Download citation
Download citation
link to html
In the title compound, [CuCl2(C27H32N2)], which bears a chiral diamine ligand, viz (R,R)-N,N,N′′- tribenzyl­cyclo­hexane-1,2-diamine, the CuII ion is ligated by two N and two Cl atoms in a distorted square-planar geometry. The coordination of the ligands to the CuII ion results in the formation of a five-membered heterocyclic ring and a chiral center at the monosubstituted nitro­gen in an (S)-configuration. The catalytic capacity of the complex for the asymmetric nitro­aldol reaction is promising (49% ee).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810014054/rk2198sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810014054/rk2198Isup2.hkl
Contains datablock I

CCDC reference: 742580

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.031
  • wR factor = 0.083
  • Data-to-parameter ratio = 16.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT420_ALERT_2_C D-H Without Acceptor N2 - H2 ... ? PLAT601_ALERT_2_C Structure Contains Solvent Accessible VOIDS of . 54.00 A   3
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.47 From the CIF: _reflns_number_total 4931 Count of symmetry unique reflns 2791 Completeness (_total/calc) 176.68% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2140 Fraction of Friedel pairs measured 0.767 Are heavy atom types Z>Si present yes PLAT791_ALERT_4_G The Model has Chirality at N2 (Verify) .... S PLAT791_ALERT_4_G The Model has Chirality at C1 (Verify) .... R PLAT791_ALERT_4_G The Model has Chirality at C6 (Verify) .... R
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Disubstituted, trisubstituted and tetrasubstituted (R,R)-1,2- diaminocyclohexane were synthesized (Alexakis et al., 2001; Tye et al., 2002; Boyd et al., 2005, 2006; Arjan et al., 2005). Especially disubstituted chiral diamine ligands with Rh (Brethon et al., 2004; Jones & Mahon, 2008), Ni (Evans & Seidel, 2005; Evans et al., 2007), Zn (Roh et al., 2004; Nguyen & Jeong, 2008a), Cu (Nguyen & Jeong, 2008b) were extensively applied in asymmetric synthesis. However, the coordination chemistry and application of asymmetric trisubstituted chiral 1,2-diaminocyclohexanes containing a secondary and a tertiary amines had not attended much. In this study, a new complex of Cu(II) containing N,N,N'-tribenzyl-(R,R)-1,2- diaminocyclohexane (Tye et al., 2002; Boyd et al., 2005) was synthesized and its molecular and crystal structures were determined.

Also, capability of the complex as an enantioselective catalyst for asymmetric nitroaldol reaction was examined. The copper ion was ligated by two nitrogen and two chloride atoms in distorted square-planar geometry. The coordination of the ligands to the Cu ion induced a 5–membered heterocyclic ring and a chiral center at monosubstituted nitrogen in (S)-configuration. Catalytic capacity of the complex for asymmetric nitroaldol reaction was promising (49% ee {ee = [R - S/ R+S] x 100 or [S - R/ R+S] x 100}).

Related literature top

For the synthesis of N,N,N'-tribenzyl-(R,R)-1,2- diaminocyclohexane, see: Tye et al. (2002); Boyd et al. (2005). For related structures, see: Alexakis et al. (2001); Tye et al. (2002); Boyd et al. (2005, 2006); Arjan et al. (2005); Brethon et al. (2004); Jones & Mahon (2008); Evans & Seidel (2005); Evans et al. (2007); Roh et al. (2004); Nguyen & Jeong (2008a,b).

Experimental top

A solution of N,N,N'-tribenzyl-(R,R)- 1,2-diaminocyclohexane (1.57 g, 4.08 mmol) in ethanol (5 ml) was added slowly to a solution of CuCl2.2H2O (0.69 g, 4.01 mmol) in ethanol (10 ml) Tye et al., (2002); Boyd et al., (2005). The mixture was stirred overnight at ambient temperature. The solvent was removed to yield blue solids. The product was re–crystallized from anhydrous ethanol to afford blue crystals (1.64 g, yield 79%). Anal. Calc. for C27H32Cl2CuN2: C 62.48, H 6.21, N 5.40 and found: C 62.20, H 6.30, N 5.46%.

Refinement top

H–atom of N—H was refined with Uiso(H) = 1.2Ueq(N). All H–atoms placed on C atoms were positioned geometrically and refined using a riding model with C—H = 0.97Å for methylene, C—H = 0.98Å for methine, C—H = 0.93Å for aromatic H atoms. For all H atoms Uiso(H) = 1.2Ueq(C).

In the crystal structure was found 'accessible void' with volume 54.00Å3.

Structure description top

Disubstituted, trisubstituted and tetrasubstituted (R,R)-1,2- diaminocyclohexane were synthesized (Alexakis et al., 2001; Tye et al., 2002; Boyd et al., 2005, 2006; Arjan et al., 2005). Especially disubstituted chiral diamine ligands with Rh (Brethon et al., 2004; Jones & Mahon, 2008), Ni (Evans & Seidel, 2005; Evans et al., 2007), Zn (Roh et al., 2004; Nguyen & Jeong, 2008a), Cu (Nguyen & Jeong, 2008b) were extensively applied in asymmetric synthesis. However, the coordination chemistry and application of asymmetric trisubstituted chiral 1,2-diaminocyclohexanes containing a secondary and a tertiary amines had not attended much. In this study, a new complex of Cu(II) containing N,N,N'-tribenzyl-(R,R)-1,2- diaminocyclohexane (Tye et al., 2002; Boyd et al., 2005) was synthesized and its molecular and crystal structures were determined.

Also, capability of the complex as an enantioselective catalyst for asymmetric nitroaldol reaction was examined. The copper ion was ligated by two nitrogen and two chloride atoms in distorted square-planar geometry. The coordination of the ligands to the Cu ion induced a 5–membered heterocyclic ring and a chiral center at monosubstituted nitrogen in (S)-configuration. Catalytic capacity of the complex for asymmetric nitroaldol reaction was promising (49% ee {ee = [R - S/ R+S] x 100 or [S - R/ R+S] x 100}).

For the synthesis of N,N,N'-tribenzyl-(R,R)-1,2- diaminocyclohexane, see: Tye et al. (2002); Boyd et al. (2005). For related structures, see: Alexakis et al. (2001); Tye et al. (2002); Boyd et al. (2005, 2006); Arjan et al. (2005); Brethon et al. (2004); Jones & Mahon (2008); Evans & Seidel (2005); Evans et al. (2007); Roh et al. (2004); Nguyen & Jeong (2008a,b).

Computing details top

Data collection: CAD4 (Enraf–Nonius, 1989); cell refinement: CAD4 (Enraf–Nonius, 1989); data reduction: XCAD (McArdle, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 [SHELXL97?] (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of title compound molecule with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are presented as a small spheres of arbitrary radius.
Dichlorido[(R,R)-N1,N1,N2- tribenzylcyclohexane-1,2-diamine-κ2N1,N2]copper(II) top
Crystal data top
[CuCl2(C27H32N2)]F(000) = 1084
Mr = 519.00Dx = 1.298 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 10.5806 (7) Åθ = 10–13°
b = 15.4409 (8) ŵ = 1.04 mm1
c = 16.2579 (12) ÅT = 295 K
V = 2656.1 (3) Å3Block, blue
Z = 40.40 × 0.40 × 0.40 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
3885 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 25.5°, θmin = 1.8°
ω/2θ scansh = 1212
Absorption correction: analytical
(ABSCALC; McArdle & Daly, 1999)
k = 1818
Tmin = 0.660, Tmax = 0.666l = 1919
5793 measured reflections3 standard reflections every 60 min
4931 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0488P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4931 reflectionsΔρmax = 0.33 e Å3
292 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.017 (13)
Crystal data top
[CuCl2(C27H32N2)]V = 2656.1 (3) Å3
Mr = 519.00Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.5806 (7) ŵ = 1.04 mm1
b = 15.4409 (8) ÅT = 295 K
c = 16.2579 (12) Å0.40 × 0.40 × 0.40 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
3885 reflections with I > 2σ(I)
Absorption correction: analytical
(ABSCALC; McArdle & Daly, 1999)
Rint = 0.019
Tmin = 0.660, Tmax = 0.6663 standard reflections every 60 min
5793 measured reflections intensity decay: none
4931 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083Δρmax = 0.33 e Å3
S = 1.06Δρmin = 0.24 e Å3
4931 reflectionsAbsolute structure: Flack (1983)
292 parametersAbsolute structure parameter: 0.017 (13)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.03338 (3)0.43742 (2)0.76295 (2)0.03853 (10)
Cl10.03484 (8)0.33981 (5)0.85529 (5)0.05231 (19)
Cl20.10262 (9)0.40812 (6)0.66326 (6)0.0609 (2)
N10.0744 (2)0.56146 (15)0.72591 (14)0.0361 (5)
N20.2032 (2)0.43863 (17)0.81961 (17)0.0403 (5)
H20.193 (3)0.438 (2)0.871 (2)0.048*
C10.1701 (3)0.59164 (18)0.78886 (17)0.0352 (6)
H10.12340.59820.84060.042*
C20.2323 (3)0.67928 (19)0.7726 (2)0.0476 (7)
H2A0.28620.67550.72450.057*
H2B0.16790.72260.76210.057*
C30.3099 (4)0.7054 (2)0.8468 (2)0.0561 (9)
H3A0.34900.76120.83680.067*
H3B0.25520.71080.89440.067*
C40.4109 (3)0.6388 (2)0.8639 (2)0.0602 (9)
H4A0.45810.65560.91250.072*
H4B0.46920.63660.81790.072*
C50.3532 (3)0.5492 (2)0.8772 (2)0.0489 (8)
H5A0.30280.54980.92710.059*
H5B0.42040.50720.88450.059*
C60.2699 (3)0.52161 (18)0.8048 (2)0.0373 (7)
H60.32290.51560.75570.045*
C70.0463 (3)0.61569 (18)0.73180 (19)0.0433 (7)
H7A0.02670.67390.71350.052*
H7B0.10750.59190.69360.052*
C80.1073 (3)0.62181 (19)0.8143 (2)0.0428 (7)
C90.1934 (3)0.5605 (2)0.8410 (2)0.0544 (8)
H90.20950.51220.80850.065*
C100.2553 (3)0.5697 (3)0.9143 (3)0.0645 (10)
H100.31080.52670.93170.077*
C110.2371 (4)0.6404 (3)0.9621 (2)0.0628 (10)
H110.28120.64691.01120.075*
C120.1515 (4)0.7031 (3)0.9366 (2)0.0609 (10)
H120.13730.75170.96920.073*
C130.0880 (4)0.6938 (2)0.8638 (2)0.0530 (9)
H130.03120.73640.84730.064*
C140.1132 (3)0.5719 (2)0.63786 (17)0.0465 (7)
H14A0.12320.63330.62730.056*
H14B0.04380.55180.60380.056*
C150.2318 (3)0.5269 (2)0.60886 (19)0.0502 (8)
C160.2368 (4)0.4375 (3)0.59948 (19)0.0564 (8)
H160.16690.40390.61270.068*
C170.3453 (4)0.3988 (3)0.5705 (3)0.0759 (12)
H170.34950.33880.56640.091*
C180.4472 (5)0.4482 (4)0.5478 (3)0.1003 (17)
H180.52020.42160.52840.120*
C190.4416 (5)0.5367 (4)0.5536 (3)0.0976 (17)
H190.50980.57030.53680.117*
C200.3350 (4)0.5754 (3)0.5844 (2)0.0744 (12)
H200.33200.63540.58880.089*
C210.2727 (3)0.3570 (2)0.7986 (2)0.0551 (9)
H21A0.21840.30820.81140.066*
H21B0.28740.35620.73970.066*
C220.3962 (3)0.34379 (19)0.8410 (2)0.0432 (7)
C230.4030 (4)0.3147 (3)0.9210 (2)0.0631 (10)
H230.32920.30160.94950.076*
C240.5196 (5)0.3048 (2)0.9596 (2)0.0737 (12)
H240.52380.28491.01350.088*
C250.6279 (4)0.3247 (3)0.9178 (3)0.0705 (12)
H250.70560.31970.94400.085*
C260.6229 (3)0.3515 (2)0.8387 (3)0.0621 (10)
H260.69700.36280.80990.075*
C270.5094 (3)0.3617 (2)0.8020 (2)0.0517 (8)
H270.50730.38160.74800.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.03398 (17)0.03603 (16)0.04556 (19)0.00039 (16)0.00646 (17)0.00163 (15)
Cl10.0463 (4)0.0478 (4)0.0629 (5)0.0078 (4)0.0052 (4)0.0079 (3)
Cl20.0622 (5)0.0594 (5)0.0612 (5)0.0084 (4)0.0245 (4)0.0054 (4)
N10.0349 (11)0.0387 (11)0.0348 (12)0.0045 (10)0.0041 (9)0.0005 (11)
N20.0347 (12)0.0368 (12)0.0494 (14)0.0047 (12)0.0050 (11)0.0005 (13)
C10.0369 (15)0.0370 (15)0.0317 (15)0.0021 (12)0.0037 (12)0.0027 (11)
C20.0491 (17)0.0375 (15)0.0563 (19)0.0031 (13)0.0058 (16)0.0004 (15)
C30.060 (2)0.0404 (18)0.068 (2)0.0031 (16)0.0085 (19)0.0075 (16)
C40.0491 (19)0.056 (2)0.075 (2)0.0027 (17)0.0152 (18)0.0130 (18)
C50.0405 (17)0.046 (2)0.060 (2)0.0053 (14)0.0171 (15)0.0075 (15)
C60.0308 (15)0.0376 (15)0.0435 (17)0.0020 (13)0.0003 (13)0.0048 (13)
C70.0416 (16)0.0432 (15)0.0452 (15)0.0113 (13)0.0069 (16)0.0001 (13)
C80.0360 (16)0.0383 (16)0.0540 (19)0.0081 (14)0.0024 (15)0.0009 (14)
C90.0398 (17)0.0482 (18)0.075 (2)0.0005 (17)0.0008 (17)0.0117 (19)
C100.0439 (19)0.062 (2)0.087 (3)0.0029 (19)0.0155 (18)0.007 (2)
C110.058 (2)0.071 (3)0.060 (2)0.016 (2)0.0131 (18)0.004 (2)
C120.070 (2)0.055 (2)0.057 (2)0.0071 (19)0.0078 (19)0.0099 (17)
C130.061 (2)0.0385 (17)0.059 (2)0.0054 (15)0.0057 (17)0.0001 (15)
C140.0547 (18)0.0492 (18)0.0357 (15)0.0029 (17)0.0005 (14)0.0012 (14)
C150.061 (2)0.058 (2)0.0313 (16)0.0050 (17)0.0085 (15)0.0060 (14)
C160.065 (2)0.061 (2)0.0434 (18)0.002 (2)0.0110 (15)0.0125 (18)
C170.081 (3)0.075 (3)0.072 (3)0.008 (2)0.012 (2)0.027 (2)
C180.075 (3)0.127 (4)0.099 (3)0.005 (3)0.036 (3)0.035 (3)
C190.082 (3)0.115 (4)0.096 (3)0.022 (3)0.047 (3)0.017 (3)
C200.085 (3)0.076 (3)0.062 (2)0.015 (2)0.029 (2)0.006 (2)
C210.0438 (19)0.0413 (18)0.080 (2)0.0136 (15)0.0093 (18)0.0090 (17)
C220.0367 (16)0.0350 (15)0.058 (2)0.0057 (13)0.0038 (15)0.0010 (14)
C230.059 (2)0.061 (2)0.070 (3)0.0144 (19)0.020 (2)0.0199 (19)
C240.096 (3)0.071 (3)0.055 (2)0.030 (3)0.005 (2)0.0129 (18)
C250.054 (2)0.071 (3)0.086 (3)0.019 (2)0.017 (2)0.008 (2)
C260.0404 (19)0.050 (2)0.096 (3)0.0027 (16)0.008 (2)0.001 (2)
C270.046 (2)0.0439 (17)0.065 (2)0.0104 (14)0.0076 (16)0.0028 (15)
Geometric parameters (Å, º) top
Cu—N22.019 (2)C10—H100.9300
Cu—N12.054 (2)C11—C121.389 (5)
Cu—Cl22.2141 (9)C11—H110.9300
Cu—Cl12.2463 (8)C12—C131.369 (5)
N1—C141.498 (4)C12—H120.9300
N1—C11.513 (3)C13—H130.9300
N1—C71.530 (3)C14—C151.511 (5)
N2—C61.482 (4)C14—H14A0.9700
N2—C211.499 (4)C14—H14B0.9700
N2—H20.85 (3)C15—C201.383 (5)
C1—C21.528 (4)C15—C161.389 (5)
C1—C61.533 (4)C16—C171.377 (5)
C1—H10.9800C16—H160.9300
C2—C31.513 (5)C17—C181.371 (6)
C2—H2A0.9700C17—H170.9300
C2—H2B0.9700C18—C191.371 (7)
C3—C41.509 (5)C18—H180.9300
C3—H3A0.9700C19—C201.371 (6)
C3—H3B0.9700C19—H190.9300
C4—C51.528 (5)C20—H200.9300
C4—H4A0.9700C21—C221.492 (5)
C4—H4B0.9700C21—H21A0.9700
C5—C61.531 (4)C21—H21B0.9700
C5—H5A0.9700C22—C231.379 (5)
C5—H5B0.9700C22—C271.383 (4)
C6—H60.9800C23—C241.392 (6)
C7—C81.492 (4)C23—H230.9300
C7—H7A0.9700C24—C251.366 (6)
C7—H7B0.9700C24—H240.9300
C8—C91.383 (5)C25—C261.352 (6)
C8—C131.388 (5)C25—H250.9300
C9—C101.368 (5)C26—C271.350 (5)
C9—H90.9300C26—H260.9300
C10—C111.354 (6)C27—H270.9300
N2—Cu—N186.39 (10)C10—C9—C8121.2 (4)
N2—Cu—Cl2156.09 (8)C10—C9—H9119.4
N1—Cu—Cl296.50 (7)C8—C9—H9119.4
N2—Cu—Cl189.27 (8)C11—C10—C9121.1 (4)
N1—Cu—Cl1152.80 (7)C11—C10—H10119.5
Cl2—Cu—Cl198.24 (4)C9—C10—H10119.5
C14—N1—C1115.5 (2)C10—C11—C12118.9 (4)
C14—N1—C7103.3 (2)C10—C11—H11120.5
C1—N1—C7110.3 (2)C12—C11—H11120.5
C14—N1—Cu115.99 (19)C13—C12—C11120.4 (4)
C1—N1—Cu103.32 (16)C13—C12—H12119.8
C7—N1—Cu108.40 (17)C11—C12—H12119.8
C6—N2—C21117.2 (2)C12—C13—C8120.9 (3)
C6—N2—Cu110.95 (18)C12—C13—H13119.6
C21—N2—Cu108.9 (2)C8—C13—H13119.6
C6—N2—H2103 (2)N1—C14—C15118.5 (3)
C21—N2—H2106 (2)N1—C14—H14A107.7
Cu—N2—H2110 (2)C15—C14—H14A107.7
N1—C1—C2116.4 (2)N1—C14—H14B107.7
N1—C1—C6111.0 (2)C15—C14—H14B107.7
C2—C1—C6111.0 (2)H14A—C14—H14B107.1
N1—C1—H1105.9C20—C15—C16118.5 (3)
C2—C1—H1105.9C20—C15—C14119.8 (3)
C6—C1—H1105.9C16—C15—C14121.5 (3)
C3—C2—C1109.4 (3)C17—C16—C15120.0 (4)
C3—C2—H2A109.8C17—C16—H16120.0
C1—C2—H2A109.8C15—C16—H16120.0
C3—C2—H2B109.8C18—C17—C16120.4 (4)
C1—C2—H2B109.8C18—C17—H17119.8
H2A—C2—H2B108.2C16—C17—H17119.8
C4—C3—C2110.5 (3)C19—C18—C17120.1 (5)
C4—C3—H3A109.6C19—C18—H18119.9
C2—C3—H3A109.6C17—C18—H18119.9
C4—C3—H3B109.6C18—C19—C20119.7 (5)
C2—C3—H3B109.6C18—C19—H19120.2
H3A—C3—H3B108.1C20—C19—H19120.2
C3—C4—C5111.1 (3)C19—C20—C15121.2 (4)
C3—C4—H4A109.4C19—C20—H20119.4
C5—C4—H4A109.4C15—C20—H20119.4
C3—C4—H4B109.4C22—C21—N2116.0 (3)
C5—C4—H4B109.4C22—C21—H21A108.3
H4A—C4—H4B108.0N2—C21—H21A108.3
C4—C5—C6111.9 (3)C22—C21—H21B108.3
C4—C5—H5A109.2N2—C21—H21B108.3
C6—C5—H5A109.2H21A—C21—H21B107.4
C4—C5—H5B109.2C23—C22—C27116.9 (3)
C6—C5—H5B109.2C23—C22—C21121.8 (3)
H5A—C5—H5B107.9C27—C22—C21121.3 (3)
N2—C6—C5112.9 (3)C22—C23—C24120.5 (4)
N2—C6—C1108.0 (2)C22—C23—H23119.8
C5—C6—C1109.3 (2)C24—C23—H23119.8
N2—C6—H6108.8C25—C24—C23119.6 (3)
C5—C6—H6108.8C25—C24—H24120.2
C1—C6—H6108.8C23—C24—H24120.2
C8—C7—N1116.9 (2)C26—C25—C24120.6 (4)
C8—C7—H7A108.1C26—C25—H25119.7
N1—C7—H7A108.1C24—C25—H25119.7
C8—C7—H7B108.1C27—C26—C25119.4 (4)
N1—C7—H7B108.1C27—C26—H26120.3
H7A—C7—H7B107.3C25—C26—H26120.3
C9—C8—C13117.6 (3)C26—C27—C22123.0 (3)
C9—C8—C7121.6 (3)C26—C27—H27118.5
C13—C8—C7120.6 (3)C22—C27—H27118.5
N2—Cu—N1—C14104.1 (2)C1—N1—C7—C853.7 (3)
Cl2—Cu—N1—C1452.04 (19)Cu—N1—C7—C858.8 (3)
Cl1—Cu—N1—C14174.54 (15)N1—C7—C8—C986.8 (3)
N2—Cu—N1—C123.25 (17)N1—C7—C8—C1399.2 (3)
Cl2—Cu—N1—C1179.41 (15)C13—C8—C9—C101.4 (5)
Cl1—Cu—N1—C158.1 (2)C7—C8—C9—C10175.5 (3)
N2—Cu—N1—C7140.32 (18)C8—C9—C10—C112.0 (6)
Cl2—Cu—N1—C763.51 (17)C9—C10—C11—C121.7 (6)
Cl1—Cu—N1—C759.0 (2)C10—C11—C12—C130.8 (6)
N1—Cu—N2—C61.8 (2)C11—C12—C13—C80.3 (6)
Cl2—Cu—N2—C696.1 (3)C9—C8—C13—C120.5 (5)
Cl1—Cu—N2—C6154.94 (19)C7—C8—C13—C12174.8 (3)
N1—Cu—N2—C21132.2 (2)C1—N1—C14—C1559.0 (4)
Cl2—Cu—N2—C2134.3 (3)C7—N1—C14—C15179.6 (3)
Cl1—Cu—N2—C2174.7 (2)Cu—N1—C14—C1562.0 (3)
C14—N1—C1—C245.3 (3)N1—C14—C15—C20114.2 (4)
C7—N1—C1—C271.3 (3)N1—C14—C15—C1671.3 (4)
Cu—N1—C1—C2173.0 (2)C20—C15—C16—C173.5 (5)
C14—N1—C1—C682.8 (3)C14—C15—C16—C17178.0 (3)
C7—N1—C1—C6160.6 (2)C15—C16—C17—C182.5 (6)
Cu—N1—C1—C644.9 (2)C16—C17—C18—C190.1 (8)
N1—C1—C2—C3171.8 (3)C17—C18—C19—C201.7 (8)
C6—C1—C2—C360.1 (3)C18—C19—C20—C150.7 (8)
C1—C2—C3—C459.6 (4)C16—C15—C20—C191.9 (6)
C2—C3—C4—C557.4 (4)C14—C15—C20—C19176.5 (4)
C3—C4—C5—C655.2 (4)C6—N2—C21—C2257.9 (4)
C21—N2—C6—C586.4 (3)Cu—N2—C21—C22175.2 (3)
Cu—N2—C6—C5147.6 (2)N2—C21—C22—C2378.9 (4)
C21—N2—C6—C1152.6 (3)N2—C21—C22—C27100.0 (4)
Cu—N2—C6—C126.6 (3)C27—C22—C23—C240.3 (5)
C4—C5—C6—N2174.6 (3)C21—C22—C23—C24178.6 (3)
C4—C5—C6—C154.3 (4)C22—C23—C24—C250.4 (6)
N1—C1—C6—N248.7 (3)C23—C24—C25—C261.8 (6)
C2—C1—C6—N2179.7 (2)C24—C25—C26—C272.4 (6)
N1—C1—C6—C5171.9 (2)C25—C26—C27—C221.7 (6)
C2—C1—C6—C557.1 (3)C23—C22—C27—C260.3 (5)
C14—N1—C7—C8177.7 (3)C21—C22—C27—C26179.2 (3)

Experimental details

Crystal data
Chemical formula[CuCl2(C27H32N2)]
Mr519.00
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)10.5806 (7), 15.4409 (8), 16.2579 (12)
V3)2656.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.40 × 0.40 × 0.40
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionAnalytical
(ABSCALC; McArdle & Daly, 1999)
Tmin, Tmax0.660, 0.666
No. of measured, independent and
observed [I > 2σ(I)] reflections
5793, 4931, 3885
Rint0.019
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.06
No. of reflections4931
No. of parameters292
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.24
Absolute structureFlack (1983)
Absolute structure parameter0.017 (13)

Computer programs: CAD4 (Enraf–Nonius, 1989), XCAD (McArdle, 1999), SHELXS97 (Sheldrick, 2008), SHELXS97 [SHELXL97?] (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), WinGX (Farrugia, 1999).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds