection top
Rigaku, SCXmini
diffractometer
3074 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2472 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.886Rint = 0.054
13382 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.11Δρmax = 0.32 e Å3
3074 reflectionsΔρmin = 0.41 e Å3
190 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.44828 (3)0.90619 (3)0.09904 (4)0.03138 (13)
C10.4312 (2)0.72913 (17)0.1025 (3)0.0347 (6)
C20.2897 (2)0.74195 (18)0.0956 (3)0.0361 (6)
H2A0.25480.75750.19740.043*
H2B0.24840.68600.05880.043*
C30.1497 (2)0.84401 (18)0.0504 (3)0.0369 (6)
C40.0389 (3)0.8016 (2)0.0034 (4)0.0489 (7)
H4A0.04100.75130.06420.059*
C50.0791 (3)0.8355 (2)0.0595 (5)0.0636 (9)
H5A0.15490.80680.02800.076*
C60.0843 (3)0.9086 (2)0.1577 (5)0.0611 (9)
H6A0.16310.92910.19390.073*
C70.0296 (3)0.9541 (2)0.2056 (4)0.0476 (7)
C80.0335 (3)1.0319 (2)0.3054 (4)0.0598 (9)
H8A0.04251.05650.34290.072*
C90.1473 (3)1.0708 (2)0.3471 (4)0.0622 (9)
H9A0.14981.12130.41440.075*
C100.2607 (3)1.0341 (2)0.2875 (3)0.0506 (7)
H10A0.33801.06170.31610.061*
C110.1485 (2)0.92186 (18)0.1507 (3)0.0350 (6)
N10.4916 (2)0.66357 (15)0.1804 (3)0.0402 (5)
N20.6184 (2)0.67775 (19)0.1497 (3)0.0551 (7)
N30.6309 (2)0.74859 (19)0.0569 (3)0.0569 (7)
N40.5125 (2)0.78285 (16)0.0251 (3)0.0431 (6)
N50.2634 (2)0.96208 (15)0.1926 (2)0.0372 (5)
N60.5787 (2)1.01876 (16)0.1316 (3)0.0417 (5)
N70.6346 (2)1.04671 (15)0.2407 (3)0.0415 (5)
N80.6923 (3)1.0756 (2)0.3458 (3)0.0701 (9)
O10.27145 (16)0.81654 (12)0.0115 (2)0.0398 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0286 (2)0.0303 (2)0.0353 (2)0.00417 (15)0.00011 (15)0.00057 (15)
C10.0352 (14)0.0325 (13)0.0364 (13)0.0005 (10)0.0019 (11)0.0022 (10)
C20.0345 (14)0.0334 (13)0.0403 (14)0.0042 (11)0.0015 (11)0.0079 (11)
C30.0272 (12)0.0390 (14)0.0445 (15)0.0012 (10)0.0001 (11)0.0068 (11)
C40.0340 (15)0.0462 (17)0.067 (2)0.0052 (12)0.0026 (13)0.0041 (14)
C50.0276 (15)0.061 (2)0.102 (3)0.0051 (14)0.0040 (16)0.004 (2)
C60.0306 (15)0.067 (2)0.086 (3)0.0049 (14)0.0069 (16)0.0028 (18)
C70.0363 (15)0.0509 (17)0.0558 (18)0.0087 (13)0.0078 (13)0.0063 (14)
C80.0510 (19)0.063 (2)0.066 (2)0.0169 (16)0.0150 (16)0.0072 (17)
C90.057 (2)0.063 (2)0.066 (2)0.0136 (17)0.0090 (17)0.0211 (17)
C100.0492 (18)0.0498 (18)0.0529 (18)0.0006 (14)0.0013 (14)0.0121 (14)
C110.0291 (13)0.0397 (14)0.0362 (14)0.0020 (10)0.0031 (10)0.0072 (10)
N10.0336 (12)0.0408 (13)0.0461 (13)0.0030 (9)0.0019 (10)0.0086 (10)
N20.0372 (13)0.0645 (17)0.0633 (17)0.0066 (12)0.0057 (12)0.0228 (13)
N30.0349 (13)0.0648 (17)0.0708 (18)0.0001 (12)0.0065 (12)0.0225 (14)
N40.0322 (12)0.0428 (13)0.0541 (14)0.0026 (10)0.0034 (10)0.0125 (11)
N50.0346 (11)0.0379 (12)0.0392 (12)0.0015 (9)0.0021 (9)0.0013 (9)
N60.0456 (13)0.0389 (12)0.0405 (13)0.0140 (10)0.0067 (10)0.0060 (10)
N70.0433 (13)0.0348 (12)0.0464 (14)0.0020 (10)0.0019 (11)0.0010 (10)
N80.083 (2)0.073 (2)0.0529 (17)0.0068 (16)0.0253 (16)0.0143 (14)
O10.0290 (9)0.0403 (10)0.0501 (11)0.0026 (8)0.0035 (8)0.0124 (8)
Geometric parameters (Å, º) top
Mn1—N62.135 (2)C6—C71.415 (4)
Mn1—N42.184 (2)C6—H6A0.9300
Mn1—N1i2.188 (2)C7—C111.411 (4)
Mn1—N52.247 (2)C7—C81.412 (4)
Mn1—N6ii2.272 (2)C8—C91.358 (5)
Mn1—O12.3682 (18)C8—H8A0.9300
C1—N41.322 (3)C9—C101.399 (4)
C1—N11.322 (3)C9—H9A0.9300
C1—C21.490 (4)C10—N51.322 (3)
C2—O11.430 (3)C10—H10A0.9300
C2—H2A0.9700C11—N51.376 (3)
C2—H2B0.9700N1—N21.361 (3)
C3—C41.364 (4)N1—Mn1iii2.188 (2)
C3—O11.376 (3)N2—N31.302 (3)
C3—C111.416 (4)N3—N41.361 (3)
C4—C51.414 (4)N6—N71.169 (3)
C4—H4A0.9300N6—Mn1ii2.272 (2)
C5—C61.353 (5)N7—N81.157 (3)
C5—H5A0.9300
N6—Mn1—N4119.03 (9)C7—C6—H6A119.9
N6—Mn1—N1i96.42 (8)C11—C7—C8116.5 (3)
N4—Mn1—N1i89.22 (9)C11—C7—C6119.2 (3)
N6—Mn1—N5103.19 (9)C8—C7—C6124.3 (3)
N4—Mn1—N5137.42 (8)C9—C8—C7120.5 (3)
N1i—Mn1—N591.43 (8)C9—C8—H8A119.7
N6—Mn1—N6ii79.85 (9)C7—C8—H8A119.7
N4—Mn1—N6ii89.90 (9)C8—C9—C10119.1 (3)
N1i—Mn1—N6ii175.15 (8)C8—C9—H9A120.4
N5—Mn1—N6ii92.44 (9)C10—C9—H9A120.4
N6—Mn1—O1161.79 (8)N5—C10—C9123.2 (3)
N4—Mn1—O169.03 (7)N5—C10—H10A118.4
N1i—Mn1—O1100.11 (8)C9—C10—H10A118.4
N5—Mn1—O168.97 (7)N5—C11—C7122.7 (3)
N6ii—Mn1—O184.01 (7)N5—C11—C3118.7 (2)
N4—C1—N1111.6 (2)C7—C11—C3118.6 (3)
N4—C1—C2122.5 (2)C1—N1—N2105.2 (2)
N1—C1—C2125.9 (2)C1—N1—Mn1iii132.27 (18)
O1—C2—C1104.99 (19)N2—N1—Mn1iii115.27 (17)
O1—C2—H2A110.7N3—N2—N1109.1 (2)
C1—C2—H2A110.7N2—N3—N4108.8 (2)
O1—C2—H2B110.7C1—N4—N3105.3 (2)
C1—C2—H2B110.7C1—N4—Mn1121.64 (17)
H2A—C2—H2B108.8N3—N4—Mn1132.69 (18)
C4—C3—O1125.4 (3)C10—N5—C11117.9 (2)
C4—C3—C11121.5 (2)C10—N5—Mn1121.83 (19)
O1—C3—C11113.0 (2)C11—N5—Mn1120.26 (17)
C3—C4—C5118.8 (3)N7—N6—Mn1132.73 (19)
C3—C4—H4A120.6N7—N6—Mn1ii126.11 (18)
C5—C4—H4A120.6Mn1—N6—Mn1ii100.15 (9)
C6—C5—C4121.6 (3)N8—N7—N6178.1 (3)
C6—C5—H5A119.2C3—O1—C2120.2 (2)
C4—C5—H5A119.2C3—O1—Mn1118.92 (15)
C5—C6—C7120.2 (3)C2—O1—Mn1120.41 (14)
C5—C6—H6A119.9
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+2, z; (iii) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···N8iv0.972.503.223 (4)131
C5—H5A···N3v0.932.493.413 (4)173
Symmetry codes: (iv) x+1, y1/2, z+1/2; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C11H8N5O)(N3)]
Mr323.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.431 (2), 14.431 (3), 8.589 (2)
β (°) 90.676 (18)
V3)1292.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.20 × 0.16 × 0.12
Data collection
DiffractometerRigaku, SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.820, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
13382, 3074, 2472
Rint0.054
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.106, 1.11
No. of reflections3074
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.41

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···N8i0.972.503.223 (4)131.4
C5—H5A···N3ii0.932.493.413 (4)173.3
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds