Download citation
Download citation
link to html
The crystal structure of diaqua­bis(omeprazolate)magnesium dihydrate (DABOMD) in the solid state has been determined using single-crystal X-ray diffraction. Single crystals of DABOMD were obtained by slow crystallization in ethanol with water used as an antisolvent. The crystal structure shows a dihydrated salt comprising a magnesium cation coordinating two omeprazolate anions and two water molecules (W1) that are strongly bound to magnesium. In addition, two further water molecules (W2) are more weakly hydrogen-bonded to the pyridine nitro­gen atom of each omeprazolate anion. The crystal structure was utilized to estimate key material properties for DABOMD, including crystal habit and mechanical properties, which are required for improved understanding and prediction of the behaviour of particles during pharmaceutical processing such as milling. The results from the material properties calculations indicate that DABOMD exhibits a hexagonal morphology and consists of a flat slip plane through the (100) face. It can be classed as a soft material based on elastic constant calculation and exhibits a two-dimensional hydrogen-bonding framework. Based on the crystal structure, habit and mechanical properties, it is anticipated that DABOMD will experience large disorder accompanied by plastic deformation during milling.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520620001249/rm5029sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520620001249/rm5029Isup2.hkl
Contains datablock I

CCDC reference: 1920020

Computing details top

Data collection: CrysAlis PRO 1.171.39.43c (Rigaku OD, 2018); cell refinement: CrysAlis PRO 1.171.39.43c (Rigaku OD, 2018); data reduction: CrysAlis PRO 1.171.39.43c (Rigaku OD, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

(I) top
Crystal data top
C34H40MgN6O8S2·2H2OF(000) = 828
Mr = 785.18Dx = 1.389 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 17.475 (9) ÅCell parameters from 455 reflections
b = 8.051 (2) Åθ = 6.2–68.5°
c = 14.190 (5) ŵ = 1.99 mm1
β = 109.91 (5)°T = 120 K
V = 1877.1 (14) Å3Plate, colourless
Z = 20.11 × 0.03 × 0.01 mm
Data collection top
SuperNova, Dual, Cu at home/near, Atlas
diffractometer
3546 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1689 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.166
Detector resolution: 5.3095 pixels mm-1θmax = 73.6°, θmin = 5.4°
ω scansh = 1521
Absorption correction: gaussian
CrysAlisPro 1.171.39.43c (Rigaku Oxford Diffraction, 2018) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 99
Tmin = 0.812, Tmax = 1.000l = 1517
8269 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.150H-atom parameters constrained
wR(F2) = 0.416 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3546 reflectionsΔρmax = 1.71 e Å3
249 parametersΔρmin = 0.66 e Å3
216 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.58530 (16)0.6073 (3)0.72447 (16)0.0288 (6)
Mg10.50000.50000.50000.0305 (11)
O10.5987 (5)0.5499 (9)0.6294 (5)0.0350 (16)
O20.1453 (6)0.8220 (14)0.6272 (7)0.062 (2)
O30.8991 (6)0.8318 (12)0.9725 (8)0.064 (2)
O40.5015 (5)0.7391 (8)0.4444 (5)0.0348 (16)
H4A0.47190.74360.38100.052*
H4B0.55000.76510.44450.052*
N10.4341 (5)0.6023 (10)0.5913 (5)0.0285 (15)
N20.4408 (5)0.7129 (10)0.7408 (6)0.0314 (16)
N30.7275 (6)0.9068 (11)0.6906 (6)0.0390 (19)
C10.3565 (7)0.6506 (13)0.5844 (8)0.035 (2)
C20.2826 (7)0.6417 (13)0.5067 (8)0.040 (2)
H20.27930.59680.44500.048*
C30.2135 (7)0.7016 (15)0.5230 (9)0.044 (2)
H30.16330.69690.47170.053*
C40.2190 (7)0.7703 (14)0.6182 (9)0.041 (2)
C50.2908 (7)0.7750 (14)0.6939 (8)0.040 (2)
H50.29310.81710.75590.048*
C60.3617 (7)0.7175 (12)0.6806 (7)0.0332 (19)
C70.1475 (10)0.893 (2)0.7219 (11)0.067 (4)
H7A0.09450.93510.71570.100*
H7B0.18610.98280.73960.100*
H7C0.16320.80970.77310.100*
C80.4778 (6)0.6396 (11)0.6839 (6)0.0272 (17)
C90.6156 (6)0.8249 (12)0.7413 (7)0.0304 (19)
H9A0.58710.88570.68040.036*
H9B0.59990.87180.79510.036*
C100.7054 (7)0.8450 (12)0.7656 (8)0.0337 (19)
C110.7619 (7)0.8097 (13)0.8603 (8)0.041 (2)
C120.8433 (8)0.8488 (15)0.8786 (10)0.049 (2)
C130.8676 (8)0.9129 (18)0.8006 (10)0.055 (3)
C140.8074 (7)0.9366 (15)0.7102 (9)0.045 (2)
H140.82290.97660.65780.054*
C150.7374 (9)0.7365 (16)0.9439 (9)0.050 (3)
H15A0.68700.78530.94290.075*
H15B0.77890.75931.00710.075*
H15C0.73070.61860.93480.075*
C160.9366 (11)0.673 (2)0.9940 (16)0.093 (6)
H16A0.95320.63820.93920.140*
H16B0.89850.59421.00320.140*
H16C0.98330.67931.05400.140*
C170.9564 (9)0.956 (3)0.8180 (13)0.080 (5)
H17A0.98820.85640.82910.120*
H17B0.97671.02720.87560.120*
H17C0.96031.01290.76020.120*
O50.6036 (6)0.9976 (10)0.5097 (6)0.0449 (19)
H5A0.57921.04950.54340.067*
H5B0.65280.99180.54850.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0526 (13)0.0191 (11)0.0168 (10)0.0003 (9)0.0145 (9)0.0002 (8)
Mg10.061 (3)0.018 (2)0.0162 (19)0.0011 (18)0.018 (2)0.0021 (15)
O10.057 (4)0.028 (4)0.022 (3)0.002 (3)0.017 (3)0.006 (2)
O20.075 (5)0.058 (6)0.057 (5)0.003 (4)0.029 (4)0.005 (4)
O30.075 (5)0.040 (5)0.062 (5)0.001 (4)0.005 (4)0.001 (4)
O40.066 (5)0.016 (3)0.028 (3)0.005 (3)0.023 (3)0.002 (2)
N10.055 (4)0.015 (3)0.016 (3)0.000 (3)0.014 (3)0.004 (2)
N20.057 (4)0.018 (4)0.022 (3)0.004 (3)0.018 (3)0.001 (3)
N30.064 (4)0.024 (4)0.032 (4)0.006 (3)0.020 (3)0.006 (3)
C10.052 (4)0.022 (5)0.030 (4)0.000 (3)0.014 (3)0.000 (3)
C20.058 (4)0.021 (5)0.038 (4)0.003 (3)0.012 (4)0.007 (4)
C30.053 (5)0.034 (6)0.040 (5)0.003 (4)0.007 (4)0.001 (4)
C40.053 (4)0.025 (5)0.041 (4)0.002 (3)0.013 (4)0.003 (4)
C50.057 (4)0.028 (5)0.037 (4)0.005 (3)0.019 (3)0.000 (4)
C60.056 (4)0.020 (4)0.026 (4)0.004 (3)0.017 (3)0.000 (3)
C70.081 (9)0.063 (9)0.063 (7)0.006 (7)0.034 (7)0.010 (6)
C80.055 (4)0.014 (4)0.016 (3)0.001 (3)0.016 (3)0.003 (3)
C90.056 (4)0.013 (4)0.020 (4)0.003 (3)0.010 (4)0.006 (3)
C100.055 (4)0.017 (4)0.031 (4)0.002 (3)0.016 (3)0.004 (3)
C110.063 (4)0.022 (5)0.034 (4)0.000 (3)0.012 (3)0.002 (3)
C120.062 (5)0.029 (5)0.053 (5)0.000 (4)0.014 (4)0.003 (4)
C130.059 (5)0.048 (7)0.055 (5)0.009 (4)0.016 (4)0.006 (4)
C140.062 (5)0.032 (6)0.045 (5)0.010 (4)0.022 (4)0.011 (4)
C150.080 (8)0.036 (6)0.032 (5)0.008 (5)0.016 (5)0.000 (4)
C160.098 (11)0.047 (7)0.102 (13)0.010 (7)0.006 (10)0.007 (7)
C170.065 (6)0.100 (14)0.074 (9)0.019 (6)0.023 (6)0.015 (9)
O50.073 (5)0.028 (4)0.037 (4)0.002 (4)0.024 (4)0.004 (3)
Geometric parameters (Å, º) top
S1—O11.518 (7)C4—C51.347 (16)
S1—C81.786 (11)C5—H50.9300
S1—C91.822 (10)C5—C61.396 (16)
Mg1—O1i2.086 (7)C7—H7A0.9600
Mg1—O12.086 (7)C7—H7B0.9600
Mg1—O4i2.084 (7)C7—H7C0.9600
Mg1—O42.084 (7)C9—H9A0.9700
Mg1—N1i2.168 (8)C9—H9B0.9700
Mg1—N12.168 (8)C9—C101.497 (15)
O2—C41.400 (15)C10—C111.398 (15)
O2—C71.450 (16)C11—C121.394 (17)
O3—C121.364 (16)C11—C151.511 (16)
O3—C161.421 (19)C12—C131.410 (19)
O4—H4A0.8729C13—C141.367 (19)
O4—H4B0.8732C13—C171.528 (19)
N1—C11.381 (14)C14—H140.9300
N1—C81.310 (12)C15—H15A0.9600
N2—C61.355 (14)C15—H15B0.9600
N2—C81.333 (12)C15—H15C0.9600
N3—C101.345 (14)C16—H16A0.9600
N3—C141.350 (15)C16—H16B0.9600
C1—C21.385 (16)C16—H16C0.9600
C1—C61.442 (13)C17—H17A0.9600
C2—H20.9300C17—H17B0.9600
C2—C31.392 (17)C17—H17C0.9600
C3—H30.9300O5—H5A0.8500
C3—C41.433 (16)O5—H5B0.8498
O1—S1—C8102.8 (4)O2—C7—H7B109.5
O1—S1—C9106.4 (4)O2—C7—H7C109.5
C8—S1—C997.4 (5)H7A—C7—H7B109.5
O1—Mg1—O1i180.0H7A—C7—H7C109.5
O1i—Mg1—N1i81.3 (3)H7B—C7—H7C109.5
O1i—Mg1—N198.7 (3)N1—C8—S1118.7 (7)
O1—Mg1—N181.3 (3)N1—C8—N2118.2 (9)
O1—Mg1—N1i98.7 (3)N2—C8—S1122.9 (7)
O4i—Mg1—O187.6 (3)S1—C9—H9A109.3
O4i—Mg1—O1i92.4 (3)S1—C9—H9B109.3
O4—Mg1—O1i87.6 (3)H9A—C9—H9B108.0
O4—Mg1—O192.4 (3)C10—C9—S1111.7 (7)
O4i—Mg1—O4180.0 (5)C10—C9—H9A109.3
O4i—Mg1—N1i87.3 (3)C10—C9—H9B109.3
O4—Mg1—N1i92.7 (3)N3—C10—C9114.7 (9)
O4—Mg1—N187.3 (3)N3—C10—C11122.5 (10)
O4i—Mg1—N192.7 (3)C11—C10—C9122.7 (9)
N1i—Mg1—N1180.0C10—C11—C15122.5 (11)
S1—O1—Mg1120.6 (4)C12—C11—C10118.3 (11)
C4—O2—C7117.9 (11)C12—C11—C15119.1 (11)
C12—O3—C16115.1 (12)O3—C12—C11120.3 (12)
Mg1—O4—H4A110.4O3—C12—C13119.9 (12)
Mg1—O4—H4B111.0C11—C12—C13119.8 (12)
H4A—O4—H4B103.0C12—C13—C17121.2 (13)
C1—N1—Mg1140.6 (6)C14—C13—C12116.6 (12)
C8—N1—Mg1116.1 (7)C14—C13—C17122.3 (13)
C8—N1—C1103.3 (8)N3—C14—C13125.4 (12)
C8—N2—C6103.3 (8)N3—C14—H14117.3
C10—N3—C14117.3 (10)C13—C14—H14117.3
N1—C1—C2131.9 (10)C11—C15—H15A109.5
N1—C1—C6107.1 (9)C11—C15—H15B109.5
C2—C1—C6121.0 (10)C11—C15—H15C109.5
C1—C2—H2120.8H15A—C15—H15B109.5
C1—C2—C3118.4 (11)H15A—C15—H15C109.5
C3—C2—H2120.8H15B—C15—H15C109.5
C2—C3—H3119.7O3—C16—H16A109.5
C2—C3—C4120.5 (11)O3—C16—H16B109.5
C4—C3—H3119.7O3—C16—H16C109.5
O2—C4—C3115.6 (10)H16A—C16—H16B109.5
C5—C4—O2123.7 (11)H16A—C16—H16C109.5
C5—C4—C3120.5 (11)H16B—C16—H16C109.5
C4—C5—H5119.6C13—C17—H17A109.5
C4—C5—C6120.8 (11)C13—C17—H17B109.5
C6—C5—H5119.6C13—C17—H17C109.5
N2—C6—C1108.0 (9)H17A—C17—H17B109.5
N2—C6—C5133.3 (9)H17A—C17—H17C109.5
C5—C6—C1118.7 (10)H17B—C17—H17C109.5
O2—C7—H7A109.5H5A—O5—H5B104.5
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds