Download citation
Download citation
link to html
The mol­ecule of the title compound, C15H14N2O4, displays a trans configuration with respect to the hydrazide C=N bond. The dihedral angle between the two benzene rings is 15.0 (2)°. In the crystal structure, mol­ecules are linked through inter­molecular O—H...N and O—H...O hydrogen bonds, forming layers parallel to the ab plane; an intramolecular N—H...O hydrogen bond is also present.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808001104/rz2192sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808001104/rz2192Isup2.hkl
Contains datablock I

CCDC reference: 677611

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.031
  • wR factor = 0.080
  • Data-to-parameter ratio = 7.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax .LT. 18) ..... 7.75 PLAT432_ALERT_2_C Short Inter X...Y Contact O4 .. C15 .. 2.97 Ang.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.00 From the CIF: _reflns_number_total 1519 Count of symmetry unique reflns 1520 Completeness (_total/calc) 99.93% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT804_ALERT_5_G ARU-Pack Problem in PLATON Analysis ............ 6 Times PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Schiff base compounds have received much attention in recent years. Some Schiff base metal complexes have been found to have pharmacological and antitumor properties (Brückner et al., 2000; Harrop et al., 2003; Ren et al., 2002). As part of our research programme on the synthesis and characterization of Schiff base compounds (Diao et al., 2007; Diao, 2007; Li et al., 2007; Huang et al., 2007), we report here the structure of the title ligand.

The molecule of the title compound displays a trans configuration with respect to the C=N bond (Fig. 1). The dihedral angle between the two benzene rings is 15.0 (2)°. The molecular conformation is stabilized by an intramolecular N—H···O hydrogen interaction (Table 1). In the crystal, molecules are linked through intermolecular O—H···N and O—H···O hydrogen bonds (Table 1), forming layers parallel to the ab plane (Fig. 2).

Related literature top

For the biological properties of Schiff base compounds, see: Brückner et al. (2000); Harrop et al. (2003); Ren et al. (2002). For related structures, see: Diao (2007); Diao et al. (2007); Li et al. (2007); Huang et al. (2007).

Experimental top

4-Methoxybenzaldehyde (0.1 mmol, 13.6 mg) and 2,4-dihydroxybenzoic acid hydrazide (0.1 mmol, 16.8 mg) were dissolved in a 95% ethanol solution (10 ml). The mixture was stirred at room temperature to give a clear colourless solution. Crystals of the title compound were formed by gradual evaporation of the solvent over a period of three days at room temperature.

Refinement top

Atom H2A was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. All other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with O—H = 0.82 Å, C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, O) for methyl and hydroxy H atoms. In the absence of significant anomalous scattering effects, Friedel opposites were merged in the final refinement.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the b axis. Intermolecular hydrogen bonds are shown as dashed lines.
2,4-Dihydroxy-N'-(4-methoxybenzylidene)benzohydrazide top
Crystal data top
C15H14N2O4F(000) = 600
Mr = 286.28Dx = 1.407 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3064 reflections
a = 12.494 (3) Åθ = 2.7–27.2°
b = 5.196 (1) ŵ = 0.10 mm1
c = 20.825 (4) ÅT = 298 K
V = 1351.9 (5) Å3Block, colourless
Z = 40.22 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1519 independent reflections
Radiation source: fine-focus sealed tube1382 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1515
Tmin = 0.978, Tmax = 0.980k = 65
7661 measured reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.123P]
where P = (Fo2 + 2Fc2)/3
1519 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.13 e Å3
2 restraintsΔρmin = 0.15 e Å3
Crystal data top
C15H14N2O4V = 1351.9 (5) Å3
Mr = 286.28Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.494 (3) ŵ = 0.10 mm1
b = 5.196 (1) ÅT = 298 K
c = 20.825 (4) Å0.22 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1519 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1382 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.980Rint = 0.025
7661 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0312 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.13 e Å3
1519 reflectionsΔρmin = 0.15 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07270 (13)0.0953 (3)0.95352 (10)0.0550 (5)
O20.05579 (11)1.2801 (3)0.67387 (9)0.0461 (4)
O30.37031 (11)1.3774 (3)0.73708 (8)0.0411 (4)
H30.43591.37770.73570.062*
O40.41377 (12)2.0606 (3)0.58664 (8)0.0438 (4)
H40.46072.10380.61200.066*
N10.11530 (13)0.9630 (3)0.76750 (9)0.0358 (4)
N20.18526 (13)1.1298 (3)0.73763 (9)0.0354 (4)
C10.09837 (17)0.6230 (4)0.84516 (11)0.0361 (4)
C20.01216 (19)0.5952 (5)0.83938 (12)0.0461 (6)
H20.04990.69740.81050.055*
C30.06553 (18)0.4174 (5)0.87614 (13)0.0490 (6)
H3A0.13920.39940.87170.059*
C40.01114 (18)0.2637 (4)0.91993 (11)0.0394 (5)
C50.09840 (18)0.2886 (4)0.92608 (12)0.0421 (5)
H50.13600.18550.95480.051*
C60.15162 (17)0.4694 (4)0.88882 (12)0.0424 (5)
H60.22530.48760.89340.051*
C70.15821 (17)0.8097 (4)0.80745 (11)0.0377 (5)
H70.23200.81730.81290.045*
C80.15001 (14)1.2894 (4)0.69171 (10)0.0317 (4)
C90.22691 (14)1.4776 (4)0.66456 (10)0.0304 (4)
C100.33078 (14)1.5226 (4)0.68779 (10)0.0306 (4)
C110.39332 (15)1.7176 (4)0.66248 (10)0.0324 (4)
H110.46101.74890.67930.039*
C120.35562 (16)1.8657 (4)0.61231 (10)0.0335 (4)
C130.25493 (16)1.8182 (4)0.58614 (11)0.0394 (5)
H130.23031.91290.55120.047*
C140.19282 (16)1.6282 (4)0.61303 (10)0.0373 (5)
H140.12501.59870.59610.045*
C150.0203 (2)0.0748 (5)0.99722 (14)0.0540 (6)
H15A0.01350.02351.03060.081*
H15B0.03280.17290.97460.081*
H15C0.07200.18931.01590.081*
H2A0.2547 (11)1.133 (6)0.7492 (17)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0502 (9)0.0531 (9)0.0618 (11)0.0010 (8)0.0024 (9)0.0263 (8)
O20.0247 (7)0.0480 (8)0.0657 (11)0.0043 (6)0.0063 (7)0.0119 (8)
O30.0221 (6)0.0521 (9)0.0490 (9)0.0013 (6)0.0039 (6)0.0161 (8)
O40.0398 (8)0.0458 (9)0.0458 (8)0.0114 (7)0.0038 (7)0.0110 (7)
N10.0311 (8)0.0368 (9)0.0395 (9)0.0081 (7)0.0034 (7)0.0004 (8)
N20.0258 (8)0.0401 (9)0.0404 (9)0.0046 (7)0.0007 (8)0.0049 (7)
C10.0364 (10)0.0354 (10)0.0364 (10)0.0019 (8)0.0005 (8)0.0012 (8)
C20.0383 (11)0.0517 (13)0.0481 (13)0.0061 (10)0.0100 (10)0.0175 (11)
C30.0346 (10)0.0557 (13)0.0567 (14)0.0070 (10)0.0084 (11)0.0186 (11)
C40.0422 (12)0.0360 (10)0.0399 (11)0.0009 (9)0.0012 (9)0.0062 (9)
C50.0439 (12)0.0400 (11)0.0425 (11)0.0066 (9)0.0042 (9)0.0068 (10)
C60.0347 (10)0.0451 (12)0.0476 (13)0.0029 (9)0.0033 (10)0.0006 (10)
C70.0311 (10)0.0418 (11)0.0404 (11)0.0033 (9)0.0001 (9)0.0023 (9)
C80.0239 (9)0.0318 (9)0.0394 (10)0.0013 (7)0.0020 (8)0.0037 (8)
C90.0233 (8)0.0324 (9)0.0356 (10)0.0009 (7)0.0000 (8)0.0020 (8)
C100.0240 (8)0.0333 (9)0.0346 (10)0.0032 (7)0.0006 (8)0.0007 (8)
C110.0227 (8)0.0371 (10)0.0376 (10)0.0001 (7)0.0016 (8)0.0006 (8)
C120.0296 (9)0.0346 (10)0.0363 (10)0.0020 (8)0.0024 (8)0.0004 (8)
C130.0333 (10)0.0460 (11)0.0389 (11)0.0003 (9)0.0065 (9)0.0089 (10)
C140.0262 (9)0.0437 (11)0.0419 (11)0.0031 (8)0.0081 (8)0.0019 (9)
C150.0663 (16)0.0453 (12)0.0504 (14)0.0093 (13)0.0052 (13)0.0159 (11)
Geometric parameters (Å, º) top
O1—C41.359 (3)C4—C51.381 (3)
O1—C151.427 (3)C5—C61.388 (3)
O2—C81.235 (2)C5—H50.9300
O3—C101.366 (2)C6—H60.9300
O3—H30.8200C7—H70.9300
O4—C121.356 (2)C8—C91.483 (3)
O4—H40.8200C9—C141.394 (3)
N1—C71.270 (3)C9—C101.405 (3)
N1—N21.379 (2)C10—C111.384 (3)
N2—C81.340 (3)C11—C121.380 (3)
N2—H2A0.901 (10)C11—H110.9300
C1—C61.381 (3)C12—C131.393 (3)
C1—C21.394 (3)C13—C141.375 (3)
C1—C71.455 (3)C13—H130.9300
C2—C31.373 (3)C14—H140.9300
C2—H20.9300C15—H15A0.9600
C3—C41.390 (3)C15—H15B0.9600
C3—H3A0.9300C15—H15C0.9600
C4—O1—C15117.86 (19)O2—C8—N2120.23 (18)
C10—O3—H3109.5O2—C8—C9121.91 (18)
C12—O4—H4109.5N2—C8—C9117.85 (16)
C7—N1—N2114.96 (16)C14—C9—C10117.00 (17)
C8—N2—N1120.15 (16)C14—C9—C8117.74 (17)
C8—N2—H2A120 (2)C10—C9—C8125.23 (17)
N1—N2—H2A120 (2)O3—C10—C11119.10 (16)
C6—C1—C2118.3 (2)O3—C10—C9120.06 (16)
C6—C1—C7119.57 (19)C11—C10—C9120.82 (17)
C2—C1—C7122.1 (2)C12—C11—C10120.26 (17)
C3—C2—C1120.2 (2)C12—C11—H11119.9
C3—C2—H2119.9C10—C11—H11119.9
C1—C2—H2119.9O4—C12—C11122.14 (18)
C2—C3—C4121.0 (2)O4—C12—C13117.50 (18)
C2—C3—H3A119.5C11—C12—C13120.36 (18)
C4—C3—H3A119.5C14—C13—C12118.52 (19)
O1—C4—C5125.0 (2)C14—C13—H13120.7
O1—C4—C3115.5 (2)C12—C13—H13120.7
C5—C4—C3119.5 (2)C13—C14—C9122.94 (18)
C4—C5—C6119.1 (2)C13—C14—H14118.5
C4—C5—H5120.4C9—C14—H14118.5
C6—C5—H5120.4O1—C15—H15A109.5
C1—C6—C5121.9 (2)O1—C15—H15B109.5
C1—C6—H6119.0H15A—C15—H15B109.5
C5—C6—H6119.0O1—C15—H15C109.5
N1—C7—C1123.69 (19)H15A—C15—H15C109.5
N1—C7—H7118.2H15B—C15—H15C109.5
C1—C7—H7118.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.90 (1)1.94 (2)2.646 (2)134 (3)
O4—H4···O2i0.821.852.671 (2)174
O3—H3···N1ii0.822.483.234 (2)154
O3—H3···O2ii0.822.142.788 (2)136
Symmetry codes: (i) x+1/2, y+7/2, z; (ii) x+1/2, y+5/2, z.

Experimental details

Crystal data
Chemical formulaC15H14N2O4
Mr286.28
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)12.494 (3), 5.196 (1), 20.825 (4)
V3)1351.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.978, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
7661, 1519, 1382
Rint0.025
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.079, 1.06
No. of reflections1519
No. of parameters196
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.15

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.901 (10)1.94 (2)2.646 (2)134 (3)
O4—H4···O2i0.821.852.671 (2)174.1
O3—H3···N1ii0.822.483.234 (2)153.5
O3—H3···O2ii0.822.142.788 (2)136.1
Symmetry codes: (i) x+1/2, y+7/2, z; (ii) x+1/2, y+5/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds